Catching up and lagging behind in a balance-of-payments-constrained dual economy

Alejandro Lavopa
MERIT Conference
27/11/2014
Motivation and Goals

• Study the forces that drive success and failure in the process of economic development.

• Economic development as a process of transformation that take place in two broad dimensions:
 – Sectoral composition (Development pioneers, Post-Keynesians and Latinamerican Structuralists)
 – Technological capabilities (Neo-Schumpeterians)

• Main Goals:
 – Set a formal model of catching up between nations that captures both dimensions;
 – Provide theoretical foundations for the emergence of development traps.
The model – Basic Assumptions

• Setting:
 2 countries: a poor, technological backward country tries to catch up with a rich, technological advanced country.
 2 sectors: the follower has a dual structure in which a traditional sector co-exists with a modern sector.

• Modern sector:
 – Firms produce using capital, labour and technological knowledge for domestic and external demand.
 – There is a binding restriction on external accounts → Rhythm of production depends on availability of foreign exchange.

• Traditional sector:
 – Produces for its own demand, using only labour.
 – Employment is determined as a residual (works as a “reserve army”) → dynamic behaviour ultimately determined by what happens in the modern sector
The modern sector

- Output growth:
 \[\hat{Y}_M = \frac{a(\hat{e} + \hat{P}_M^f - \hat{P}_M)}{\chi} \varepsilon \hat{Z} \]

 - **Income elasticity** \(\rightarrow \) determined by exogenous factors and the technological gap
 - **Domestic prices** \(\rightarrow \) determined by mark-up, productivity and wages
 - **Wages** \(\rightarrow \) determined by exogenous factors and the relative size of modern sector
 - **Productivity** \(\rightarrow \) determined by embodied tech. progress, growth and innovation
 - **Innovation** \(\rightarrow \) determined by R&D, the tech. gap and relative size of modern sector

Output (and Employment) Growth ultimately depends on two **state endogenous variables**: the technological gap \((G_M)\) and the relative size of modern sector \((\lambda)\)
Dynamic System

\[G_M = 1 - \rho \rightarrow \left(\rho = \frac{T_M}{T_M^f}; \lambda = \frac{N_M}{L} \right) \]

\[
\begin{align*}
\dot{\rho} &= (A + B\rho + C\lambda)\rho \\
\dot{\lambda} &= (D + E\rho + F\lambda)\lambda
\end{align*}
\]

Paper \(\rightarrow \) **Examine the conditions under which each SS is viable and stable.**

What are the conditions to escape the development traps and enter into a path towards successful development?

Radical transformation in \(\varepsilon \) (**income elasticity of exports**) and \(\sigma \) (**absorptive capacity**)

But, if only one is improved \(\rightarrow \) might end up in other development trap (\(E2, E3 \)).

\(E4 \) becomes stable only if there is a radical transformation in **both** parameters!
Conclusions and future steps

• We set up a model of catching-up between nations that acknowledges the dual character of developing economies and the challenges they face to achieve a productive absorption of labour.

• Using a simple linear setting, the model is able to provide multiple equilibria that can be associated with different types of development traps that needs to be avoided in order to enter into a path of successful development.

• Possible extensions:
 – Inclusion of non-linearities (international spill-overs, KV-coef.)
 – Inclusion of multisectoral structure in the modern sector (to analyze structural change within the modern sector)
Thanks for your attention!

Alejandro Lavopa
(lavopa@merit.unu.edu)
The traditional sector

- Output growth: \(\hat{Y}_S = \hat{N}_S + \hat{R}_S \)

 - **Productivity growth** \(\rightarrow \) dependant on employment (non-increasing returns)
 \[\hat{R}_S = t + \gamma_s \hat{N}_S \]

 - **Employment growth** \(\rightarrow \) residual (labour force not employed in modern sector)
 \[n = \lambda \hat{N}_M + (1-\lambda) \hat{N}_S \Rightarrow \hat{N}_S = \frac{n - \lambda \hat{N}_M}{1-\lambda} \]

Output (and Employment) Growth in traditional sector depends on employment absorption in the modern sector

\(\rightarrow \) ultimately determined by state endogenous variables (technological gap and relative size of modern sector)
Dynamic System

• Technological gap: $G_M = 1 - \rho \ ; \ \rho = \frac{T_M}{T_M^f}$

• Relative size of modern sector: $\lambda = \frac{N_M}{L}$

• Growth rates: $
\hat{\lambda} = \hat{N}_M - \hat{L} \ ; \ \hat{\rho} = \hat{T}_M - \hat{T}_M^f
$

• Movements through time:

\[
\begin{align*}
\dot{\rho} &= (A + B\rho + C\lambda)\rho \\
\dot{\lambda} &= (D + E\rho + F\lambda)\lambda
\end{align*}
\]

→ Solution of system yields 4 steady states
 (3 development traps and 1 good equilibrium) [Figure]
Development traps and structural trajectories

- Economic interpretation of the different SS and the trajectories that take place when changes in the parameters lead to changes in the stability conditions of each of them.
- Simulations with simple figures.
- FIGURES
Trajectories
Initial Stage

Exogenous Variables

\[b = 0.01; \hat{Z} = 0.05; \hat{T}_M = 0.04; n = 0.02 \]

Parameters

\[\hat{Y}_M \Rightarrow a = 0.80; \chi = 1.25 \]
\[\varepsilon \Rightarrow \xi = 0.80; \psi = 0.80 \]
\[\hat{W}_M \Rightarrow \theta = 0.065 \]
\[\hat{R}_M \Rightarrow \mu = 0.15; k = 0.00; \gamma = 0.40; \alpha = 0.34 \]
\[\hat{T}_M \Rightarrow \zeta = 0.00; \sigma = 0.01; \beta = 0.04 \]
Trajectories
Big-Push on Technology

Exogenous Variables
\(b = 0.01; \hat{\beta} = 0.05; \hat{T}_M = 0.04; \ n = 0.01 \)

Parameters
\(\hat{Y}_M \Rightarrow a = 0.80; \chi = 1.25 \)
\(\varepsilon \Rightarrow \xi = 0.80; \psi = 0.80 \)
\(\hat{W}_M \Rightarrow \theta = 0.065 \)
\(\hat{R}_M \Rightarrow \mu = 0.15; k = 0.00; \gamma = 0.40; \alpha = 0.34 \)
\(\hat{T}_M \Rightarrow \zeta = 0.02; \sigma = 0.02; \beta = 0.04 \)
Trajectories
Emergence of Modern Exporting Sector

Exogenous Variables
\(b = 0.01; \hat{Z} = 0.05; \hat{T}_M = 0.04; n = 0.01 \)

Parameters
\(\hat{Y}_M \Rightarrow a = 0.80; \chi = 1.25 \)
\(\varepsilon \Rightarrow \xi = 1.30; \psi = 0.80 \)
\(\hat{W}_M \Rightarrow \theta = 0.065 \)
\(\hat{R}_M \Rightarrow \mu = 0.15; k = 0.00; \gamma = 0.40; \alpha = 0.34 \)
\(\hat{T}_M \Rightarrow \zeta = 0.00; \sigma = 0.01; \beta = 0.04 \)
Trajectories
Successful Development

Exogenous Variables
\(b = 0.01; \hat{Z} = 0.05; \hat{T}_M = 0.04; n = 0.01 \)

Parameters
\(\hat{Y}_M \Rightarrow a = 0.80; \chi = 1.25 \)
\(\epsilon \Rightarrow \xi = 1.30; \psi = 0.40 \)
\(\hat{W}_M \Rightarrow \theta = 0.065 \)
\(\hat{R}_M \Rightarrow \mu = 0.15; k = 0.25; \gamma = 0.40; \alpha = 0.34 \)
\(\hat{T}_M \Rightarrow \zeta = 0.005; \sigma = 0.08; \beta = 0.04 \)
The real world

- Stylized trajectories can be observed in real data
- Proxies used:
 - LAMBDA = share of labour in MMA
 - RHO = relative productivity of MMA with respect to the frontier
- Figures: success, poverty trap, lower middle income trap, upper middle income trap
Conceptual Framework

<table>
<thead>
<tr>
<th>Technology Gap Approach</th>
<th>Post Keynesian Approaches</th>
<th>Development Pioneers and LA Structuralism</th>
</tr>
</thead>
</table>
| • Technology explains differences in per capita income.
• Advantages of backwardness, but pre conditions to exploit these advantages
• Trade dynamics also depend on technological factors (non-price competitiveness) | • Balance-of-Payments Constraint Growth
• Kaldor-Verdoorn Increasing Returns
• Cumulative Causation (Demand and Productivity regimes) | • Developing economies are characterized by a high degree of duality (or structural heterogeneity) → it is possible to identify sectors with very different levels of productivity, incomes and technological capabilities.
• Labour absorption in the modern sector is key to achieve successful development |