Can internet infrastructure help reduce regional disparities? Evidence from Turkey

Mehmet Guney Celbis* Denis de Crombrugghe†

UNU-MERIT, Maastricht University

Paper Presented at the UNU-MERIT conference “Future Perspectives on Innovation and Governance in Development,” Maastricht, the Netherlands, November 26, 2014

*UNU-Merit, Maastricht University
†School of Business and Economics, Maastricht University
Can internet infrastructure help reduce regional disparities? Evidence from Turkey

RELEVANCE
Night map, Turkey (2012)
Why may regional disparities be a source of concern?

- congestion due to migration from lagging regions to richer ones,
Why may regional disparities be a source of concern?

- congestion due to migration from lagging regions to richer ones,
- environmental concerns,
Why may regional disparities be a source of concern?

- congestion due to migration from lagging regions to richer ones,
- environmental concerns,
- crime,
Why may regional disparities be a source of concern?

- congestion due to migration from lagging regions to richer ones,
- environmental concerns,
- crime,
- high residential rents,
Why may regional disparities be a source of concern?

- congestion due to migration from lagging regions to richer ones,
- environmental concerns,
- crime,
- high residential rents,
- perception of fairness and loss of trust within the population, etc.
Information, communication, and economic geography

- the reduction of the information gap between markets,
Information, communication, and economic geography

- the reduction of the information gap between markets,
- stimulating capital flows,
Information, communication, and economic geography

- the reduction of the information gap between markets,
- stimulating capital flows,
- creating new patterns of homogenization, homogenizing of institutions and culture,
Information, communication, and economic geography

- the reduction of the information gap between markets,
- stimulating capital flows,
- creating new patterns of homogenization, homogenizing of institutions and culture,
- generating productivity spillovers to other inputs of production,
Information, communication, and economic geography

- the reduction of the information gap between markets,
- stimulating capital flows,
- creating new patterns of homogenization, homogenizing of institutions and culture,
- generating productivity spillovers to other inputs of production,
- attracting resources to a regional economy from other economies,
Information, communication, and economic geography

- the reduction of the information gap between markets,
- stimulating capital flows,
- creating new patterns of homogenization, homogenizing of institutions and culture,
- generating productivity spillovers to other inputs of production,
- attracting resources to a regional economy from other economies,
- creating locational advantages as a result of being in digital networks,
Information, communication, and economic geography

- the reduction of the information gap between markets,
- stimulating capital flows,
- creating new patterns of homogenization, homogenizing of institutions and culture,
- generating productivity spillovers to other inputs of production,
- attracting resources to a regional economy from other economies,
- creating locational advantages as a result of being in digital networks,
- changing the NEG equilibrium through decreasing the costs of communication,
Information, communication, and economic geography

- the reduction of the information gap between markets,
- stimulating capital flows,
- creating new patterns of homogenization, homogenizing of institutions and culture,
- generating productivity spillovers to other inputs of production,
- attracting resources to a regional economy from other economies,
- creating locational advantages as a result of being in digital networks,
- changing the NEG equilibrium through decreasing the costs of communication,
- increasing the demand for product variety and attracting firms to the region, etc.
THEORETICAL BACKGROUND
Can internet infrastructure help reduce regional disparities? Evidence from Turkey

Theoretical background

(1)

\[
\frac{1}{T} \ln \left(\frac{y_{i,t_0+T}}{y_{i,t_0}} \right) = \alpha - \left(\frac{1 - e^{-bT}}{T} \right) \ln(y_{i,t_0}) + \varepsilon_i
\]

(2)

\[
\ln(y_{i,t_0+T}) = \theta + (1 + \beta) \ln(y_{i,t_0}) + \nu_i
\]
REGIONAL PATTERNS OF INCOME PER CAPITA IN TURKEY
Can internet infrastructure help reduce regional disparities? Evidence from Turkey

Regional patterns of income per capita in Turkey

Sigma convergence represented by the coefficient of variation, and TPI (millions), 1990-2011

Cebbis & de Crombrugghe (2014) p.8/23
Local Moran’s I: shows the extent of significant local spatial clustering around individual regions for 1990, 1999, and 2011 ($l_i = z_i \sum_j w_{ij} z_j$).

Moran significance map.
Can internet infrastructure help reduce regional disparities? Evidence from Turkey

Regional patterns of income per capita in Turkey

Low−High
High−High
Low−Low
High−Low
Not significant

Celibis & de Crombrugghe (2014) p.9/23
Can internet infrastructure help reduce regional disparities? Evidence from Turkey

Regional patterns of income per capita in Turkey

Can internet infrastructure help reduce regional disparities? Evidence from Turkey

Regional patterns of income per capita in Turkey

Celbis & de Crombrugghe (2014)
EMPIRICAL APPROACH
Can internet infrastructure help reduce regional disparities? Evidence from Turkey

Regional patterns of income per capita in Turkey

SAR:

\[\ln(y_{i,t_0+T}) = \alpha + \rho \sum_{j=1}^{N} w_{ij} \ln(y_{j,t_0+T}) + (1+\beta) \ln(y_{i,t_0}) + \nu_i \]

(Celbis & de Crombrugghe (2014) p.13/23)
Can internet infrastructure help reduce regional disparities? Evidence from Turkey

Regional patterns of income per capita in Turkey

- SAR:

\[
\ln(y_{i,t_0+T}) = \alpha + \rho \sum_{j=1}^{N} w_{ij} \ln(y_{j,t_0+T}) + (1 + \beta) \ln(y_{i,t_0}) + \nu_i
\]

(3)

- SEM:

\[
\ln(y_{i,t_0+T}) = \alpha + (1 + \beta) \ln(y_{i,t_0}) + \nu_i
\]

where \(\nu_i = \lambda \sum_{j=1}^{N} w_{ij} \nu_j + \zeta_i \)

(4)

Celbis & de Crombrugghe (2014) p.13/23
Can internet infrastructure help reduce regional disparities? Evidence from Turkey

Regional patterns of income per capita in Turkey

► SAR:

\[\ln(y_{i,t_0+T}) = \alpha + \rho \sum_{j=1}^{N} w_{ij} \ln(y_{j,t_0+T}) + (1 + \beta) \ln(y_{i,t_0}) + \nu_i \] (3)

► SEM:

\[\ln(y_{i,t_0+T}) = \alpha + (1 + \beta) \ln(y_{i,t_0}) + \nu_i \]

where \(\nu_i = \lambda \sum_{j=1}^{N} w_{ij} \nu_j + \zeta_i \) (4)

► GSM:

\[\ln(y_{i,t_0+T}) = \alpha + \rho \sum_{j=1}^{N} w_{ij} \ln(y_{j,t_0+T}) + (1 + \beta) \ln(y_{i,t_0}) + \nu_i \]

where \(\nu_i = \lambda \sum_{i=1}^{N} c_{ij} \nu_j + \zeta_i \) (5)

Cebis & de Crombrugghe (2014)
... and panel variants with regional characteristics, fixed regional effects, year dummies, and interaction between internet infrastructure and past GVA per capita:

$$\sum_{k=1}^{m} \gamma_k x_{k,it} = \gamma_1 \ln c_{it} + \gamma_2 \ln y_{i,t-1} \times \ln c_{it} + \gamma_3 \ln a_{it} + \gamma_4 r_{it}$$

so marginal effect of $\ln y_{i,t-1}$ is now defined as $e^{-b(\ln c_{it})T}$ (i.e. the speed of convergence is a function of internet infrastructure)
Can internet infrastructure help reduce regional disparities? Evidence from Turkey
Regional patterns of income per capita in Turkey

ESTIMATION RESULTS
Can internet infrastructure help reduce regional disparities? Evidence from Turkey

Regional patterns of income per capita in Turkey

Table 2.2

Cross-sectional estimation results

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ln y0</td>
<td>0.865***</td>
<td>0.744***</td>
<td>0.907***</td>
<td>0.769***</td>
</tr>
<tr>
<td></td>
<td>(0.0472)</td>
<td>(0.0695)</td>
<td>(0.0253)</td>
<td>(0.0714)</td>
</tr>
<tr>
<td>α</td>
<td>1.322***</td>
<td>-0.563</td>
<td>1.047***</td>
<td>-0.334</td>
</tr>
<tr>
<td></td>
<td>(0.318)</td>
<td>(0.890)</td>
<td>(0.167)</td>
<td>(0.741)</td>
</tr>
<tr>
<td>β</td>
<td>-0.135***</td>
<td>-0.256***</td>
<td>-0.0934***</td>
<td>-0.231***</td>
</tr>
<tr>
<td></td>
<td>(0.0472)</td>
<td>(0.0695)</td>
<td>(0.0253)</td>
<td>(0.0714)</td>
</tr>
<tr>
<td>ρ</td>
<td>0.381**</td>
<td>0.325**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.174)</td>
<td>(0.164)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>λ</td>
<td>-1.403**</td>
<td>-0.856</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.596)</td>
<td>(0.757)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Convergence speed</td>
<td>0.0121</td>
<td>0.0246</td>
<td>0.00817</td>
<td>0.0219</td>
</tr>
<tr>
<td>Half-life</td>
<td>57.23</td>
<td>28.16</td>
<td>84.87</td>
<td>31.62</td>
</tr>
<tr>
<td>Observations</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>Log-likelihood</td>
<td>25.55</td>
<td>28.41</td>
<td>27.38</td>
<td>29.06</td>
</tr>
<tr>
<td>AIC</td>
<td>-47.11</td>
<td>-48.83</td>
<td>-46.76</td>
<td>-48.11</td>
</tr>
<tr>
<td>BIC</td>
<td>-44.59</td>
<td>-43.79</td>
<td>-41.73</td>
<td>-41.82</td>
</tr>
</tbody>
</table>

Stata module for spatial models: SPAUTOREG (see footnote 28).
SAR: Spatial Autoregressive Model.
SEM: Spatial Error Model.
GSM: General Spatial Model.

Standard errors in parentheses: * p < 0.10, ** p < 0.05, *** p < 0.01
Can internet infrastructure help reduce regional disparities? Evidence from Turkey

Regional patterns of income per capita in Turkey

Celbis & de Crombrugghe (2014) p.17/23

<table>
<thead>
<tr>
<th>Table 2.3</th>
<th>Panel estimation results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1) Base Model</td>
</tr>
<tr>
<td>$\ln y_{i,t-1}$</td>
<td>0.987***</td>
</tr>
<tr>
<td></td>
<td>(0.00503)</td>
</tr>
<tr>
<td>β</td>
<td>-0.0126***</td>
</tr>
<tr>
<td></td>
<td>(0.00503)</td>
</tr>
<tr>
<td>ρ</td>
<td>0.141</td>
</tr>
<tr>
<td></td>
<td>(0.103)</td>
</tr>
<tr>
<td>λ</td>
<td>0.323***</td>
</tr>
<tr>
<td></td>
<td>(0.128)</td>
</tr>
<tr>
<td>Convergence speed</td>
<td>0.0127</td>
</tr>
<tr>
<td>Half-life (years)</td>
<td>54.79</td>
</tr>
<tr>
<td>Observations</td>
<td>338</td>
</tr>
<tr>
<td>Observations per region</td>
<td>13</td>
</tr>
<tr>
<td>Log-likelihood</td>
<td>641.8</td>
</tr>
<tr>
<td>Fixed effects</td>
<td>No</td>
</tr>
<tr>
<td>Year Dummies</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Stata module for spatial models: XSMLE (see footnote 28).
SAR: Spatial Autoregressive Model.
SEM: Spatial Error Model.
GSM: General Spatial Model.
Standard errors in parentheses: * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$
Can internet infrastructure help reduce regional disparities? Evidence from Turkey

Regional patterns of income per capita in Turkey

Table 2.4
Panel estimation results

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Base Model</td>
<td>SAR</td>
<td>SEM</td>
<td>GSM</td>
</tr>
<tr>
<td>$ln y_{i,t-1}$</td>
<td>1.002***</td>
<td>0.997***</td>
<td>1.001***</td>
<td>0.999***</td>
</tr>
<tr>
<td></td>
<td>(0.0702)</td>
<td>(0.0599)</td>
<td>(0.0601)</td>
<td>(0.0606)</td>
</tr>
<tr>
<td>$ln y_{i,t-1} \times ln c_u$</td>
<td>-0.0204***</td>
<td>-0.0199***</td>
<td>-0.0201***</td>
<td>-0.0200***</td>
</tr>
<tr>
<td></td>
<td>(0.00565)</td>
<td>(0.00472)</td>
<td>(0.00476)</td>
<td>(0.00482)</td>
</tr>
<tr>
<td>$ln c_u$</td>
<td>0.145***</td>
<td>0.142***</td>
<td>0.143***</td>
<td>0.142***</td>
</tr>
<tr>
<td></td>
<td>(0.0377)</td>
<td>(0.0312)</td>
<td>(0.0316)</td>
<td>(0.0319)</td>
</tr>
<tr>
<td>$ln a_u$</td>
<td>0.0795**</td>
<td>0.0784**</td>
<td>0.0767**</td>
<td>0.0768**</td>
</tr>
<tr>
<td></td>
<td>(0.0343)</td>
<td>(0.0306)</td>
<td>(0.0308)</td>
<td>(0.0308)</td>
</tr>
<tr>
<td>ρ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0538</td>
<td></td>
<td>0.0243</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.104)</td>
<td></td>
<td>(0.126)</td>
<td></td>
</tr>
<tr>
<td>λ</td>
<td></td>
<td>0.100</td>
<td>0.0808</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.154)</td>
<td>(0.185)</td>
</tr>
<tr>
<td>Observations</td>
<td>338</td>
<td>338</td>
<td>338</td>
<td>338</td>
</tr>
<tr>
<td>Observations per region</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>Log-likelihood</td>
<td>681.3</td>
<td>681.4</td>
<td>681.5</td>
<td>681.5</td>
</tr>
<tr>
<td>Fixed effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Year Dummies</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Stata module for spatial models: XSMLE (see footnote 28).
SAR: Spatial Autoregressive Model.
SEM: Spatial Error Model.
GSM: General Spatial Model.
Standard errors in parentheses: * p < 0.10, ** p < 0.05, *** p < 0.01
Table 2.5

Convergence factors, speeds, and associated half-lives

(Base model)

<table>
<thead>
<tr>
<th>Percentile of c</th>
<th>Convergence factor</th>
<th>Convergence speed</th>
<th>Half-life (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1%</td>
<td>-0.138</td>
<td>0.148</td>
<td>4.671</td>
</tr>
<tr>
<td>5%</td>
<td>-0.158</td>
<td>0.172</td>
<td>4.019</td>
</tr>
<tr>
<td>25%</td>
<td>-0.199</td>
<td>0.222</td>
<td>3.126</td>
</tr>
<tr>
<td>50%</td>
<td>-0.213</td>
<td>0.240</td>
<td>2.893</td>
</tr>
<tr>
<td>75%</td>
<td>-0.224</td>
<td>0.254</td>
<td>2.734</td>
</tr>
<tr>
<td>95%</td>
<td>-0.235</td>
<td>0.268</td>
<td>2.588</td>
</tr>
<tr>
<td>99%</td>
<td>-0.241</td>
<td>0.276</td>
<td>2.510</td>
</tr>
</tbody>
</table>
Can internet infrastructure help reduce regional disparities? Evidence from Turkey

Regional patterns of income per capita in Turkey

Table 2.6
Model comparison versus GSM

<table>
<thead>
<tr>
<th></th>
<th>Base model (FE)</th>
<th>SAR</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Absolute convergence cross-sectional models</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR test p-value</td>
<td>0.030</td>
<td>0.256</td>
<td>0.067</td>
</tr>
<tr>
<td>Wald test p-value</td>
<td>0.020</td>
<td>0.258</td>
<td>0.047</td>
</tr>
<tr>
<td>(b) Absolute convergence panel models</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR test p-value</td>
<td>0.059</td>
<td>0.049</td>
<td>0.836</td>
</tr>
<tr>
<td>Wald test p-value</td>
<td>0.035</td>
<td>0.029</td>
<td>0.837</td>
</tr>
<tr>
<td>(c) Conditional convergence panel models</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR test p-value</td>
<td>0.799</td>
<td>0.667</td>
<td>0.848</td>
</tr>
<tr>
<td>Wald test p-value</td>
<td>0.797</td>
<td>0.662</td>
<td>0.847</td>
</tr>
</tbody>
</table>

SAR: Spatial Autoregressive Model.
SEM: Spatial Error Model.
Can internet infrastructure help reduce regional disparities? Evidence from Turkey

CONCLUSION
When convergence was conditioned on region specific characteristics, the convergence speeds were estimated are much higher.
When convergence was conditioned on region specific characteristics, the convergence speeds were estimated are much higher.

Observed evidence for conditional β-convergence with reasonable speed among Turkish regions during the period 1999-2011.
When convergence was conditioned on region specific characteristics, the convergence speeds were estimated are much higher.

- Observed evidence for conditional β-convergence with reasonable speed among Turkish regions during the period 1999-2011.
- Internet infrastructure contributes to a regional economy in three ways:
 - by positively impacting on per-capita income,
 - by increasing the speed of convergence of a region to its steady-state,
 - by contributing to make region-specific steady-states more alike.
When convergence was conditioned on region specific characteristics, the convergence speeds were estimated much higher.

Observed evidence for conditional β-convergence with reasonable speed among Turkish regions during the period 1999-2011.

Internet infrastructure contributes to a regional economy in three ways:

- by positively impacting on per-capita income,
- by increasing the speed of convergence of a region to its steady-state,
- by contributing to make region-specific steady-states more alike.

Air transport capacity was also found to play a contributing role to a regional economy.
When convergence was conditioned on region specific characteristics, the convergence speeds were estimated are much higher.

Observed evidence for conditional β-convergence with reasonable speed among Turkish regions during the period 1999-2011.

Internet infrastructure contributes to a regional economy in three ways:

- by positively impacting on per-capita income,
- by increasing the speed of convergence of a region to its steady-state,
- by contributing to make region-specific steady-states more alike.

Air transport capacity was also found to play a contributing role to a regional economy.

The economic geography of Turkey is defined by a strong core-periphery pattern.
When convergence was conditioned on region specific characteristics, the convergence speeds were estimated are much higher.

Observed evidence for conditional β-convergence with reasonable speed among Turkish regions during the period 1999-2011.

Internet infrastructure contributes to a regional economy in three ways:

- by positively impacting on per-capita income,
- by increasing the speed of convergence of a region to its steady-state,
- by contributing to make region-specific steady-states more alike.

Air transport capacity was also found to play a contributing role to a regional economy.

The economic geography of Turkey is defined by a strong core-periphery pattern.

However, controlling for spatial effects did not change any of our main findings.
Thank you very much.

Q & A