
 

                                
 

 

 

 
 
 
 
 

#2019-052 
 

Climate shocks, coping responses and gender gap in human 
development 
 
Kaleab K. Haile, Nyasha Tirivayi and Eleonora Nillesen 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Maastricht Economic and social Research institute on Innovation and Technology (UNU‐MERIT) 
email: info@merit.unu.edu | website: http://www.merit.unu.edu 
 
Boschstraat 24, 6211 AX Maastricht, The Netherlands 
Tel: (31) (43) 388 44 00 

Working Paper Series 



UNU-MERIT Working Papers 
ISSN 1871-9872 

Maastricht Economic and social Research Institute on Innovation and Technology 
UNU-MERIT 
 
UNU-MERIT Working Papers intend to disseminate preliminary results of research carried 
out at UNU-MERIT to stimulate discussion on the issues raised. 

 
 



Climate Shocks, Coping Responses and Gender Gap in Human

Development

Kaleab K. Haile∗, Nyasha Tirivayi†and Eleonora Nillesen‡

Abstract

This study examines the impact of drought on child health and schooling outcomes and investigates the

contemporaneous relationship between these two main building blocks of human capital. We merge child-

level longitudinal data from the Ethiopia Rural Socioeconomic Survey (ERSS) with geo-referenced climate

data. Our findings from within-child variation estimators reveal that drought has a detrimental impact on

the highest grade completed of female children. We show that the negative effect of drought on a female

child’s completed years of formal schooling is channelled, albeit not entirely, through ill health. Our result is

robust to using recursive bivariate estimation with exclusion restriction to correct for biases associated with

the endogeneity of child health due to time-varying heterogeneities. Gender bias in the household explains

why the direct and mediated schooling effects of drought are concentrated only on female children. We find

that households respond to drought-induced income shocks by decreasing the allocation of resources for the

medical treatment of an ill female child. Moreover, households also increase the use of female child labour

for non-agricultural activities, which is consistent with a disproportionate increase in school absenteeism of

older girls during drought. We discuss how gender-responsive policy design and implementation may help

alleviate gender inequality in human development in the face of climate change.
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1 Introduction

Households in sub-Saharan Africa (SSA) are disproportionately affected by climate change due to their often

limited capacity to withstand its negative effects without sacrificing utilization of basic goods (food) and

services (health and education) (Harvey et al., 2014; Seaman et al., 2014). Particularly children are among

the most vulnerable household members and may suffer unduly from the consequences of climate shocks. A

growing body of research has shown that climate shocks can impair human capital development of children

(Alderman et al., 2006; Hoddinott, 2006; Thai and Falaris, 2014; Zamand and Hyder, 2016; Duque et al.,

2018; Nguyen and Minh Pham, 2018) with irreversible long-lasting effects on their lifetime earning capacities

(Dercon and Hoddinott, 2004; Maccini and Yang, 2009; Clarke and Hill, 2013; Abiona, 2017; Adhvaryu

et al., 2018). Hence, climate shocks not only deteriorate the immediate welfare indicators of children but

may also determine their lifetime socioeconomic status. Children with low human capital levels are most

likely to create new poor families because of their consequent lower living standards and reduced prospects

of social mobility in adulthood (Case et al., 2011). Promoting human capital development early in life may

break this vicious cycle of intergenerational poverty transmission and enable young people to choose between

different livelihood strategies that may, in turn, reduce their vulnerability to climate change. Moreover, these

microeconomic gains translate into human capital accumulation and sustainable development at the macro

level in the long-run (Horton and Steckel, 2013).

Climate shocks affect child health and schooling outcomes – the two main building blocks of human

capital – via the income effect (see Baez et al. (2010), Phalkey et al. (2015) and Hanna and Oliva (2016)

for recent reviews). The impact of income shocks on human capital may not be evenly distributed across

all children in the household. Gender bias in the intrahousehold resource allocation may play a significant

role in determining who bears the brunt of climate change between boys and girls. The existing evidence

on gender bias mainly comes from Asia and shows that parents’ gender preference plays a significant role in

determining child health and education (Pande, 2003; Himaz, 2010; Jayachandran and Kuziemko, 2011; Azam

and Kingdon, 2013; Sivadasan and Xu, 2019). By contrast, in the context of SSA where climate risk-induced

income shocks widely prevail, households’ differential resource allocation decisions concerning their children’s

health and education conditional on gender are rarely studied (Rossi and Rouanet, 2015; Valero, 2018). In

this vein, the existing few studies provide mixed and inconclusive results; either no evidence of gender-based

discrimination (Jensen, 2000; Rabassa et al., 2014) or gender bias against girls (Björkman-nyqvist, 2013;

Valero, 2018).

However, there is concern about the extent to which we can causally interpret the results of previous

studies unless the effects of climate shocks are estimated for a given child over time. Di Falco and Vieider

(2018) argue that while it has been a common practice to use an objective measure of climate shock (i.e.

deviation from historical mean rainfall), which is an exogenous variable, it does not mean the shock is

random enough to ensure that all areas in a given country and all individuals in a given area have an equal

probability of being affected. Moreover, accounting only for community or district fixed effects, which is the
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standard approach in previous empirical studies, allows computing variations in human capital assuming

that the community- or district-average human capital is the same as the child-level panel average for all

children in that area. This assumption completely ignores the effects of child- and household-level unobserved

heterogeneities that may determine the extent of individual-level effects of climate shocks. For instance, by

using community fixed effects, heterogeneities in gender bias across households cannot be accounted for

without imposing a strict assumption of the equality of gender bias at the household and community level.

We, instead, rely on within-child variation estimations by taking a given child and comparing the changes in

human capital with herself to identify the impact of climate shocks. Our approach considers that every child

is unique, and thus, the direct and indirect effects of climate shocks on human capital may not be similar

for everyone in a given household that resides in a higher-level cluster (community or district).

Furthermore, previous empirical studies examine the effect of climate shocks on either child health or

schooling separately. The possible link between child health and education outcomes, and how this rela-

tionship may vary between boys and girls in the face of climate shocks is not adequately investigated. To

our knowledge, this study is the first empirical evidence that provides a gender-disaggregated investigation

of the contemporaneous causal relationship between child health and a common set of schooling outcomes

– school absenteeism and highest grade completed – in the presence of climate shocks and tests whether

climate shock-induced ill-health serves as a mediating channel. We also assess the extent to which gender

bias in child health care, schooling expenditure, and labour use, if exists at all, results in gender gap in

education.

Our analyses are based on child-level balanced panel data from three rounds (2011/12, 2013/14, and

2015/16) of the Ethiopia Rural Socioeconomic Survey (ERSS) matched with georeferenced climate data. We

use within-child variation estimators to identify the causal effect of drought on human capital. Our results

show that drought significantly increases reported child illness of both sexes. However, the schooling impact

of drought is robust only for female children. The negative effect of drought on the highest grade completed

of female children is channelled, albeit not entirely, through illness. This finding is robust to using recursive

bivariate estimations with exclusion restriction to correct for biases associated with the endogeneity of child

health due to time-varying unobserved heterogeneities. As impact pathway, we find that households respond

to drought shocks by adjusting their resource allocation to health care services and use of child labour in

a manner that disfavour a female child, who consequently bears the adverse direct and mediated schooling

effects of drought.

In considering the impact of climate shock-induced health impediments on schooling of children, our

contribution is distinct from those that explore the intertemporal shock-human capital synergies. Studies

by Dercon and Hoddinott (2004), Alderman et al. (2006), Maccini and Yang (2009), Shah and Steinberg

(2017), Adhvaryu et al. (2018) demonstrate that climate shocks have a detrimental effect on early life health

endowments via nutrition and influence future educational outcomes of children. A principal finding that

emerges from such exercise is that shock-induced child health impediments in utero and during infancy and
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early childhood (preschool years) have lifelong effects on health, education and socioeconomic outcomes.

This provides a powerful rationale for prioritizing policy interventions that target unborn children, infants

and preschoolers for improvements in human development.1 Concerning gender bias in early life and its

long temporal reach, while Maccini and Yang (2009) find that early-life rainfall has strong positive effects

on human capital and socioeconomic status of women, but not of men, Dercon and Hoddinott (2004) find

no evidence that girls suffer more than boys regarding the impact of early-life drought on their long-term

wellbeing – health, education and lifetime earnings during adulthood. However, there is much less known

on how climate shock-induced poor health affects older children, in particular those of school-going age,

conditional on gender. One could hypothesize that climate shocks happening to children of school-going age

may generate different health effects and gender-based household coping responses from shocks happening

to pre-schoolers, infants, and unborn children. Moreover, studying children of school-going age allows for a

direct investigation of the potential short-run relationship between ill-health and schooling outcomes. Our

paper does exactly that.

The analytical challenge in estimating a contemporaneous causal effect of health status on education is

discussed in Behrman (1996) and Glewwe and Miguel (2007). They emphasised that the mere inclusion of

health status – where child nutrition usually serves as an intermediate indicator – on the right-hand side

of the child schooling model may introduce endogeneity and thus cannot guarantee a causal interpretation

on the estimated coefficient. Without the context of climate shocks and gender-disaggregation, Ding et al.

(2006) and Aturupane et al. (2013) address this issue and estimate the contemporaneous causal effect of

child health on academic performance by making use of an instrumental variable approach. They, however,

implicitly assumed that the effect of child health on education is the same for all children regardless of

gender and underlying socio-cultural and environmental conditions. In contrast, we examine the impact of

drought shocks on health among school-age children in Ethiopia, and subsequently how contemporaneous

adverse health effects affect a child’s schooling outcomes conditional on gender. Therefore, our study informs

policy by examining poverty and human development implications of gender bias in households’ decisions

and intrahousehold resource allocation when income is constrained by climate shocks.

The rest of the paper is organized as follows. Section 2 presents the country context. Section 3 presents

the theoretical framework focusing on health-schooling nexus. Section 4 describes the source of data and

descriptive statistics. Section 5 explains the identification strategy. Section 6 presents the econometric

results and discusses the main findings. Section 7 concludes and offers policy recommendations.

2 Country Context

Ethiopia has achieved remarkable economic growth over the last 15 years. According to World Bank’s country

overview in 2019, the real growth of gross domestic product (GDP) of Ethiopia averaged 10.3 percent a year

1Early childhood interventions are long-term economic investments that have favourable effects on economic outcomes during
adulthood (Hoddinott et al., 2008) and in most contexts have the highest rates of returns (Alderman et al., 2017).
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from 2006/07 to 2016/17. Given the current structure of the Ethiopian economy where rain-fed agriculture

accounts for more than 40 percent of the GDP, recurrent and sometimes prolonged drought shocks have

been a real challenge of sustaining economic growth (Shiferaw, 2017). In the last three decades, Ethiopia

has faced 11 major drought shocks (Masih et al., 2014). About a century ago, the frequency of drought

occurrence in the country was once every 10 years but, recently drought has become a common event in

every 3 years (Suryabhagavan, 2017). Recently, a devastating drought triggered by El Nino weather events

has affected over 50 million people who live in the drought-prone rural parts of East and Southern Africa,

where Ethiopia was the most affected country (WFP, 2016).

Climate model predictions show that Ethiopia is going to face more climate-related aggregate shocks. In

2050, temperature in Ethiopia is expected to rise by 2.20C which will drastically increase the frequency of

severe heatwaves and droughts (Conway and Schipper, 2011). The effect of a worsening climate on Ethiopia’s

agrarian economy will be mainly channelled through its impact on food production, income and prices. Based

on Evangelista et al. (2013), bioclimatic variables related to rainfall explain a significant decline in cereal

production that the country will experience. Moreover, they also noted the agricultural land that has been

currently used to produce cereals will be uncultivable due to climate change. To tackle this multifaceted

challenge, Ethiopia has designed a Climate Resilient Green Economy (CRGE) strategy that aims to enhance

climate resilient livelihood for its more than 80 million rural people who are facing the imminent risk of

income shocks due to weather anomalies.

The CRGE strategy recognized that the impacts of extreme weather would be more severe for vulnerable

groups such as children, the elderly, the disabled and women (FDRE, 2011). In this regard, understanding the

underlying demographic, socioeconomic and environmental conditions that determine households’ decision-

making process, mainly concerning the use and distribution of resources within the household, would facilitate

identifying appropriate design features of a policy or programme intervention to target the most vulnerable

groups. This has of great importance to increase the effectiveness of the intervention in buffering human

development – food and nutrition security, health status, and education – from the effects of climate shocks

and ensure inclusive growth in Ethiopia.

3 Theoretical Framework

Following Glewwe and Miguel (2007), the household is assumed to maximize the present discounted value of

utility subject to an income constraint, a health production function and a schooling production function.

T∑
t=1

E

(
1

1 + σ

)t

Ut (1)

where t is period that extends from t =1 to a known final period, t = T; E is the expectation operator, σ
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is the subjective discount rate, and U is utility to the household at period t is given by:

Ut = U(Ht, Ct, Lt;Dt) (2)

where H is child health status, C is consumption of other goods (mainly food), L is leisure, and D is

weather related exogenous taste shifters such as drought shocks. Health has direct utility to the households

(Grossman, 1972; Currie, 2009) − having healthier children increases their satisfaction. On the contrary,

schooling does not generate utility directly, but it has an investment effect which determines future earnings

through its effect on the labor market participation (Ferreira and Schady, 2009). The set of constraints on

the production function for child health (equation 3) and production function for child schooling (equation

4) describe the way that available home inputs can be transformed into health (Grossman, 1972, 2000)

and schooling outcomes Glewwe and Miguel (2007), respectively. The variables included in the production

function relationships are only those that exert a direct effect on child health and schooling at period t.

Ht = H(Cc
t (Dt), HEt(Dt), HIt(Dt), Xt, µ;G) (3)

St = S(Ht, SIt(Dt), Xt, µ;G) (4)

S is schooling of the child, H(.) and S(.) indicate health and schooling production functions. Equation 4

highlights the role of child health as a determinant of children’s schooling outcomes. Cc the child’s consump-

tion of the aggregate food consumption, C. Dt is expected to have a negative effect on food consumption of

the households in general (Brown and Funk, 2008; Saronga et al., 2016) and children in particular (Perera,

2014). Food and nutrition insecurity of children are major factors that lead to poor health outcomes (Gun-

dersen and Ziliak, 2015). HE is the local health environment, which is a function of climate shocks. The

environmental and ecological alterations during climate shocks create conditions for widespread occurrences

of vector-borne, water-borne, and infectious diseases (Bunyavanich et al., 2003; Lafferty, 2009; Stanke et al.,

2013). HI is health input (household’s allocation of resources to child health care services). Health care

systems in SSA heavily rely on user (out-of-pocket) fees for the health services and prescribed medicines

(Meessen et al., 2011; Ali, 2014; Masiye et al., 2016). Hence, HI is a function of Dt through its income

effect. Similarly, SI is schooling input (sending the child to school and household’s provision of school fees

and school-related materials such as books, uniforms, etc). Parents’ ability and willingness to bear the direct

and opportunity costs of SI is determined by the effect of Dt. While the direct costs are related to school

fees and supplies, the opportunity cost is the reduction in household’s income due to loss of the child’s

labour for agricultural, non-agricultural and wage-paying activities (Alderman et al., 2012). Xt is observable

characteristics particular to the child such as age and gender of the child, and household characteristics that

affect income, wealth and life-cycle position. µ is unobserved time-invariant heterogeneities (such as innate

healthiness and cognitive abilities of the child and parents’ child-rearing practices) that affect the household’s
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(health and school) input allocation.

The net effect of Dt on HI and SI is either positive or negative based on the relative size of the income

and substitution effects. The income effect is negative because climate shocks adversely affect households’

resources and raise the costs of education and health care services relative to household income, whereas the

substitution effect is positive since weather shocks depress local economy wage prospects and result in lower

opportunity cost for the labour of children and caregivers to engage in human capital-promoting activities

compared to working for lower wages (Ferreira and Schady, 2009). Gender bias (G) in the intrahousehold

resource allocation and labour supply decisions based on parents’ perceived values of child labour is a crucial

socio-cultural element that may dictate who bears the burden of the income effect and who enjoys the

substitution effect of climate shocks among children in the household. In general, parents’ gender bias may

introduce variations in the within-household food allocation, health care and schooling expenditure, and

child labour use, and ultimately result in two separate health and schooling production functions based on

sex of the child.

The income constraint is the last constraint faced by a utility maximizing household at period t, such

that:

Yt = pCt × Ct + pHt ×HIt + pSt × SIt (5)

where Y is total income; pH price for health inputs; pS is price for schooling inputs; and pC prices of other

consumption goods (mainly food).

Optimizing the utility in equation 2 with respect to the constraints in equations 3, 4 and 5 gives standard

demand functions for Ct, HIt, and SIt variables that can be influenced by household decisions. The solution

to this optimization problem is a set of demand functions for all the marketed goods (e.g. food, health care

services, education) which depend upon prices of all market goods, child and household-related time-varying

factors that directly affect income (e.g. experiencing drought shocks) and child and household-related time-

invariant factors that may affect child schooling. Thus, the schooling demand function conditional on gender

can be expressed as:

St = S(Dt, p
C
t , p

H
t , p

S
t , Xt, µ;G) (6)

The relationship in equation 6 shows that demand for child schooling is a function of climate shocks, the

prices of consumption goods, health, and education – proxied by access to output markets, health care ser-

vices, and education facilities – and other child and household level observed and unobserved heterogeneities.

An empirical investigation of this contemporaneous relationship conditional on gender has valuable policy

implications in prioritizing climate disaster responses that intend to mitigate the effect of climate shocks

on children’s human capital by taking into account the possible interdependence between child health and

schooling and the effect of households’ gender-based coping responses.
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Figure 1: Sample households observed in all survey rounds

4 Data and Descriptive Statistics

4.1 Source and type of data

This study uses the Ethiopia Rural Socioeconomic Survey (ERSS), a nationally representative panel data set

for the years 2011/12 - 2015/16. Figure 1 shows the locations of the sample households based on the GPS

(longitude and latitude) coordinates of their communities (enumeration areas).2 We merged an objective

measure of drought shocks with 0.5 degrees spatial resolution that is made available by the University of

East Anglia Climatic Research Unit (UEA-CRU)3.

We use strongly balanced individual-level panel data from 3,639 households in 332 communities. Table 1

summarises the number of households and school-age children (i.e. between 7 and 18 years of age in 2011/12)

that are present in all survey rounds. Accordingly, we conduct all of our econometric analyses on panel data

that consist of 5,667 children that were between 7 and 18 years of age in the first wave and observed in the

subsequent two survey waves – resulting in a total of 17,001 observations.

Table 1: Number of households and children in each survey rounds

2011/12 2013/14 2015/16

Interviewed (re-interviewed) households 3,969 3,776 3,639

Observed (tracked) school-age children 5,900 5,769 5,667

Notes: Between the initial and last survey waves, only 233 school-age children could not be tracked.

2In order to maintain confidentiality of respondents, the GPS coordinates of sampled communities where the households
reside are presented in the panel data.

3The database is available at: http://sac.csic.es/spei/database.html
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The choice of the lower and upper bounds for the age range to be 7 and 18 years is based on Ethiopia’s

officially deemed proper age for a child to enrol to primary school (start first grade) and complete high school

(complete grade 12), respectively. The use of 7 years as the lower age bound is also justified in our data

since the education outcomes for children below the age of 7 years are missing in the initial survey wave

(2011/12). Whereas, the choice of a wider upper bound (i.e. 18 years) is to accommodate a common scenario

in rural Ethiopia where there is a high possibility for late (delayed) entry to school and grade repetition.

Consequently, we encountered plenty children that can be considered over-age for their grades. Figure 2

demonstrates this by depicting age distribution and the highest grade completed of our sample children

that are enrolled to school for the 2011/12 academic year. During that year, more than 90 percent of those

children who are between 15 and 18 years of age were attending primary school – 35 percent 1st cycle (grades

1 to 4) and 56 percent 2nd cycle (grades 5 to 8). Similar fact is presented in UNESCO’s 2012 report indicating

that 20 percent of children enrolled in primary education in Ethiopia are above the intended primary school

age (i.e. they are 15 years and above). This figure is 23 percent in our data. Incidences of children’s age

and sex misreporting are corrected by matching the accuracy of the registered age and sex information in

the household roster with the verification questions, which entail information on the correct sex and age of

the child, in the 2013 survey round.

Figure 2: Age distribution and grade completed for enrolled school-age children in 2011/12

Note: 1st and 2nd cycles are grades 1-4 and 5-8, respectively. Secondary school comprises grades 9-12.

4.2 Main variables of interest

This section describes the outcome and explanatory variables of interest. The description and descriptive

statistics on the child health and schooling variables, measure of drought shocks, and child, household and
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community characteristics for the pooled data are presented in Appendix Table A.1.

4.2.1 School outcomes

The outcome variables are for children between 7 and 18 years of age in 2011/12 and observed in 2013/14

and 2015/16 survey rounds (see section 4.1). Our study utilizes two school outcome indicators.

(a) School absenteeism: is a binary variable taking the value of 1 if the child was absent from school for

more than a week in the past month during the survey year, and zero otherwise. Appendix Table A.1 shows

that conditional on school enrolment, on average, 10 percent of children skip classes for more than a week

within a month during the three survey rounds.

(b) Highest grade completed : is a count variable indicating the highest grade the child completed during

the survey year. The highest completed formal years of schooling are on average 3.2 years during the span

of the panel survey period (2011/12-2015/16).

4.2.2 Child health and medical treatment

Reported illness takes the value of 1 if a child between 7 and 18 years of age faced illness during the last

2 months in the survey year, and 0 otherwise. Conditional on illness, our “medical treatment” variable is

binary taking the value of 1 if the ill child gets medical attention (treatment), and 0 otherwise. Furthermore,

conditional on untreated illness, we also have a binary variable named inability to pay for medical treatment

that takes the value of 1 if the household responded “lack of money” or “it is expensive” as a reason for not

taking a child to medical treatment during illness, and 0 otherwise4. During the panel survey period, on

average, illness occurred among 10 percent of the sample children. Out of these, 68 percent received medical

treatment. Whereas, despite being ill, around 40 percent of children that donot receive medical treatment

is due to liquidity constraints of the households.

4.2.3 Drought shock

Our drought shock variable is the standardized precipitation evapotranspiration index (SPEI), which is a

multiscalar measure of drought pioneered by Vicente-Serrano et al. (2010). SPEI is computed by integrating

the best qualities of the Palmer Drought Severity Index (PDSI) and the Standardized Precipitation Index

(SPI) to capture deviations in total precipitation and temperature from historical means.5 The use of such

relative measure instead of an absolute measure of rainfall and temperature is preferable because the same

amount of rainfall and temperature may have different consequences in different regions based on variations

4We have few non-missing values under each reason for lack of medical treatment conditional on child illness. The value
of zero in our variable includes households’ reasons for the lack of medical attention that are not directly linked to liquidity
constraints such as; “too far” (59 children), “lack of health professional” or “poor quality service” (26 children), “don’t believe
in medicine” or “other” (40 children).

5The global SPEI database offers the SPEI values for the period between January 1901 and December 2015.
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in agro-ecologies. The SPEI values are calculated on time scales between 1 and 48 months. Between January

and December, the agricultural production year in Ethiopia is divided into two production seasons, belg and

meher.6

Hence, our objective drought variable is measured using SPEI values that are constructed based on a

time scale of 12 months for the months January-December of the survey year. The SPEI for each survey

year is merged with the individual-level data using the longitude and latitude coordinates of the community

(enumeration area) of the sample household where the child resides. The maps in Figure 3 show that drought

shocks occur in all the three survey years, but vary in magnitude and spatial coverage. Moreover, as Figure

4 presents, the distribution of SPEI values varies across regions of Ethiopia and drought shocks are highly

regionally correlated. Tigray, Amhara, Benshangul Gumuz, and Gambela regions have experienced negative

deviations – drought shocks – for the entirety of the panel survey years. However, the histogram plot for the

distribution of climate shocks of the pooled data shows that SPEI values for the whole sample of children

are randomly distributed and clustered around the mean value of 0.11 (Appendix Figure A.1).

The drought shock variable for our analyses is left-bounded at zero and obtained by multiplying the SPEI

by (-1) if the values are negative, which indicate drought shock.7 While the average magnitude of drought

for all survey rounds is greater than zero, the years 2011/12 and 2015/16 registered the highest and almost

identical average magnitude of drought shock during the panel survey period. This reflects the frequency of

severe drought shocks in the country.

Drought shock =

SPEI× (−1) if SPEI < 0

0 if SPEI ≥ 0

Our climate shock variable is exogenous only if households do not self-select into or out of experiencing

drought. In this respect, attrition is a major challenge if the missing households were more or less exposed to

drought. Household attrition rate is low (8 percent between the first and the third survey rounds), and not

systematically related to exposure to drought shocks (Table 2). In addition, we examine whether attrition

among children co-varies with child demographic and human capital variables – they do not (Table 3).

4.3 Control variables

Appendix Table A.1 presents child and household level control variables that are included in our panel data

regression models. These control variables capture: (a) demographic characteristics of the child, and (b)

demographic and socioeconomic characteristics including proxies for wealth and access to markets, basic

services, and infrastructure of the household that the child resides.

6Belg is the short rainy season that extends from March and early May. Meher is the main agricultural season extending
between June and September.

7Multiplying the negative deviations by -1 would ease the interpretation of the parameter estimates on our drought measure.
Hence, higher values indicate higher magnitude of drought.
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Figure 3: SPEI values at the time scale of 12 months for the years 2011, 2013 and 2015
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Figure 4: Distribution of SPEI values across regions by survey year

Table 2: Mean differences in exposure to drought based on attrition

Between survey waves 1 and 2 Between survey waves 2 and 3

Mean magnitude of drought Mean Mean magnitude of drought Mean

Variables Re-interv. HHs Attrited HHs diff. Re-interv. HHs Attrited HHs diff.

Drought in 2011 0.3074 0.3322 -0.0248

(0.0314)

Drought in 2012 0.0925 0.0802 0.0123

(0.0229)

Drought in 2013 0.2127 0.2135 -0.0008 0.213 0.1706 0.0424

(0.0272) (0.0309)

Drought in 2014 0.0778 0.0632 0.0146

(0.0176)

Drought in 2015 0.278 0.2617 0.0163

(0.0278)

Observations 3,740 177 3,639 136

Standard errors in parentheses.

Notes: Out of the original 3,969 households that were surveyed in the first wave, a total of 330 households were not

re-interviewed in the third survey wave. Between survey waves 1 and 2, 193 households were not re-interviewed.

However, 52 (36 from the re-interviewed and 16 from the attrited) households do not have the latitude and longitude

data and hence climate variables for these households are not available. Between waves 2 and 3, this figure declined

to only 1 household that belongs to the attrited households.
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Table 3: Mean differences in child human capital based on attrition

Variables Children in re-interv. HHs Children in attrited HHs

Mean diff.
Number Mean Number Mean

Age 5667 11.7318 233 11.9914 -0.2596

(0.2222)

Sex (% male) 5666 0.5224 233 0.4979 0.0246

(0.0334)

Illness (%) 5611 0.1196 231 0.1515 -0.0319

(0.0219)

Absenteeism (%) 3623 0.1336 135 0.1259 0.0077

(0.0298)

Grade attainment 5533 2.3965 231 2.4416 -0.0450

(0.1726)

Notes: Standard errors in parentheses.

The number of children in the re-interviewed and attrited households is not the same for all variables that we

considered for the mean difference test due to missing values in the variable of interest.

5 Identification Strategy

Equation 7 relates H∗
ihct – a child’s propensity to get ill where we only observe a binary reported child

illness – to time-varying drought shock (Dct) after adjusting for the effects of observed heterogeneities

such that Xihct = {X1ihct, X2ihct}. Similarly, Equation 8 is a linear representation of the latent schooling

variable (S∗
ihct) for our observed (either binary or count) schooling outcomes. µihc is child-level time-invariant

unobserved heterogeneities and εihct is independent and identically distributed (i.i.d) error term.

H∗
ihct = β1Dct + δ1Xihct + µ1ihc + ε1ihct (7)

S∗
ihct = β2Dct + δ2X2ihct + µ2ihc + ε2ihct (8)

where the subscripts indicate variation over children (i = 1, 2, ..., N), households (h=1, 2, ...,H), communities

(c=1, 2, ...,C), and time (t = 1, 2, ..., T).

The coefficient of drought (β) can be estimated using pooled regressions by clustering the composite

error terms (ωihct = µihc + εihct) at the community level. Cluster-robust pooled estimations result in

heteroskedasticity-consistent standard errors by relaxing the assumption of i.i.d errors (Wooldridge, 2010;

Millo, 2017) for a child across time and between children within a community.8 Related empirical studies

used cross-sectional variations (Bauer and Mburu, 2017) or district fixed effects (Björkman-nyqvist, 2013;

Randell and Gray, 2016) methods to estimate the effect of climate shocks on either child health or education

8In the context of panel data with binary dependent variable, Wooldridge (2010) advocates the use of a partial MLE procedure
of a pooled probit model using cluster-robust standard errors. The parameter estimates and the cluster-robust standard errors
are consistent under the assumption that the variable of interest is exogenous.
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outcomes. However, a causal inference based on the parameter estimates of climate shock variable after

cross-sectional variation estimator can only be made if the shock is randomly determined at the individual

level (Di Falco and Vieider, 2018). In this respect, the assumption that all communities (and children therein)

have the same probability of experiencing drought regardless of their regional location is not satisfied in our

data (Figure 4) despite climate shocks are exogenous9 and random on average for the whole population

in Ethiopia (Appendix Figure A.1). Moreover, community or district fixed effects would not account for

child- and household-level unobserved time-invariant heterogeneities that may enhance or blunt the effect

of climate shocks. We, therefore, rely on the within-child variation estimators as our preferred estimation

strategy, instead of cross-sectional variations or community fixed effects, for identifying the impact of drought

shock on the outcome variables of interest.10

The hybrid model splits within- and between-variation estimates for the time-varying variables (Alison,

2009; Schunck and Perales, 2017). Equations 9 and 10 transform equations 7 and 8, respectively, into the

hybrid model by including both the deviations from panel-specific means (Dct −Dc) and the panel-specific

means (Dc) instead of the original drought measure (Dct). The same holds for the remaining time-varying

control variables.

Hihct = α1 + β3(Dct −Dc) + β4Dc + δ3(Xihct −Xihc) + δ4Xihc + v1ihc + ε3ihct (9)

Sihct = α2 + β5(Dct −Dc) + β6Dc + δ5(X2ihct −X2ihc) + δ6X2ihc + v2ihc + ε4ihct (10)

where β3 and β5 are the within-child effect estimates of drought, our parameters of interest. β4 and β6 are

between-child effect estimates of the shock.11 vihc and εihct are time-invariant and time-varying child-level

error terms, respectively.

Moreover, in the face of climate shocks, we pose a question on the assumption of independence between

the contemporaneous child health and education that the existing empirical studies impose for identification

reasons – endogenous child health status. As presented in the theoretical framework of this study (section

3), child health and education may not be independent in the short-run. Thus, the effect of drought on child

schooling may also be channelled through its effects on health. Following the discussion by MacKinnon et al.

(2012) and Hayes (2017) on the approaches to total and mediation effect analyses, Figure 5 relates drought

and schooling outcomes taking child health as having an indirect (a mediating) effect.

Figure 5(a) is a total effect estimation and can be presented in formal econometric models using equations

9 and 10. Equation 11 is the mediation analysis depicted in Figure 5(b). Any correlation between the child

health and time-invariant unobserved heterogeneities (µihc) is captured by including panel-specific means of

9We showed that attrition in our panel data is random and thus drought shocks are exogenous to the households (Table 2).
10(Di Falco and Vieider, 2018) show the merits in relying on within-individual variation (individual fixed effect) estimation

for causal inference when one cannot guarantee idiosyncratic climate shocks across individuals and a uniformly distributed
dependent variable prior to the shocks.

11In panel-data analysis, it is questionable whether the between-cluster effects (cross-sectional variations) are of substantial
interest at all since the interest lies mainly on the within-cluster effects (Schunck and Perales, 2017; Di Falco and Vieider, 2018).
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Figure 5: Diagrammatic representation of (a) the total effect (b) mediation effect analyses

child illness and other time-variant variables in child schooling model (equation 11).12

Sihct =α3 + β7(Dct −Dc) + β8Dc + θ1(Hihct −Hihc) + θ2Hihc+

δ7(X2ihct −X2ihc) + δ8X2ihc + v3ihc + ε5ihct

(11)

where the within-child variation estimate (θ1) captures the effect of health status on schooling outcomes of

a given child after adjusting for the endogeneity that arises due to time-invariant heterogeneities.

We estimated the within- and between-cluster (child) effects of the variables of interest in a single model

(equations 9-11) using probit and poisson estimators for the binary and count dependent variables, respec-

tively. In this approach, the child-specific time-invariant and time-varying error terms in the equations are

combined as: ωihct = vihc + εihct. The main advantage of this approach is that we can compute the average

marginal effects (AMEs), which are easy to interpret and understand. As a robustness check, we also use

the multilevel mixed-effects generalized linear model (meglm) to account for the presence of the separate

time-invariant and time-varying i.i.d error terms. All our estimations are undertaken separately for the whole

sample, female children, and male children.13 The error terms are clustered at the community level to allow

for serial and spatial correlations.

A serious concern with the within-variation estimators is the possible endogeneity that may arise from

the correlation between time-varying unobserved heterogeneity (εihct) and child illness, which may bias

our parameter estimate (θ1) in equation 11. Moreover, within-variation estimators may also suffer from

simultaneity bias (reverse causality). For instance, education may equip children with disease prevention

attitude and hence may enable them to avoid illness. Therefore, we use a maximum likelihood estimator of

a binary or continuous outcome with a binary endogenous regressor under the recursive bivariate analysis,

as proposed by (Maddala, 1983), to improve causal inference on the effect of child health on schooling

outcomes. The binary reported child illness variable is an endogenous regressor in the equation determining

the child’s schooling outcomes. In this specification, child health can be correlated to both time-invariant

12This approach was initially proposed by Mundlak (1978) and further extended by Chamberlain (1980, 1982) to allow
unobserved time-invariant heterogeneities to be correlated to the explanatory variables. This is achieved by modelling the
time-invariant disturbance as a linear projection onto the panel-specific means of time-variant variables, such that: µihc =
α+ θHihc + δ8Xihc + vihc.

13We used Wald chi-square to examine whether coefficients differ across gender.
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and time-varying heterogeneities while taking into account the non-independence among children in the same

community.

The real challenge of the approach is finding an instrumental variable that satisfactorily addresses both

the statistical and conceptual scrutiny. Drawing on medical and public health literature, improved hygiene

and sanitation facilities have strong and consistent impact on health outcomes. Evidence from randomized

control trials and observational research shows reasonably strong and consistent impacts of hygiene and

sanitation interventions on the incidences of contagious diseases such as diarrhoea, parasitic worms and

other infections including trachoma, influenza and rhinorrhoea (see recent reviews by Freeman et al. (2017),

and McMichael (2019)). Previous studies also show that the effects of improved hygiene and sanitation

facilities on child education are channelled through their effects on child health. Children with access to

better hygiene and sanitation conditions in their schools are less likely to dropout out of school due to illness

(Talaat et al., 2011; Trinies et al., 2016) and they are more likely to attain better cognitive learning and

learning performance in the long-term (Ezeamama et al., 2018). We, therefore, employ the proportion of

children that have access to improved toilet facilities14 in the community as the excluded variable (X1ihct)

from the educational outcomes model specification. Aturupane et al. (2013) also use children’s access to a

toilet facility as an instrumental variable to measure the effect of child health on education performance.

We test the admissibility of our instrument – whether the improved toilet facility embodies an exogenous

source of variation affecting only child health but not education outcomes – using a simple falsification test

suggested by Di Falco et al. (2011). According to this test, the proportion of children in the community

that have access to improved toilet facilities should not be a significant determinant of non-ill children’s

education.

6 Results and Discussion

In the subsequent sections, we provide point estimates on the impact of drought on child human capital based

on within-child variation estimators.15 We also explore potential channels that may explain the observed

relationship between drought and human capital of children.

6.1 Impact of drought on child schooling

Table 4 presents the total effect of a drought on contemporaneous child schooling outcomes. Regardless of

gender, drought shock has a positive impact on school absenteeism, but the within child estimates are not

statistically significant in any of the specifications (columns 1 and 2). We introduce an interaction term

14Improved toilet (sanitation) facilities include: flash toilet (private or shared), pit latrine ventilated (private or shared),
pit latrine (private or shared) with slub, and composting toilet (private or shared). Sanitation classifications as improved or
unimproved are based on those defined by the WHO/UNICEF Joint Monitoring Programme (JMP), which is available at:
http://www.who.int/water_sanitation_health/publications/jmp-2017/en/.

15For brevity and the identification reasons presented in section 5, we only interpret and discuss the within-child effect
estimates.
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between age of the child and magnitude of drought (columns 3 and 4) to explore varitions in the relationship

between climate shocks and school attendance for a unit change in the age of the child. We find a statistically

significant positive and robust within-child effect of drought on school absenteeism of older female children.

On average, the impact of drought on school absenteeism of a female child increases by an additional 1.4

percentage points for a unit increase in her age. In terms of the meglm estimate, for a given female child,

the effect of drought on the odds of absenteeism from school increases by 20 percent for a year increase

in her age. A study by Björkman-nyqvist (2013) in Uganda also shows that the adverse effect of negative

deviations in rainfall on children’s probability of going to school grows stronger for older girls.

We also find evidence on the negative within-child impact of drought on the highest grade completed in

both panel models (Table 4 columns 5 and 6). For a given child, a one standard deviation increase in drought

shock – a unit standard deviation decrease in SPEI for values less than 0 – results in decline in the expected

count of grade attainment by 0.18. The negative effect of drought on a female child’s highest completed

formal school years is stronger in magnitude and robust under alternative panel model specifications. An

increase in the magnitude of drought disproportionately affects a female child’s human capital by lowering

her expected count of highest completed formal school years on average by 0.25 – a 6 percent decrease based

on meglm model. Hence, in the context of SSA, the impacts of drought on child schooling via its income

effects are gender-specific where female children bear the brunt of climate change.

Figure 6 presents the relationship between the predicted probability of school absenteeism of children

and the magnitude of drought after running a probit model on equation 10. The probability of a given

child’s absenteeism increases with an increase in the magnitude of drought. This relationship is slightly

stronger for male children (Panel a). However, when we add age dimension besides gender, the within-child

effect of drought is much stronger for older female children (Panel b). Alternatively, Appendix Figure A.2

depicts the predicted probability of school absenteeism conditioning on drought against age of the child, and

it infers a similar relationship that we observe in Figure 6(b) – a stronger effect of drought on older female

children. Figure 7 plots predicted completed school years against within-child variations in the magnitude

of drought after linear regression. Accordingly, for a given child, the magnitude of drought and the highest

grade completed have a stronger inverse relationship for female children, as shown by a steeper slope.

6.2 Drought and child health

(a) Impact of drought on reported child illness

The binary reported child illness variable captures whether the child faces illness in the past two months

during the survey period. Table 5 shows that reported illness significantly increases with the increase in

the magnitude of drought. The within-child variation analysis in Panel A column 1 shows that, on average,

reported child illness increases by around 4 percentage points for an increase in the magnitude of drought.
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Table 4: The impact of drought shock on child schooling

(1) (2) (3) (4) (5) (6)

Absenteeism Absenteeism Absenteeism Absenteeism Grade comp. Grade comp.

variables Probit (AME) meglm-Logit Probit (AME) meglm-Logit Poisson (AME) meglm-Poisson

A. All Children

drought (within effect) 0.0139 0.1164 -0.1304** -1.5527** -0.1764*** -0.0502**

(0.0210) (0.2564) (0.0513) (0.6840) (0.0652) (0.0213)

droughtXage (within effect) 0.0114*** 0.1355**

(0.0043) (0.0569)

drought (b/n effect) 0.1213*** 1.2019*** 0.0824 0.8079 -0.1780 -0.1020

(0.0322) (0.3078) (0.0527) (0.6086) (0.2870) (0.1007)

droughtXage (b/n effect) 0.0031 0.0305

(0.0039) (0.0448)

constant -3.2456*** -3.0869*** -0.8589***

(0.4102) (0.4413) (0.1311)

Observations 9,795 9,795 9,795 9,795 14,595 14,595

B. Female Children

drought (within effect) 0.0115 -0.0113 -0.1669** -2.1875** -0.2540*** -0.0588**

(0.0227) (0.2973) (0.0675) (0.9784) (0.0910) (0.0287)

droughtXage (within effect) 0.0144*** 0.1824**

(0.0055) (0.0829)

drought (b/n effect) 0.1208*** 1.3062*** 0.0656 0.9429 0.2018 0.0056

(0.0332) (0.3202) (0.0726) (0.8911) (0.2907) (0.1067)

droughtXage (b/n effect) 0.0046 0.0292

(0.0055) (0.0666)

constant -2.9474*** -2.8143*** -0.7882***

(0.4705) (0.5483) (0.1558)

Observations 4,706 4,706 4,706 4,706 6,801 6,801

19



Table 4: Continued

(1) (2) (3) (4) (5) (6)

Absenteeism Absenteeism Absenteeism Absenteeism Grade comp. Grade comp.

variables Probit (AME) meglm-Logit Probit (AME) meglm-Logit Poisson (AME) meglm-Poisson

C. Male Children

drought (within effect) 0.0132 0.1937 -0.0802 -0.8993 -0.1120 -0.0433*

(0.0241) (0.2981) (0.0604) (0.8208) (0.0885) (0.0257)

droughtXage (within effect) 0.0073 0.0863

(0.0047) (0.0629)

drought (b/n effect) 0.1230*** 1.1248*** 0.1267** 1.1666 -0.5007 -0.2015

(0.0378) (0.3801) (0.0633) (0.7302) (0.3602) (0.1284)

droughtXage (b/n effect) -0.0003 -0.0030

(0.0045) (0.0536)

constant -3.4275*** -3.4216*** -0.9434***

(0.5445) (0.5730) (0.1498)

Observations 5,089 5,089 5,089 5,089 7,794 7,794

Wald chi-square 78.76*** 85.58*** 106.65***

Robust standard errors in parentheses: Clustered at community level.

∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1

All estimations include control variables − child and household characteristics, and region and survey year dummies (Appendix Table A.1) − but the results for

these variables are not reported for brevity.

AME stands for average marginal effects.

We used a Stata command written by Schunck and Perales (2017) for the meglm regressions.
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Figure 6: Relationship between school absenteeism and drought

Figure 7: Relationship between highest grade completed and drought

The within-effect estimate of drought on child illness remains robust under meglm model specification.

Accordingly, for a given child, the odds of illness (relative to non-illness) are more than 50 percent higher for

a standard deviation increase in the magnitude of drought (Table 5 Panel A columns 2). As shown in Panels

B and C of the same Table, the health impact of drought is statistically significant and robust regardless of

gender. Moreover, the within-child effect of drought on child health does not vary based on age (columns 3

and 4).

As explained by (Gundersen and Ziliak, 2015), climate shocks can negatively affect child health through

the effects on food and nutrition security. Households experiencing drought shocks may employ consump-

tion destabilizing coping responses by lowering the quantity and quality of meals (Saronga et al., 2016).

Low food availability, access, and utilisation during drought periods may consequently induce child illness.

Unfortunately, we do not have information on individual-level food consumption to verify this mechanism
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Table 5: The effect of drought shock on reported child illness

(1) (2) (3) (4)

Child illness (Probit) Child illness Child illness (Probit) Child illness

variables Coeff. AME meglm-Logit Coeff. AME meglm-Logit

A. All Children

drought (within effect) 0.2230** 0.0363** 0.4331** 0.2285 0.0371 0.2394

(0.0886) (0.0144) (0.1854) (0.2245) (0.0366) (0.4822)

droughtXage (within effect) -0.0002 -0.0000 0.0156

(0.0160) (0.0026) (0.0340)

drought (b/n effect) 0.6945*** 0.1130*** 1.3285*** 0.2581 0.0419 0.8036

(0.1348) (0.0219) (0.2375) (0.2803) (0.0455) (0.5588)

droughtXage (b/n effect) 0.0327* 0.0053* 0.0387

(0.0174) (0.0028) (0.0343)

constant -1.6693*** -3.2149*** -1.5343*** -3.0420***

(0.1786) (0.3465) (0.1907) (0.3735)

Observations 14,680 14,680 14,680 14,680 14,680 14,680

B. Female Children

drought (within effect) 0.2335** 0.0397** 0.4750** 0.0114 0.0019 -0.2417

(0.1095) (0.0186) (0.2230) (0.3090) (0.0526) (0.6628)

droughtXage (within effect) 0.0173 0.0029 0.0569

(0.0225) (0.0038) (0.0492)

drought (b/n effect) 0.4821*** 0.0820*** 0.9047*** 0.3619 0.0616 1.0361

(0.1760) (0.0297) (0.2935) (0.3809) (0.0645) (0.7152)

droughtXage (b/n effect) 0.0097 0.0017 -0.0090

(0.0262) (0.0045) (0.0468)

constant -1.5445*** -2.8613*** -1.5069*** -2.8880***

(0.2371) (0.4468) (0.2508) (0.4821)

Observations 6,840 6,840 6,840 6,840 6,840 6,840

C. Male Children

drought (within effect) 0.2165* 0.0336* 0.3977* 0.4359 0.0675 0.5696

(0.1114) (0.0173) (0.2414) (0.3229) (0.0502) (0.6752)

droughtXage (within effect) -0.0157 -0.0024 -0.0117

(0.0227) (0.0035) (0.0469)

drought (b/n effect) 0.8709*** 0.1350*** 1.7289*** 0.2456 0.0380 0.8172

(0.1364) (0.0218) (0.2659) (0.3261) (0.0506) (0.6820)

droughtXage (b/n effect) 0.0455** 0.0070** 0.0659

(0.0203) (0.0031) (0.0419)

constant -1.8665*** -3.7197*** -1.6725*** -3.4214***

(0.1970) (0.4122) (0.2191) (0.4567)

Observations 7,840 7,840 7,840 7,840 7,840 7,840

Wald chi-square 37.61 39.70

Robust standard errors in parentheses: Clustered at community level. ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1

All estimations include control variables listed in Appendix Table A.1. AME stands for average marginal effects.

We used a Stata command written by Schunck and Perales (2017) for the meglm regressions.
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and assess intrahousehold variations in the allocation of food. Instead, we rely on household-level analysis to

examine the impact of drought on food consumption expenditure and the average number of meals taken per

day across time. Based on our investigation using within-household variation estimators, we find no evidence

that suggests drought has an effect on food consumption expenditure and behaviour for a given household

(Appendix Table A.2). Therefore, the plausible channel for the impact of drought on child health is through

its effect on the health environment. Drought conditions create a conducive environment for widespread

occurrences of vector-borne, water-borne, and infectious diseases (Bunyavanich et al., 2003; Lafferty, 2009;

Stanke et al., 2013).

(b) Drought and intra-household resource allocation for child health care

We now explore household-level decisions concerning the allocation of resources to health care services in the

face of drought-induced income shocks. Our assessments on the gender-disaggregated impact of drought on

households’ decision to seek medical treatment during child illness and inability to pay for treatment reveal

that there is gender bias in the allocation of resources for health care, female children being worse-off. Table

6 Panel C shows that for an increase in the magnitude of drought, a given male child is more likely to get

medical treatment conditional on illness. This is plausibly due to the severity of ill health a child suffers

during harsh environmental conditions of drought that may compel parents to seek medical attention. On

the contrary, conditional on illness, a given female child has no chance of getting medical attention with

an increase in the severity of drought (Table 6 Panel B columns 1 and 2). Moreover, for a unit standard

deviation increase in the magnitude of drought, the probability that an ill female child does not receive

medical treatment due to household’s liquidity constraints increased by 32 percentage points (Table 6 Panel

B column 3). Our results show that female children are disfavoured by the intra-household resource allocation

to health care in the presence of climate shocks. As such, while male children are protected, households tend

to divert health care spending away from female children as a coping response to drought-induced income

shocks.

6.3 Drought and contemporaneous link between child education and health

The short-run within-child effects of climate shocks on human capital after running separate analyses on the

impact of drought on children’s schooling and health outcomes are presented in previous sections. In this

section, we examine the possible contemporaneous link between education and drought-induced ill health of

children to deepen our understanding of the short-run climate shocks-human capital nexus. This also allows

us to examine whether the relationship between child education and health in the presence of drought vary

due to gender bias in households’ coping responses that we observe above.

The seemingly unrelated multivariate analysis reported in Appendix Table A.3 shows that the equations

for health (equation 9) and education (equation 10) are not independent after adjusting for the effects of
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Table 6: Impact of drought on medical treatment and inability to pay for treatment

(1) (2) (3)

Med. treat. Med. treat. Inability to pay

variables Coeff. Probit (AME) meglm-Logit Coeff. Probit (AME)

A. All Children

drought (within effect) 0.2917 0.0947 1.5271** 0.5851 0.1883

(0.2251) (0.0726) (0.6467) (0.4561) (0.1437)

drought (b/n effect) 0.4802** 0.1559** 0.6516* 0.4131 0.1329

(0.2433) (0.0789) (0.3374) (0.3960) (0.1279)

constant -0.6095* -0.6189 -1.4248**

(0.3669) (0.6369) (0.6843)

Observations 1,410 1,410 405

B. Female Children

drought (within effect) 0.0117 0.0037 0.3562 1.0838* 0.3181*

(0.2289) (0.0733) (0.7303) (0.6059) (0.1712)

drought (b/n effect) 0.8032** 0.2571** 0.8801* 0.7334 0.2153

(0.3308) (0.1053) (0.4975) (0.6438) (0.1892)

constant -0.9577* -1.1640 -1.9288**

(0.4930) (0.9768) (0.9724)

Observations 694 694 206

C. Male Children

drought (within effect) 0.5616* 0.1843* 2.7161*** 0.1840 0.0538

(0.3305) (0.1074) (0.8987) (0.5755) (0.1681)

drought (b/n effect) 0.3709 0.1217 0.5946 0.0012 0.0004

(0.3152) (0.1030) (0.3990) (0.4690) (0.1373)

constant -0.3818 -0.0415 -0.7389

(0.4910) (0.8359) (1.0384)

Observations 716 716 199

Wald chi-square 45.07 64.89***

Robust standard errors in parentheses: Clustered at community level.

∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1

All estimations include control variables listed in Appendix Table A.1.

AME stands for average marginal effects.

We used a Stata command written by Schunck and Perales (2017) for the meglm regressions.
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drought shock and other control variables. The correlation parameters (ρ) provide evidence for the presence

of statistically significant dependence between children’s health (as measured by reported child illness), and

schooling outcomes – absenteeism and highest grade completed – in the expected direction. In particular,

the correlation between health status and highest grade completed is statistically significant only for female

children. We conducted further gender-disaggregated analyses to directly examine child illness as a mediating

factor – the effect of child health on schooling outcomes – using within-child variation estimators.

Table 7 shows that child illness significantly reduces school attendance and the highest grade completed

after adjusting for the direct effect of drought shocks and the effects of other observed and time-invariant

unobserved confounders. On average, child illness increases the probability of school absenteeism of both a

female and male child by 15 and 12 percentage points, respectively. In the meglm models, on average, the

odds of school absenteeism is around 5 times higher for a female child and around 4 times higher for a male

child for an increase in the magnitude of drought. Child illness also has a negative effect on completed formal

school years for both sexes. In terms of magnitude, however, the negative effect of illness on the expected

number of count on the highest grade completed of a given female child is twice as large as its effect on a

male’s child (Columns 3 and 4 in Panels B and C). This implies that a female child is twice as likely to lag

behind in her human development as a male child due to illness. Moreover, the adverse effect of illness on

the highest formal school years completed is robust only for female children.

As described in section 5, we also used a recursive bivariate analysis with exclusion restriction to test the

robustness of our findings presented in Table 7 and improve causal inference on the effect of child health on

schooling outcomes. For identification, we exploit the exogenous variation in reported child illness related

to access to an improved toilet facility, which is found to be a significant correlate to health status of a

given child. The health equations in Table 8 show that reported child illness significantly decreases if the

proportion of children in the community with access to improved toilet increases. Di Falco et al. (2011)’s

falsification test in Appendix Table A.4 shows that access to improved toilet facility in the community can

be a valid instrument since it does not affect schooling outcomes of non-ill children. Our estimation results

presented in Table 8 provide robust evidence to suggest that drought shocks cause illness that ultimately

poses a detrimental impact on the education of children. On average, the probability of reported illness

of a child increases by around 5 percentage points for a unit standard deviation increase in the magnitude

of drought regardless of gender. In turn, child illness significantly decreases the highest completed formal

schooling by around two years after accounting for observed and unobserved confounders. The adverse effect

of child illness on the highest grade completed is statistically significant only for female children.

Our results imply that the gender bias in the intra-household resource allocation to health care may

explain the disproportionately large schooling effects of child illness on female children. We show in section

6.2 that there is no significant variation in the impact of drought shock on reported child illness based on

sex of the child (Table 5). Therefore, female children are not more susceptible to drought-induced illness.

Rather, households tend to divert health care spending away from them (Table 6). Consequently, female
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Table 7: Mediation analysis − the effect illness on schooling in the presence of drought

(1) (2) (3) (4)

Absenteeism Absenteeism Grade comp. Grade comp.

variables Coeff. AME meglm-Logit Coeff. AME meglm-Poisson

A. All Children

illness (within effect) 0.8583*** 0.1376*** 1.6423*** -0.0675*** -0.2151*** -0.0595***

(0.0809) (0.0130) (0.1806) (0.0189) (0.0602) (0.0172)

drought (within effect) 0.0412 0.0066 0.0355 -0.0516** -0.1643** -0.0463**

(0.0904) (0.0145) (0.2722) (0.0206) (0.0652) (0.0212)

illness (b/n effect) 0.6422*** 0.1030*** 1.4122*** -0.0182 -0.0578 0.0065

(0.0979) (0.0157) (0.1856) (0.0533) (0.1698) (0.0707)

drought (b/n effect) 0.6546*** 0.1049*** 1.0594*** -0.0543 -0.1730 -0.1033

(0.1265) (0.0203) (0.3366) (0.0910) (0.2897) (0.1014)

constant -1.8942*** -3.5157*** -0.6356*** -0.8575***

(0.1951) (0.4378) (0.1042) (0.1309)

Observations 9,795 9,795 14,595 14,595

B. Female Children

illness (within effect) 0.9547*** 0.1482*** 1.7328*** -0.1009*** -0.3141*** -0.0849***

(0.1180) (0.0179) (0.2484) (0.0268) (0.0832) (0.0250)

drought (within effect) 0.0477 0.0074 -0.0504 -0.0759*** -0.2364*** -0.0531*

(0.1426) (0.0222) (0.3160) (0.0290) (0.0900) (0.0281)

illness (b/n effect) 0.8526*** 0.1324*** 1.7382*** -0.0363 -0.1132 0.0054

(0.1314) (0.0210) (0.2211) (0.0746) (0.2321) (0.0869)

drought (b/n effect) 0.6713*** 0.1042*** 1.1657*** 0.0674 0.2100 0.0047

(0.2071) (0.0326) (0.3439) (0.0939) (0.2921) (0.1066)

constant -1.7203*** -3.2988*** -0.6152*** -0.7866***

(0.2803) (0.5141) (0.1236) (0.1556)

Observations 4,706 4,706 6,801 6,801

C. Male Children

illness (within effect) 0.7621*** 0.1235*** 1.5601*** -0.0373 -0.1213 -0.0374*

(0.1033) (0.0172) (0.2425) (0.0229) (0.0746) (0.0208)

drought (within effect) 0.0300 0.0049 0.0837 -0.0324 -0.1053 -0.0409

(0.1498) (0.0243) (0.3150) (0.0274) (0.0888) (0.0258)

illness (b/n effect) 0.4166*** 0.0675*** 1.0071*** 0.0177 0.0575 0.0381

(0.1458) (0.0234) (0.2695) (0.0693) (0.2252) (0.0923)

drought (b/n effect) 0.6818*** 0.1105*** 1.0111** -0.1574 -0.5115 -0.2077

(0.2350) (0.0387) (0.4146) (0.1127) (0.3645) (0.1301)

constant -2.0299*** -3.6084*** -0.6790*** -0.9416***

(0.2833) (0.5721) (0.1205) (0.1497)

Observations 5,089 5,089 7,794 7,794

Wald chi-square 76.66*** 107.70***

Robust standard errors in parentheses: Clustered at community level. ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1

All estimations include control variables listed in Appendix Table A.1. AME stands for average marginal effects.

We used a Stata command written by Schunck and Perales (2017) for the meglm regressions.
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Table 8: Recursive bivariate estimates on the impact of child illness on schooling outcomes

(1) (2)

Child illness Absenteeism Child illness Grade comp.

variables Probit (AME) Probit (AME) Probit (AME) Linear

child illness -0.0563 -1.7595***

(0.1008) (0.6078)

imp. toilet use -0.0600*** -0.0711***

(0.0128) (0.0144)

drought (within effect) 0.0477*** 0.0321 0.0456*** -0.2838***

(0.0158) (0.0236) (0.0158) (0.0889)

drought (b/n effect) 0.1201*** 0.1436*** 0.1133*** -0.0710

(0.0221) (0.0393) (0.0221) (0.3341)

constant -1.2888***

(0.3656)

Observations 14,532 14,579

child illness -0.0607 -2.0926***

(0.1829) (0.6685)

imp. toilet use -0.0493** -0.0718***

(0.0196) (0.0200)

drought (within effect) 0.0478** 0.0338 0.0417** -0.3776***

(0.0196) (0.0282) (0.0187) (0.1130)

drought (b/n effect) 0.0880*** 0.1393*** 0.0876*** 0.2472

(0.0299) (0.0473) (0.0301) (0.3455)

constant -1.2265***

(0.4397)

Observations 6,777 6,794

child illness -0.1326 -0.8788

(0.0962) (1.2229)

imp. toilet use -0.0667*** -0.0698***

(0.0149) (0.0174)

drought (within effect) 0.0482*** 0.0373 0.0477** -0.2312**

(0.0185) (0.0278) (0.0190) (0.1152)

drought (b/n effect) 0.1447*** 0.1683*** 0.1353*** -0.4434

(0.0211) (0.0419) (0.0222) (0.4205)

constant -1.4473***

(0.4101)

Observations 7,755 7,785

Wald chi-square 53.92*** 79.18***

Robust standard errors in parentheses: Clustered at community level. ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1

All estimations include control variables listed in Appendix Table A.1. AME stands for average marginal effects.

We used a Stata command written by Roodman (2011) for the estimation.
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children are worse-off than male children in receiving medical treatment during illness when households

experience income shocks. This ultimately results in significant variations between male and female children

with respect to the effect of illness on schooling outcomes. In this respect, illness may linger on female children

and negatively affects their education plausibly by affecting active engagement in schooling activities. Thus,

households’ gender-based coping response to drought-induced income shock results in variations in the effect

that illness has on schooling outcomes of female and male children.

6.4 Pathways for the direct effect

The direct within-child effects of drought, after accounting for its indirect (medicated) effect through child

illness, on schooling outcomes are also shown in Tables 7 and Table 8. The within-child variation estimates

reveal that drought on average resulted in a significant decline in the expected count of the highest grade

completed. This effect is robust under alternative panel models only for female children. The expected

number of count of a given female child’s highest grade completed decreases on average by 0.3 as a result of

an increase in the magnitude of drought by one standard deviation. Therefore, for a female child, drought

bears a robust direct negative impact on her human development besides its mediated effect through ill

health.

After controlling for the negative and statistically significant effect of illness, the presence of a robust

effect of drought on the education of female children implies that the income effect persists. Björkman-

nyqvist (2013) and Randell and Gray (2016) suggest that households’ measures to increase income or reduce

expenditures during drought seasons may adversely affect children’s schooling. They argue that households

respond to income shocks by forcing children to drop out of school to engage in farm or non-farm activities

and due to the reduced ability for households to pay for school fees and supplies. We explore these two

mechanisms – education expenditure (school fees and supplies) and use of child labour – as plausible pathways

for the direct effect of drought conditioning on gender.

Unlike the gender bias in health care that we observe in 6.2, we do not find gender-based variations in

the intrahousehold resource allocation to education expenditure in the presence of drought. Appendix Table

A.5 shows that drought has a negative but not statistically significant within-child effect on annual school

expenditure. On the other hand, Table 9 shows that households’ decision to use child labour in response to

drought significantly vary based on gender. Drought increases the weekly hours of female child labour on

non-agricultural activities on average by more than 50 percent (Panel B columns 3 and 4). Björkman-nyqvist

(2013) also found similar findings in Uganda where female children handle the majority of non-agricultural

activities during periods of negative rainfall shocks. Thus, committing female children on non-farm activities

may compete for their time that is needed for attending classes and studying to ensure progression to higher

grades.
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Table 9: The impact of drought shock on child labour use

(1) (2) (3) (4) (5) (6)

Agri. work (ln) Agri. work(ln) Non-agri. work(ln) Non-agri. work(ln) Paid work(ln) Paid work(ln)

variables Linear meglm-Linear Linear meglm-Linear Linear meglm-Linear

A. All Children

drought (within effect) -0.1697 -0.2463 0.3632* 0.4002* -0.0106 0.0046

(0.3042) (0.3097) (0.2075) (0.2066) (0.0354) (0.0363)

drought (b/n effect) -0.9195 -0.6669 -0.5498** -0.4832** 0.1232*** 0.0796*

(0.5725) (0.5107) (0.2248) (0.1911) (0.0467) (0.0414)

constant -1.5899** -1.8514*** -6.5233*** -6.4250*** -7.1049*** -7.0834***

(0.6442) (0.6087) (0.3197) (0.3049) (0.0635) (0.0619)

R-squared 0.1161 0.1123 0.0156

Observations 14,403 14,403 14,389 14,389 14,392 14,392

B. Female Children

drought (within effect) -0.0448 -0.1060 0.5162** 0.5281** -0.0288 -0.0249

(0.3793) (0.3773) (0.2591) (0.2498) (0.0316) (0.0333)

drought (b/n effect) -1.3165** -0.9597* -0.4133 -0.2821 0.0219 0.0039

(0.6376) (0.5752) (0.3354) (0.2903) (0.0408) (0.0361)

constant -1.3029* -1.5288** -6.5090*** -6.4330*** -7.0952*** -7.0780***

(0.7830) (0.4929) (0.4274) (0.4606) (0.0672) (0.0751)

R-squared 0.0658 0.1305 0.0155

Observations 6,701 6,701 6,712 6,712 6,712 6,712

C. Male Children

drought (within effect) -0.2572 -0.3383 0.2477 0.3051 0.0078 0.0279

(0.3327) (0.3455) (0.2019) (0.2089) (0.0538) (0.0547)

drought (b/n effect) -0.5960 -0.4041 -0.6686*** -0.6438*** 0.2000*** 0.1448**

(0.6173) (0.5522) (0.2289) (0.2018) (0.0723) (0.0654)

constant -0.0759 -0.4492 -6.8004*** -6.7212*** -7.0852*** -7.0667***

(0.7182) (0.6682) (0.3454) (0.3416) (0.0850) (0.0889)

R-squared 0.1083 0.0982 0.0205

Observations 7,702 7,702 7,677 7,677 7,680 7,680

Wald chi-square 481.09*** 74.93*** 53.36**

Robust standard errors in parentheses: Clustered at community level. ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1
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7 Conclusion

While households in SSA are disproportionately affected by climate change and variability, children are

the most vulnerable household members to the worst consequences of climate shocks. Previous studies ex-

amine the effect of climate shocks on human capital of children relying on either cross-sectional variations

or (beyond the household) higher-cluster level fixed effects. Both approaches impose arguably unattain-

able assumptions concerning either the randomness of a climate shock variable or equality of unobserved

time-invariant heterogeneities at the child, household and higher-cluster levels. Instead, to improve causal

identification, we take into account the presence of child- and household-level fixed effects that may either

enhance or blunt the impact of climate shocks on a given child’s human capital. We also examine the possible

short-run link between health and education to provide valuable insight into the contemporaneous direct and

indirect (mediated) impacts of drought on child schooling outcomes – school absenteeism and highest grade

completed – in the context of SSA. To this end, we merge child-level longitudinal data from the Ethiopia

Rural Socioeconomic Survey (ERSS) with climate data.

Using within-child variation estimators, we find that drought affects health status, school attendance, and

the highest grade completed of children. Drought significantly increases reported child illness of both sexes.

On the contrary, the impact of drought on education is disproportionately concentrated on female children.

The detrimental effect of drought on a female child’s completed years of formal schooling is channelled, albeit

not entirely, through illness. Our empirical assessment on the impact pathway shows that households respond

to drought shocks by altering the intra-household resource allocation to health care in a manner that diverts

medication spending away from female children. Consequently, the negative effect of child illness on the

highest grade completed is statistically significant and robust across alternative identification strategies only

for female children. Besides the mediated effect through illness, drought has a direct and robust negative

impact on a female child’s number of formal school years completed, through increasing demand for the

child’s labour for non-agricultural activities. This is consistent with our finding that the adverse effect of

drought on school attendance grows stronger with age for a female child, while boys and younger girls are

not affected.

In rural areas of SSA, households’ income is highly constrained during drought seasons. The gender bias

in the intrahousehold resource allocation and labour supply decisions introduces significant variations on

the consequences of drought-induced income shocks on human development of children. Households’ lack of

coping capacity to maintain their spending on a female child’s health care presumably limits her chance to

recover and proceed with her schooling activities. Moreover, due to low expected return from agricultural

practices in the presence of drought, households may look for options to supplement their income. In this

respect, non-agricultural activities can be considered as a livelihood diversification strategy and may render

the possibility to raise households’ income and smooth food consumption. However, a female child bears the

burden of handling the tasks associated with the households’ non-agricultural activities, which ultimately

compete with her schooling time.

30



Our study contributes to the evidence base on the climate shocks-human capital nexus and provides

valuable insight into the role of gender bias in shaping the effects of drought on human development. Unfor-

tunately, due to lack of data, our study cannot verify why gender bias in the context of SSA exists. Is it due

to cultural taboos – parents’ expectations that female children should endure hardship – or intertemporal

utility-maximizing choice? In the former case, parents might be less cautious and protective against the

discomforts of their female children during ill health or longer working hours, which in turn may generate

negative externalities on health and education of a female child. In the latter case, parents may take into

account intertemporal division of labour as their “pension plan”. Patriarchal societies characterize most de-

veloping countries where males have dominance in access to and control over resources. In this light, parents

may enforce the physical well-being and schooling of a male child expecting financial support at old ages

from him, regardless of forming his own family. On the flip side, female children may not be expected to be

educated and able to leave the community. Instead, parents may expect them to stay around and keep pro-

viding their unaccounted labour for domestic and non-agricultural tasks in the short- and long-run. Future

observational and experimental studies in this direction will give behavioural and economic explanations to

the root cause of gender bias, which is a major impact pathway in our study.

Unpacking the pathways through which climate shocks affect human development is not just an exercise

in scientific enquiry, it is also crucial for designing policies aimed at enhancing climate resilience and child

welfare. Based on our findings, we propose policy recommendations that either enhance households’ income

or minimize the costs of human capital investments in the face of climate change. On the income side,

risk management policies and practices such as weather index insurance, social assistance, and climate-

smart practices may ensure stable household income to allow investments on child health and education in

the aftermath of drought. As such, easing households’ liquidity constraints may eliminate adverse coping

responses that lead to gender inequalities in human development. Understanding the contemporaneous links

between child health and education in the presence of climate shocks is essential to setting policy priorities in

health and education sectors. For instance, allowing free health care at public health facilities or school health

programmes would pay “double dividend” by improving both health and schooling outcomes of children in

the face of severe and frequent drought shocks.

Since female children bear the brunt of the welfare effects of climate shocks, the issue of gender should be

at the heart of the conditionality in targeting beneficiaries of a policy or programme intervention that intends

to spur human development in SSA in general and in Ethiopia in particular. For instance, conditional cash

transfers to households based on female children’s health visits and school attendance may eliminate the

negative consequences of gender bias in the intrahousehold resource allocation for health care services and

simultaneously may enable female children to attend school by reducing the opportunity cost of giving up a

female child’s labour. Future rigorous (comparative) evaluation studies would shed light on the effectiveness

of such resilience-promotive policy options in SSA.
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Appendix Table A.1: Description and statistics of variables from the Ethiopian LSMS-ISA pooled panel data

Variables Obs. Description and coding Mean Std.Dev. Min Max

Variables of interest

absenteeism 9,948 binary; =1 if the child was absent from school for more than 0.101 0.302 0 1

a week in the past month, 0 otherwise.

highest grade completed 14,855 a count variable indicating the highest grade completed. 3.191 2.868 0 18

illness 14,953 binary; =1 if the child faced illness during the last 2 months, 0.096 0.295 0 1

0 otherwise.

medical treatment 1,437 binary; =1 if the ill child gets medical treatment, 0 otherwise. 0.683 0.465 0 1

inability to pay for treatment 413 binary; =1 if “lack of money” or “it is expensive” is a reason 0.414 0.493 0 1

for not taking an ill child to medical treatment, 0 otherwise.

annual education expenditure (ln) 9.831 ln of child-level total annual education expenditure. 4.333 1.66 -6.908 9.045

agri. work hrs. per week (ln) 14,649 ln of the total hours in the last seven days that the child -2.278 4.888 -6.908 4.585

spend on household agricultural activities.

non-agri. work hrs. per week (ln) 14,636 ln of the total hours in the last seven days that the child -6.167 2.567 -6.908 4.585

spend to help any non-agricultural activities.

paid work hrs. per week (ln) 14,639 ln of the total hours in the last seven days that the child -6.855 0.732 -6.908 4.564

spend in any work for a wage, salary, or any payment.

annual food consp. exp. (ln) 7,172 ln of real annu. consumption exp. per ad. equ. 8.148 0.774 5.988 12.286

less meals per day 7,284 binary; =1 if the number of meals per day for the HH is 0.208 0.406 0 1

twice or less, 0 for more than twice.

drought shock 16,987 a censored variable indicating magnitude of drought shock. 0.257 0.356 0 1.9

Control variables

age of the child 16,916 continuous variable for the age of the child. 13.69 3.744 7 25

sex of the child 16,998 binary; =1 male child, 0 otherwise. 0.522 0.5 0 1

age of the HH head 16,890 Continuous; age of the household (HH) head. 48.45 12.26 15 98

sex of the HH head 16,993 binary; =1 male HH head, 0 otherwise. 0.799 0.401 0 1

attend school 16,901 binary; =1 if the HH head attended formal education, 0.35 0.477 0 1

0 otherwise.
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Appendix Table A.1: Continued

Variables Obs. Description and coding Mean Std.Dev. Min Max

family size 17,001 continuous variable indicating family size. 7.206 2.323 1 18

non-farm income sources 16,988 binary; =1 if the HH engage in activities that generate non-farm 0.324 0.468 0 1

income, 0 otherwise.

private transfer 17,001 binary; =1 if the HH receive private transfers, 0 otherwise. 0.148 0.355 0 1

social assistance 16,951 binary; =I if the HH receive social transfers, 0 otherwise. 0.184 0.387 0 1

credit 16,913 binary; =1 if anyone in the HH borrow over the past 12 months, 0.27 0.444 0 1

0 otherwise.

total land 17,001 continuous variable indicating total land holdings in ha. 1.625 3.355 0 87.37

productive assets 17,001 continuous variable for productive assets index 0.495 1.058 -1.183 14.13

road distance 16,987 continuous variable for HH distance in (kms) to nearest road. 15.5 19.35 0 242

admin. center dist. 16,987 continuous variable for HH distance in (kms) to capital of zone. 167.7 126.8 1 773.1

district town 16,987 binary; =1 if the community is in a woreda (district) town, 0.119 0.323 0 1

0 otherwise.

region dummy1 (base group) 17,001 binary; =1 if Tigray region, 0 otherwise. 0.1006 0.3008 0 1

region dummy2 17,001 binary; =1 if Afar region, 0 otherwise. 0.0325 0.177 0 1

region dummy3 17,001 binary; =1 if Amhara region, 0 otherwise. 0.201 0.401 0 1

region dummy4 17,001 binary; =1 if Oromia region, 0 otherwise. 0.225 0.418 0 1

region dummy5 17,001 binary; =1 if Somali, 0 otherwise. 0.0586 0.235 0 1

region dummy6 17,001 binary; =1 if Benshangul Gumuz, 0 otherwise. 0.0309 0.173 0 1

region dummy7 17,001 binary; =1 if SNNP, 0 otherwise. 0.263 0.44 0 1

region dummy8 17,001 binary; =1 if Gambela, 0 otherwise. 0.0281 0.165 0 1

region dummy9 17,001 binary; =1 if Harari, 0 otherwise. 0.0289 0.168 0 1

region dummy10 17,001 binary; =1 if Diredawa, 0 otherwise. 0.0311 0.173 0 1

Survey year dummy1 (base year) 17,001 binary; =1 if the survey year is 2011, 0 otherwise.

Survey year dummy2 17,001 binary; =1 if the survey year is 2013, 0 otherwise.

Survey year dummy3 17,001 binary; =1 if the survey year is 2015, 0 otherwise.
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Appendix Table A.2: Impact of drought on households’ food consumption

(1) (2) (3) (4)

Real food exp. per ad.eq. (ln) Real food exp. per ad.eq. (ln) Less meal-Probit Less meal

variables Linear meglm-Linear Coeff. AME meglm-Logit

drought (within effect) 0.0456 0.0493 0.0453 0.0122 0.0930

(0.0480) (0.0488) (0.1106) (0.0297) (0.2370)

drought (b/n effect) -0.1560* -0.1462* 0.2914 0.0782 0.6018

(0.0866) (0.0839) (0.1797) (0.0483) (0.3880)

constant 8.7382*** 8.7418*** -1.3184*** -2.7858***

(0.1001) (0.0995) (0.2110) (0.4687)

R-squared 0.1145

Observations 7023 7023 7139 7139 7139

Robust standard errors in parentheses: Clustered at community level.

∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1

The dependent variable in column 1 and 2 is annual food consumption expenditure of the household after adjusting for inflation and households’ composition

(measured by adult equivalent), which are readily available in the ERSS panel data. The dependent variable in columns 3 and 4 is binary taking the value of 1 if

the average number of meals in the household is twice or less, and 0 for three times or more.

All estimations include control variables listed in Appendix Table A.1.

AME stands for average marginal effects.

We used a stata command written by Schunck and Perales (2017) for the meglm regressions.
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Appendix Table A.3: Seemingly unrelated model estimates child health and schooling outcomes

(1) (2)

Health (illness) Absenteeism Health (illness) Grade Comp.

Probit-AME Probit-AME Probit-AME Linear

A. All Children:

drought (within effect) 0.0384*** 0.0156 0.0367** -0.3286***

(0.0145) (0.0216) (0.0145) (0.0816)

drought (b/n effect) 0.1181*** 0.1301*** 0.1152*** -0.309

(0.0217) (-0.0323) (0.0219) (0.3167)

constant -1.2896***

(0.3637)

rho (ρ) 0.3930*** -0.0337*

(0.0304) (0.0175)

Observations 14580 14580 14580 14580

B. Female Children

drought (within effect) 0.0441** 0.0191 0.0413** -0.4311***

(0.0187) (0.0231) (0.0187) (0.1069)

drought (b/n effect) 0.0874*** 0.1289*** 0.0853*** 0.0297

(0.0293) (0.0329) (0.0295) (0.3340)

constant -1.2439***

(0.4356)

rho (ρ) 0.4649*** -0.0595**

(0.0375) (0.0243)

Observations 6794 6794 6794 6794

C. Male Children

drought (within effect) 0.0341** 0.0124 0.0333* -0.2393**

(0.0173) (0.0255) (0.0174) (0.0967)

drought (b/n effect) 0.1395*** 0.1329*** 0.1360*** -0.5904

(0.0216) (0.0383) (0.0218) (0.3638)

constant -1.3934***

(0.4121)

rho (ρ) 0.3232*** -0.008

(0.0396) (0.0232)

Observations 7786 7786 7786 7786

Wald chi-square 70.18*** 86.37***

Robust standard errors in parentheses: Clustered at community level.

∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1

All estimations include control variables listed in Appendix Table A.1.

AME stands for average marginal effects.

We used a Stata command written by Roodman (2011) for the estimation.
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Appendix Table A.4: Falsification test: test for the validity of the exclusion restriction

(1) (2) (3) (4)

Absenteeism-Probit Absenteeism Grade comp.-Poisson Grade comp.

Coeff. AME meglm-Logit Coeff. AME meglm-Poisson

A. All Children:

imp. toilet (within effect) -0.0058 -0.0008 0.0896 -0.0071 -0.0229 0.0188

(0.1828) (0.0262) (0.3687) (0.0340) (0.1092) (0.0304)

drought (within effect) 0.1155 0.0166 0.1432 -0.0591*** -0.1899*** -0.0581***

(0.1368) (0.0197) (0.3025) (0.0218) (0.0698) (0.0217)

constant -2.0321*** -3.7929*** -0.6458*** -0.8213***

(0.2639) (0.4762) (0.1073) (0.1274)

Observations 8854 8854 13154 13154

B. Female Children:

imp. toilet (within effect) -0.0618 -0.0084 -0.1215 0.0098 0.0307 0.0628

(0.2211) (0.0299) (0.4644) (0.0471) (0.1483) (0.0407)

drought (within effect) 0.1897 0.0257 0.1389 -0.0990*** -0.3119*** -0.0693**

(0.1530) (0.0210) (0.3472) (0.0333) (0.1047) (0.0306)

constant -1.6880*** -3.3095*** -0.6905*** -0.7544***

(0.3256) (0.5730) (0.1275) (0.1500)

Observations 4238 4238 6098 6098

C. Male Children:

imp. toilet (within effect) 0.088 0.013 0.3228 -0.0188 -0.0616 -0.0109

(0.2073) (0.0307) (0.4399) (0.0410) (0.1340) (0.0368)

drought (within effect) 0.0337 0.005 0.0862 -0.0222 -0.0726 -0.0469*

(0.1595) (0.0236) (0.3605) (0.0305) (0.0994) (0.0261)

constant -2.2484*** -4.0151*** -0.6436*** -0.8976***

(0.3191) (0.6216) (0.1241) (0.1496)

Observations 4616 4616 7056 7056

Wald chi-square 77.41*** 116.25***

Robust standard errors in parentheses: Clustered at community level.

∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1

All estimations include control variables listed in Appendix Table A.1.

AME stands for average marginal effects.

We used a Stata command written by Schunck and Perales (2017) for meglm estimation.
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Appendix Table A.5: Impact of drought on total annual education expenditure

(1) (2)

Total edu.exp. (ln) Total edu.exp. (ln)

variables Linear meglm-Linear

A. All Children

drought (within effect) -0.1338 -0.1541

(0.0916) (0.0945)

drought (b/n effect) 0.1028 0.0688

(0.1548) (0.1221)

constant 2.5750*** 3.0014***

(0.2082) (0.2612)

R-squared 0.1072

Observations 9,684 9,684

B. Female Children

drought (within effect) -0.1048 -0.1884

(0.1113) (0.1189)

drought (b/n effect) 0.1059 0.1560

(0.1758) (0.1335)

constant 2.4320*** 2.8218***

(0.2535) (0.3646)

R-squared 0.1071

Observations 4,639 4,639

C. Male Children

drought (within effect) -0.1685 -0.1212

(0.1160) (0.1202)

drought (b/n effect) 0.0927 -0.0339

(0.1742) (0.1502)

constant 2.7189*** 3.1655***

(0.2414) (0.2454)

R-squared 0.1196

Observations 5,045 5,045

Wald chi-square 44.28 0.1914

Robust standard errors in parentheses: Clustered at community level.

∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1

All estimations include control variables listed in Appendix Table A.1.

AME stands for average marginal effects.

We used a Stata command written by Schunck and Perales (2017) for meglm estimation.
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Appendix Figure A.1: Distribution of SPEI values for the pooled data
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Appendix Figure A.2: Predicted school absenteeism against age of the child
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