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By Michael Verba∗
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This article develops a model of growth and innovation in which
accumulation dynamics of knowledge and R&D are explicitly
considered. The model is based on a more general knowledge
production process than commonly used in Endogenous Growth
Theory and R&D productivity literatures, reconciling as special
cases of a broader framework disparate analytical approaches. The
model of knowledge dynamics highlights the role of human capital,
physical capital, and accumulation in the creation of innovations
and establishes the theoretical possibility of long-run idea-driven
growth without the razor-edge assumption of Romer (1990) and
in the absence of growth in R&D employment stipulated by Jones
(1995). This analysis also predicts the structure of estimation
biases that can result from omission of relevant factors and failure
to take into account the accumulation dynamics of knowledge and
R&D. Empirical estimation supports these predictions. Findings
provide recommendations for future empirical studies aiming to
explain innovation.

JEL: O30, O31, O32, O40
Keywords: Growth theory; innovation; R&D; productivity; knowl-
edge production function; accumulation

I. Introduction

Scholars from different academic disciplines, and working with different method-
ologies, argue that accumulation of technological knowledge is a key driver of
economic growth. The claim of centrality of knowledge accumulation to eco-
nomic growth extends to many discussion streams in economics, particularly sub-
disciplines concerned with production, management and innovation. This argu-
ment can also be found in historical accounts of the economic development of
nations, which observe how mastery of new technologies had accompanied spurts
of industrialisation (Gerschenkron, 1962). Technological knowledge also occupies
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a central role in growth theory, where it acts as a key input, alongside capital
and labour, in models of aggregate production (Solow, 1956, 1957; Romer, 1990).
Finally, this perspective persists in policy discussion, both in advanced and de-
veloping economies, where promotion of innovation is seen as a pressing concern.
The premise of this paper is that if knowledge is an important component in
modern economic growth, knowledge dynamics processes deserve attention and
their own formal model.

In this paper we present a model of knowledge dynamics designed to capture
the process of knowledge creation and accumulation. We begin with an exercise
in reconceptualisation. The intellectual history of oft-repeated terms, like “R&D
capital,” “human capital,” and “knowledge” is revisited in a summary way, and
definitional lines are drawn. In the study, we make a distinction between research
effort and the resulting knowledge flows. Competing conceptions of knowledge
generation are reconciled, before the foundational stones of a model of knowledge
dynamics are set in place. The modelling exercise starts by extending the stan-
dard knowledge production function encountered in models of economic growth,
particularly the literature from Endogenous Growth Theory (EGT). It proceeds
by incorporating features of “R&D capital” accumulation encountered in the lit-
erature on R&D and productivity.

The building block of the model describing the process of knowledge generation
includes two stocks: a knowledge stock consisting of the sum total of disembod-
ied technologically relevant ideas, and an R&D stock, representing accumulated
embodied research effort. R&D stock contains human and physical capital com-
ponents, allowing for a role of accumulated research effort in the creation of
knowledge. Maintaining separate stocks allows us to capture the separate but
interconnected flow and accumulation dynamics of knowledge and R&D.

The analytical exercise has implications for balanced growth and the measure-
ment of impact of R&D on the flows of innovation. The model suggests the pos-
sibility of idea-driven growth without the razor-edge assumption of Romer (1990)
and in the absence of growth in R&D employment stipulated by Jones (1995).
These results also add a dimension to the paradox first noted by Jones (1995),
that in recent decades, an increase in the size of the R&D sector in developed
economies has not led to a commensurate rise in technical change. Finally, our
model of knowledge dynamics reveals the structure of mismeasurement and es-
timation biases that can result from exclusion of accumulable components, such
as physical and human capital, from measures of research effort, and from the
failure to take into account accumulation dynamics. Section XII consists of an
empirical exercise lending support to our conception of knowledge dynamics.

II. Reflections on Models of Knowledge Production

The production function is one of the core analytical tools in economics. By
relating output to its factor inputs it describes the production process and links
to other notions from production theory, such as efficiency and productivity. Pro-
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duction functions used in contemporary economics trace their lineage to the 1928
work of Charles Cobb and Paul Douglas (Berndt and Christensen, 1973), although
the idea of expressing production as a mathematical function that relates output
to a set of inputs is older, dating at least as far back as 1894, when philosopher
Philip Wicksteed published his essay on distribution, and to even earlier work of
Johann von Thünen (Mishra, 2007; Wicksteed, 1894).

The knowledge production function (KPF) framework represents an important
methodological approach to the study of innovation and technical change, the al-
ternatives to which are qualitative and historical studies (Griliches, 1979). While
in a generic production function an index of outputs is related to measures of fac-
tor inputs, in a knowledge production function an index of innovation is related
to factors determining innovative activity. The index of innovation is either in-
corporated into a broader production function framework which includes output,
or is used standalone. The former is the standard approach of theoretical studies,
while the latter is more frequently the case in empirical research that is concerned
primarily with explaining patterns of innovative activity.

The knowledge production function approach has been applied to assess the im-
pact of R&D on output and total factor productivity (Griliches, 1988; Verspagen,
1995; Abdih and Joutz, 2006), to estimate the rate of return to R&D (Bernstein,
1989; Jones and Williams, 1998), to understand factors determining the intensity
of innovative activity across industries and at various spatial scales (Porter and
Stern, 2000; Mohnen, Mairesse and Dagenais, 2006), and to measure knowledge
spillovers (Jaffe, 1986; Griliches, 1992; Coe and Helpman, 1995; Audretsch and
Feldman, 1996).1

Knowledge production in the R&D productivity literature

Knowledge production functions come standard with the literature on produc-
tivity. An early discussion in this mould can be found in Griliches (1979). The
departure point for studies in the relationship between R&D and productivity is
the aggregate production function:

(1) Y = F (A,K,L)

in which a measure of output Y is related to inputs, where K and L repre-
sent capital and labour, respectively, and A stands for the level of technological
knowledge. The literature posits a relationship between the level of technological
knowledge and investments in knowledge production in the form of research and
development, and sets before itself the task of estimating the impact of R&D

1A recent survey of work on the R&D-productivity nexus is Mohnen and Hall (2013). For an overview
of studies estimating the rate of return to R&D see Hall, Mairesse and Mohnen (2010). Surveys of
literature on spillovers can be found in (Branstetter, 1998) and Cincera and de la Potterie (2001); a
more recent survey on this topic is Belderbos and Mohnen (2013). The study by Eberhardt, Helmers
and Strauss (2013) provides a critique of the methods used in the R&D productivity literature; similar
to the present study, it tries to build a bridge between disparate literatures.
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activities on output.

The role of the knowledge production function in this literature is to describe
the relationship between knowledge and R&D investment. The KPF is of the
form:

(2) Ȧ = R+ v

which we may term, for referential convenience, the “Griliches knowledge produc-
tion function.” In this equation, Ȧ is the output of new knowledge and R is input
into knowledge discovery effort by way of R&D expenditure; v represents other
unobserved influences on knowledge production (Griliches, 1990). 2

Knowledge stock in the Griliches framework is a cumulation of current and
prior additions to knowledge resulting from the stream of R&D expenditures. In
the absence of knowledge depreciation, knowledge can be described simply as the
sum of the current and past R&D investments:3

(3) At =

t∑
i=−∞

Ȧi =

t∑
i=−∞

Ri.

However, in deriving knowledge stock from the knowledge production function,
knowledge depreciation must be taken into account. Knowledge depreciation is
a phenomenon analogous to depreciation in capital theory (Benhabib and Rusti-
chini, 1991; Hall, 2007). Because it is considered that over time technical knowl-
edge loses its relevance, prior R&D expenditures contribute less to the current
knowledge stock than current expenditures. In the notation provided by Griliches
(1979), the stock of technologically relevant knowledge is expressed as a function
of the R&D expenditure stream using the following equation:4

(4) At = G(W (B)R, v).

In Eq. (4), A is the stock of technological knowledge and W (B)R is an index
of current and lagged R&D expenditures. As in Eq. (2), here too the variable
v represents all other factors influencing the stock of knowledge, so that Eq. (4)
expresses knowledge stock as a function of the sum of the current-period R&D
and depreciated R&D from prior periods, plus the residual factors v. If we set
aside residual factors, the function G(W (B)R) can be re-expressed as

2Griliches (1990) uses K and u to represent knowledge, and other influences, respectively. The original
notation has been changed to maintain consistency with the nomenclature used throughout this article.

3In the following discussion we denote stock variables using boldface font.
4Eq. (4) is sometimes called a “knowledge production function” or “knowledge function” (Esposti

and Pierani, 2003), although, strictly speaking, it is a function describing knowledge accumulation.
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(5) At = Rt + (1− γ)At−1,

which will be recognised as the Perpetual Inventory Method (PIM) for calculating
stocks. In the PIM R&D stock equation, current stocks are calculated as the sum
of current-period investments (Rt) and the stocks left over from the previous
period adjusted for depreciation ((1 − γ)At−1). The depreciation rate is given
by the parameter γ. Supplemental discussion of the relationship between the
Griliches KPF and the PIM approach can be found in the Appendix.

Although the Griliches framework keeps the door open for inclusion of factors
besides R&D spending, these residual factors have not played much of a role
in empirical construction of R&D stocks. One review of studies on R&D and
productivity found that “[a]lmost all... have used a simple perpetual inventory
or declining balance methodology with a single depreciation rate to construct the
knowledge capital produced by R&D investments” (Hall, Mairesse and Mohnen,
2010, p. 15).

It is worthy of notice that while the knowledge production function in Eq. (2)
is at the heart of the Griliches framework, it is not very salient. The aim of this
literature is to study the effect of knowledge, created by R&D, on productivity.
Because in the productivity literature Eq. (2) serves simply as a transition point
on the way to calculation of R&D stock, given by the knowledge accumulation
equation in Eq. (5), it is easy to miss. For the purposes of modelling innovation,
however, the Griliches equation offers a theory of knowledge dynamics that is of
paramount interest.

Knowledge Production and the Theory of Endogenous Growth

The knowledge production function features most prominently in growth the-
ory. Although the knowledge production sector is only one element of a com-
plete endogenous growth model, it is of focal importance, since the growth rate
of knowledge determines the growth rates of all other variables in the system.
The standard knowledge production function encountered in Endogenous Growth
Theory, which we term the Romer-Jones knowledge production function, is of the
form: 5

5Above is the parametrized KPF adapted from Romer (1990) by Jones (1995). Variations exist,
based on slightly different interpretations of the the labour variable, restrictions on parameters λ and φ
and utilisation of a different nomenclature for variables. In Romer (1990), the exact notation used was

˙A =δHAA, with knowledge represented by A and HA denoting the amount of human capital. Jones uses
the form Ȧ = δLλAA

φ; where knowledge stock is represented by A, LA is labour employed in R&D, and
δ is the arrival rate of innovations. While Jones (1995) takes the “number of scientists and engineers” as
a measure of R&D labour, in Romer (1990) the same measure is used as a stand-in for human capital.
In empirical estimation the difference in notation has no practical consequence. For consistency we have
kept to the Jones (1995) notation throughout the study.
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(6) Ȧ = δLλAAφ,

where Ȧ is knowledge flow, A is knowledge stock, LA is labour employed in the
R&D sector, λ is a parameter measuring the return of knowledge from R&D
labour, φ is the intertemporal spillover parameter and δ is the productivity of
knowledge discovery. This rendition of the knowledge creation process includes
knowledge stock (A) on the right-hand side to account for the possibility that
knowledge output depends on the stock of already accumulated knowledge.

Even a cursory glance at Eqs. (2) and (6) reveals that the Griliches and Romer-
Jones KPFs present quite different theories of knowledge formation. In the lit-
erature on returns to R&D, knowledge production is synonymous with research
effort (Hall, Mairesse and Mohnen, 2010). In endogenous growth theory too, new
technologically relevant ideas involve research effort, but the arrival rate of in-
novations is also conditioned by the stock of previously accumulated knowledge
(Romer, 1990; Aghion and Howitt, 1992; Jones, 1995). Furthermore, the measure
of research effort in the two models is different. The Romer-Jones knowledge pro-
duction function proxies research effort using the quantity of labour employed in
the R&D sector, while the Griliches framework measures research effort with R&D
expenditure, which is a broader measure incorporating the labour—and physical
capital—components of the knowledge discovery effort. Finally, the two models of
knowledge production differ in their approach to accumulation. In the Griliches
knowledge accumulation equation research effort accumulates, contributing to the
stock of knowledge. In the Romer-Jones model, knowledge accumulates, but re-
search effort does not. The Romer-Jones KPF includes two factors: the existing
body of knowledge (A) and the number of scientists and engineers in the R&D
sector (LA). The former is a stock but the latter is a flow variable.

It might appear at first glance that the count of scientists and engineers can
be considered a stock variable. In a literal sense it is, but not from the point of
view of the production system, where the input into production is not the stock
of labour itself, but labour’s effort in production. From the standpoint of the
production system, labour’s contribution to production is the services it renders
to the production process. The work of labour in the R&D sector produces ideas
in the current period, but it also enhances the production of ideas in subsequent
periods, by, for example, adding to human and physical capital that remain for
a certain time as assets in the production of ideas. To illustrate this point, we
can consider the case of an industrial research lab that involves n scientists full-
time on the development of a clinical vaccine in year 1, and the same number of
scientists in year 2—the year when the vaccine is successfully developed. To count
as labour input to knowledge production only the number of personnel working
on the vaccine in year 2 would be to ignore half of total effort.

For our purposes, whether LA is a stock or a flow depends on whether it includes
labour services rendered in prior periods. If only current-period labour count is
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included in production, as in the case of Jones (1995), and in many empirical
studies, the labour variable is a measure of the flow of current research services
from labour.

Differences between the Griliches and Romer-Jones conceptions of knowledge
production can have profound implications for modelling and empirical estima-
tion. If existing knowledge stock serves as a factor in knowledge production, then
its omission from the Griliches KPF will result in omitted variable bias and skew
the resulting elasticity estimates, a point raised previously by Jones and Williams
(1998). Omission of accumulated research effort from the KPF of Endogenous
Growth Theory can be expected to lead to biases of its own. Exclusion of a
cumulable component of effort from knowledge production is another potentially
important drawback.

What, then, is a better way to model knowledge production? What factors
should be included in a knowledge production function? In the next section we
consider inputs into knowledge production and their inter-relationships. This
exercise leads to three observations which serve as a scaffolding on which we
build a more general knowledge production function, in Section IV, of which
both Griliches and Romer-Jones functions are special cases.

III. R&D Capital, Human Capital and Knowledge

In economic theory knowledge has more than one alias. The variable “A” in
Eqs. (4) and (6), representing the stock of knowledge, also goes under the names
“technology” (Benhabib and Spiegel, 2005; Los and Verspagen, 2000) and “total
factor productivity” (Caselli and Coleman, 2006). Changes, or new additions to
the body of knowledge, the variable “Ȧ” in (2) and (6), alternate between the
labels “technical change” (Griliches, 1988), “technological change” (Verspagen,
1995), “new knowledge” (Abdih and Joutz, 2006), “invention” (Griliches, 1979)
and “innovation”. Finally, the units of measure into which “the stock of general
knowledge” (Branstetter, 1998) can be divided have been discussed in terms of
“ideas” (Porter and Stern, 2000), “blueprints” (Grossman and Helpman, 1991),
“patents” (Sequeira, 2012), “designs” (Romer, 1990; Branstetter, 1998), “inven-
tions” (Jones, 1995), and, once more, “innovations.” The word “innovation” has
two senses. It can mean “a novelty,” or “an act or process of creating or intro-
ducing something new.” Both meanings are in currency in the literature, with
the former definition used as another term for a unit of measure of knowledge
(as, for example, in Porter and Stern (2000), and the later as a description of the
process of creation of new knowledge (e.g.: Freire-Seren (2001)). It is important
to discern the underlying concept that hides behind the fog of nomens. This is
the task of this Section.

Both knowledge and R&D are frequently invoked concepts in economics. Yet,
in existing literature, the definitions of knowledge and R&D and their corre-
spondence are not always made clear, nor are these features consistent across
studies. Existing literature has treated research effort and knowledge in one of
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two ways, either by equating research effort with knowledge or by describing a
process by which research effort is turned into knowledge. In the first, “effort as
knowledge” perspective, the two concepts are either treated as synonymous, or a
measure of one is used as a close proxy for the other. A mark of the “effort as
knowledge” literature is that terms pertaining to knowledge and R&D are used
interchangeably. Griliches (1992), Esposti and Pierani (2003), and Hall, Mairesse
and Mohnen (2010) are just a handful of many excellent studies in which the
variable A in the accumulation equation, Eq. (4), or its equivalent, is referred
to alternatively as “knowledge capital” or “R&D capital”, “knowledge stock”
or “R&D stock”, because such identification follows naturally from the utilised
theoretical framework.

The “effort as knowledge” perspective has been dominant in studies of produc-
tivity. This is a perspective hardwired into the Griliches knowledge production
function—which sets a sign of equality between Ȧ and R. In the accompany-
ing PIM accumulation equation, Eq. (5), R&D turns into knowledge seamlessly.
One becomes the other, with adjustment only for depreciation. Aside from the
reduction owing to depreciation, the model implies that R&D and knowledge are
consubstantiate. In this view, knowledge is nothing more than accumulated R&D
expenditure.

In “effort to knowledge” discourse, R&D and knowledge can be recognised
as distinct concepts. The relationship between them is described as a process
by which knowledge arises from research effort. In this framework, the flow of
new technological ideas (Ȧ) is driven by the allocation of resources to research.
The EGT literature has adopted this perspective, describing a process by which
knowledge rises from reseach effort, which is represented by the research labour
or human capital component of R&D and measured by the number of scientists
and engineers. Because the concepts “knowledge” and “R&D” are so central to
the study of innovation, we pause to reflect on them.

Observation 1: Knowledge is Distinct from R&D

In discussing the attributes of knowledge some authors stress two features:
nonrivalness and partial excludability. The nonrival nature of knowledge allows
multiple agents to use it at the same time. Knowledge is nonrival because it
is “disembodied” (Benhabib and Spiegel, 2005), that is, “independent of any
physical object” (Romer, 1990). It is partially excludable because even though
it can be used by multiple agents, there might be a mechanism through which
it might be possible to restrict some agents from using it, as is the case when
monopoly on its use is provided through patents or copyrights, or its availability
is restricted by trade secrets. Further, the stock of knowledge has no obvious
natural bound; in principle it can grow without limit.

In contrast to the disembodied nature of knowledge, R&D is embodied. Factor
inputs involved in research are readily measurable and conveniently expressed in
terms of expenditure. The Frascati Manual defines R&D expenditure as consisting
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of several categories. These include capital expenditures on land and buildings,
instruments and equipment and computer software, various labour expenses, and
“non-capital purchases of materials, supplies and equipment to support R&D
performed” (OECD, 2002, p. 109). Most of these factors are rival and excludable.
This is particularly the case of research-related real estate, such as land and
buildings that host labouratories, but also of research assets linked to labour. A
scientist is a rival asset who cannot be put to work in multiple locations at the
same time. Computer software is an exception on this list, being nonrival but
excludable.

While a measure of knowledge output based on R&D inputs is convenient and
can be appropriate for some purpuses, clearly, ideas and R&D are different. There
are two key differences between knowledge and R&D: one has to do with the ex-
tent of embodiment and the second, with the emplacement within the innovation
process.

Knowledge is disembodied. It resides in replicable patterns—arrangement of hu-
man brain neurons, books, media, data and patents. Research and development
expenditure, on the other hand, purchases scientific instruments, raises laboura-
tories and pays the salaries of scientists and engineers. Knowledge is the sum
total of useful ideas. R&D is the expenditure made with the aim of discovering
new useful ideas, and the assets and activities associated with this expenditure.

Knowledge’s situation in the innovation process is also distinct from R&D. R&D
is an input into knowledge creation, while knowledge is an output from R&D
effort. The relationship between knowledge and R&D can be conceptualised by
locating the place of each in the production process. In any given period of time,
society has a fixed amount of aggregate output which it can spend on different
activities. A fraction of society’s output is allocated to R&D. R&D, or “R&D
expenditure” to be more precise, are resources devoted to the discovery of new
knowledge. Additions to the stock of knowledge are the propitious results of the
search process.

Finally, the amount of accumulated knowledge is one of the inputs defining
the productive capacity of society. Consequently, knowledge produced as a result
of research and development contributes to economic productivity and increases
total output, some of which can be allocated to R&D. The 3-step process from
research, to knowledge, to output is visualised as a cycle in Figure 1.

Observation 2: Knowledge is Distinct from Human Capital

Our next observation pertains to the relationship between knowledge and the
concept of “human capital” as introduced into economic discourse by Mincer
(1958), developed by Schultz (1961, 1964), formalised by Becker (1962) and in-
corporated into EGT by Ziesemer (1991). The primary significance of this in-
vestigation, for our purposes, is to determine whether knowledge is distinct from
human capital, or is subsumed by it.

There is no agreement in the literature on where, exactly, the boundary between
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Figure 1. Innovation Cycle

knowledge and human capital should lie. Some confusion is to be expected because
in many instances the distinction is not immediately obvious. For example, is
the ability to read “human capital” or “knowledge”? If the distinction between
knowledge and human capital is blurry, it is also in part because neither term has
a consistently-adhered-to definition in the economics literature.

For Mincer, “human capital” is a factor influencing earning capacity that is a
result of in-school and on the job training. If part of training involves transmission
of knowledge, then knowledge is a sub-category of human capital. Becker views
human capital as an “intangible resource” that includes schooling, information
and knowledge. In Foray (2004), it is knowledge that is the broader concept sub-
suming aspects of human capital. Foray (2004) defines knowledge as “expertise,”
a definition that captures a swath of the territory belonging to “human capital,”
as proposed by Mincer.

In Romer (1990), Ziesemer (1991, 1995), and growth theory generally, human
capital and knowledge are formalised as distinct quantities. Romer (1990) ar-
gues for a sharp distinction between knowledge and human capital based on the
property of embodiment. He argues that the former is disembodied and nonrival-
rous, while the notion of human capital lacks either attribute. Human capital is
not disembodied since it is linked to human beings. It is also rivalrous, because
a human possessing a certain skill cannot exercise that skill in multiple places
concurrently. Additionally, unlike replication of knowledge, duplication of human
skills is not relatively costless: xeroxing a document comes at negligible cost, but
“[t]raining the second person to add is as costly as training the first” (Romer,
1990, p. S75).

Ziesemer (1995) introduces a model with three kinds of knowledge: H, A, and
B. H is human capital; A is private, firm-specific knowledge; and B is pub-
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lic knowledge resulting from basic research. The distinction between knowledge
types is made based on the source of provision, as well as their innate charac-
teristics. He defines human capital as “knowledge people have personally as a
result of schooling” (Ziesemer, 1995, p. 4). Public knowledge is provided by the
government, firm-specific knowledge by firms, and human capital by households.
Firm-specific knowledge is approbriable to the firm, whereas basic research is a
non-appropriable public factor. A is an externality bounded by the organisational
limits of the firm, whereas B is a social externality. Human capital is distinguished
from the other two types of knowledge by perishability, since knowledge embod-
ied in humans is limited by the human life-span, whereas public and firm-specific
knowledge can persist.

For reasons of conceptual and formal clarity, we will adopt the following per-
spective in the present study. For us, pure knowledge possesses the properties of
disembodiment and nonrivalry. Economic factors that lack either attribute are
viewed as aspects of human capital or as other categories of input. However, it
should be noted that our analytical exercise does not depend on one rigid set
of definitions of knowledge and human capital. While the boundary between
knowledge and human capital may be drawn differently, its exact sinuation is not
crucial for conceptual consistency or for our formal model. As long as there is
agreement that a line between these two concepts can be drawn somewhere, we
can proceed with a model in which knowledge and human capital are two distinct
variables. The definition of human capital can be left open, based on attributes
linked to humans, but exclusive of pure knowledge.

Observation 3: “R&D Capital” Includes R&D labour

Finally, we take care to avoid a misconception that might arise out of the
notion of “R&D capital”, alternatively referred to in the literature as “knowledge
capital”, “R&D stock” and “knowledge stock”. In the productivity literature
it has been widely recognised that R&D expenditures “act as capital”, that is,
R&D expenditures should be viewed as investments that continue to have an effect
post-expenditure and should not be “assumed to be instantaneously depreciated”
(Terleckyj, 1980, p. 57). That is why when estimating the elasticity of output with
respect to R&D and the rate of return on R&D investment, a measure of “R&D
capital” is derived, which consists of cumulated R&D expenditures depreciated
at some rate γ.

It is important to observe, however, that “R&D expenditures are composed of
labour, capital, and material costs” (Hall, Mairesse and Mohnen, 2010, p. 13).
Strangely, while in productivity literature the preferred measure of knowledge
discovery effort—termed “R&D capital”—also includes labour, it is precisely the
physical capital component of R&D that is typically excluded from the measure
of research effort adopted in Endogenous Growth Theory. Therefore, the term
“R&D capital” can be misleading. For this reason we prefer the more neutral
term “R&D stock”, understood to contain a physical capital component and a
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human component.

IV. An R&D-Based Knowledge Production Function

In rethinking the two common forms of the knowledge production function, we
aim to address the shortcomings of existing frameworks for modelling knowledge
creation. The Griliches KPF does not view knowledge as distinct from R&D. It
is, however, amenable to modelling an accumulation dynamic. The Romer-Jones
functional form has two weaknesses. First, it does not include the full spectrum
of effort devoted to knowledge discovery. Embedded in Eq. (6) is the assumption
that discovery effort comes only from research labour, excluding physical capital
used in R&D.6 The second shortcoming of the Romer-Jones KPF is that it does
not consider accumulation in effort applied to idea creation. Although the Romer-
Jones model of the knowledge sector incorporates accumulated knowledge stocks
as a factor in knowledge production, it includes only current-period effort devoted
to the discovery of new knowledge, as measured by research labour (LA).

From literature on R&D we know that knowledge discovery is subject to lags
(Hall, 2007). Consequently, current-period discovery effort is important, but so
is effort made in prior time periods. Because the Romer-Jones KPF sets up
research effort as a flow, it is unable to take into account its accumulation. In
short, Griliches KPF is a step in a model of knowledge accumulation; the Romer-
Jones KPF is mostly about production. But in studying knowledge, innovation,
and growth, we are interested in both. A more general model should capture the
production and accumulation of both knowledge and research effort.

Below we follow up the discussion of KPF functional forms and the relationship
between KPF factor inputs with an alternative knowledge production function
that addresses the weaknesses of earlier approaches. What are the positive rec-
ommendations for the construction of this KPF? Observation 1 militates against
the tautology between knowledge and R&D of Eq. (2). From Observation 2 we
conclude that an R&D human capital component should be included as a fac-
tor in the KPF, distinct from the knowledge stock factor. Observation 3 argues
for inclusion of an R&D physical capital variable. Finally, some factor variables
should enter the KPF as stocks, in order to account for lagged effects.

In a generic knowledge production function new knowledge is an output related
to a list of inputs. We can conceive of a knowledge production process in which
new knowledge results from research effort, modulated by the stock of already
existing knowledge. Knowledge generation can be modelled with a compact R&D-
based knowledge production function:

(7) Ȧ = F (R,A),

6In Romer (1990) human capital is included as a factor representing research effort; in Jones (1995)
knowledge discovery effort comes from labour employed in R&D.
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where R represents accumulated R&D effort, or R&D stock and A is existing
knowledge stock. R is a composite input consisting of human effort and physical
capital components:

(8) R = G(EA,KA),

where EA denotes the effort of labour employed in the R&D sector and KA is the
stock of physical capital applied to research. EA is also a composite input, com-
bining labour and human capital. Human effort applied to research is measured
in efficiency units of labour:

(9) EA = J(LA,HA),

with LA as the number of workers engaged in the discovery of new knowledge
and HA representing average units of human capital per researcher. The accu-
mulation of human effort in research (EA) occurs out of the augmentation of the
stock of human capital of researchers (HA) through their current-period research
activities (LA).7 In addition, labour contributes to the creation and accumulation
of physical capital (KA).

Collating Eqs. (7), (8) and (9) results in an extended R&D-based knowledge
production function:

(10) Ȧ = F (LA,HA,KA,A).

In the above model of the idea-generating process, the flow of ideas is a result of
the number of researchers employed in research, the human and physical capital
employed in R&D, and the stock of previously generated knowledge. Assuming
a Cobb-Douglas functional form, we can express the extended R&D-based KPF
as:

(11) Ȧ = δLλ̄AHχ̄
AKκ̄

AAφ.

In Eq. (11) variables LA, HA, KA, and A are as defined above, while param-
eters λ̄, χ̄, and κ̄ measure the elasticity of knowledge with respect to labour,
human capital and physical capital, respectively. The intertemporal knowledge
spillover parameter φ measures the contribution of extant knowledge stock to the
production of new knowledge. Finally, δ is the R&D productivity parameter.

The Cobb-Douglas analogue of the compact R&D-based knowledge production
function from Eq. (7) can be recovered by realising that R&D stock R is a com-

7There exist several alternative models of production of human capital (for examples, see Rebelo
(1991), Ziesemer (1991) and Ziesemer (1995)). We avoid committing ourselves to a specific human
capital production process since it is not essential for understanding knowledge dynamics that are the
focus of this study. One essential feature of our knowledge production function is to provide a way for
past activities of researchers to influence current production of ideas. If human capital is excluded from
the knowledge production function, accumulation of physical capital applied in research could provide
for a similar intertemporal dynamic.
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posite input consisting of labour, human capital, and physical capital components:

(12) R = LλAHχ
AKκ

A,

where the superscripts λ, χ, and κ represent the share of the corresponding fac-
tor in total R&D stock and λ + χ + κ = 1. Under the assumption of perfect
competition, factor shares will equal elasticities: λ = λ̄, χ = χ̄, and κ = κ̄.8

Eq. (11) can then be rewritten, in summary form, as:

(13) Ȧ = δRζAφ,

without loss of generality for the model of the knowledge creation process. Pa-
rameter ζ in Eq. (13) measures the elasticity of knowledge with respect to the
composite of research effort. In the following pages we will work with the compact
R&D-based KPF of Eq. (13) whenever parsimony is desired, and with the ex-
tended version in Eq. (11) when we want greater detail on the role of the several
input factors.

It must be noted that although the R&D-based knowledge production function
here adopted is not the standard functional form in growth theory, there are
precedents in the literature that either provide a KPF that is like it or at the
very least come close to suggesting a similar functional form. However, although
a knowledge production of the type in Eq. (11) shimmers in casual discussion of
earlier theoretic work, it is incomplete, not fully developed, or trimmed back out
of technical considerations, theoretical qualifications, or for the sake of exposition
or modelling convenience. In Shell (1966) the same inputs used in production
of output are also used in the production of technical knowledge, leading to an
implicit function: Ȧ = F (L,K,A). In one variation of the Phelps (1966) model,
technological output is set as a function of employment in the research sector,
total employment, capital, and lagged existing technology level.9 In neither model
is human capital included as a knowledge-producing factor since the concept of
human capital, was not fully developed at the time.

Ziesemer (1991) models the flow of new ideas as a function of existing knowledge
stock and the ratio of human capital to labour, excluding physical capital. A KPF
formulation similar to Eq. (13) is found in Jones and Williams (1998) with the
difference that in the above study the authors measure research effort with the
flow of R&D.10

The functional form in Eq. (11) is mentioned as a possibility in Rivera-Batiz
and Romer (1991b, p. 975, Eq. (2)) but is set aside in favour of the standard
KPF where “neither labour nor durables are used in research” (Rivera-Batiz and

8The assumptions of Cobb-Douglas knowledge production technology under perfect competition im-
plies constant returns to scale. However, a parametrized version of Eq. (13) similar to the parametrized
KPF in Jones (1995) can be imagined, which would relax this restriction.

9See Phelps (1966, p. 143, Eq. 35).
10The Jones and Williams (1998) KPF can be expressed as Ȧ = δRζAφ using our boldface notation

for differentiating between stock and flow variables.
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Romer, 1991b, p. 979). Rivera-Batiz and Romer (1991a) work with two alter-
native models of the knowledge sector. The “knowledge-driven” specification—
what we have termed the Romer-Jones knowledge production function in the
present study—is a model of the knowledge sector in which new ideas are a
function of human capital and already existing knowledge stock. In the alterna-
tive “lab-equipment” specification: “human capital, unskilled labour, and capital
goods (such as personal computers or oscilloscopes) are productive in research.
But in contrast to the previous specification, knowledge per se has no productive
value” (Rivera-Batiz and Romer, 1991a, p. 536). From the standpoint of our
model, both specifications are incomplete. The knowledge-driven specification
excludes labour and physical capital, while the lab-equipment specification does
not include knowledge stock.

Eq. (11) can be viewed as a synthesis of the two Rivera-Batiz and Romer
(1991a) specifications. By bringing knowledge stock into the lab-equipment model,
it opens us to the possibility that the knowledge-creation process, while relying on
the full range of embodied inputs, is also conditioned by the stock of knowledge
created by prior generations.

The R&D-based KPF makes three contributions to the analysis of knowledge
dynamics. The first advantage of the R&D-based KPF is completeness. This
formulation diverges from the standard EGT approach that treates the number
of scientists and engineers is a proxy for research effort, where it has been argued
that in the R&D sector labour inputs are most of what matters for knowledge
creation because of the assumed dominant role of labour in R&D. Yet, creation
of new knowledge requires research labs as well as research lads. In fact, R&D
is more capital-intensive than the productive sector (Porter and Stern, 2000).
Cross-country data on R&D presented in Table A1 show that the non-labour
share in R&D is not negligible and therefore should not be discarded uncritically.
The advantage of Eq. (11) from the point of view of theory is that it brings into
view a wider spectrum of inputs involved in knowledge production.

Explicit recognition that research effort is a composite input brings advantages
from the perspective of empirical research. In empirical estimation, the recogni-
tion that knowledge output depends on an input other than research labour can
further more complete empirical models of knowledge and R&D dynamics and
provide more accurate estimates of the relationship between knowledge inputs
and outputs. Recognition that research effort consists of labour, human capital
and physical capital components can be expected to have the practical effect of
correcting for an omitted variable bias in empirical estimates.

The second contribution is synthesis. The theoretical usefulness of our R&D-
based knowledge production function is that it lets us pinpoint the differences
between the models of knowledge dynamics originating in Endogenous Growth
Theory and research on R&D and productivity. We note that the Romer-Jones
KPF is a special case of Eq. (11), under restrictions χ̄ = 0 and κ̄ = 0. Likewise,
the Griliches equation is a different special case of Eq. (11) with the restrictions
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δ = 1, φ = 0, and 100% depreciation for lags of accumulable factors HA and
KA. Alternatively, the Griliches KPF can easily be recognised as a special case
of Eq. (13) under the restrictions δ = 1, φ = 0, ζ = 1 and the composite R&D
input factor treated as a flow variable. Seeing Romer-Jones and the Griliches
knowledge production functions as part of a broader framework enables us to
lay a bridge between disparate literatures. This, in turn, might help separated
literature streams interact.

The third benefit of the R&D-based KPF is that it takes us a step closer to our
ultimate goal of modelling the accumulation dynamics of knowledge and R&D
by serving as a key building block in the full model of knowledge dynamics. The
R&D-based knowledge production function forms the core of our model of knowl-
edge dynamics. But, by itself, the knowledge generation process is insufficient to
explain the full range of knowledge dynamics since it neither takes into account
the accumulation of the stocks that serve as factors of knowledge production nor
accumulation of knowledge itself. What remains to be done is to embed the
knowledge production equation within a framework of accumulation. That is the
task of the next two sections.

V. Building Blocks of a Knowledge Dynamics Model

In developing a model of the knowledge sector we embed the knowledge genera-
tion function in a broader framework that includes accumulation processes. This
section presents, in general terms, the elements of this framework. Our knowl-
edge dynamics model consists of four components. The first, is a rule by which
investments are allocated to the R&D sector. By this rule a stream of flows into
the R&D sector is generated. The second module is a process of R&D accumula-
tion, that takes into account depreciation, or obsolescence, of aged R&D stocks. A
knowledge production process represented by a KPF is the third component. The
fourth module is a model of knowledge accumulation, which works similarly to the
R&D accumulation process. In this and following sections, wherever expositional
simplicity is desired, we work with the more compact form of the R&D-based
KPF (Eq. (7) or (13)), featuring composite factor R that represents the stock of
accumulated R&D effort.

R&D investment

Knowledge creation begins with provision of resources for research. In each
time period some economic resources are allocated towards research and develop-
ment. This incremental addition to R&D is described by an R&D investment
equation the general form of which is:

(14) RI = G(V (...)),

where RI represents the economic resources devoted to R&D, and G is a function
of the vector of variables V that determine RI . The allocation of resources for
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R&D can be made on the basis of a fixed proportion of total resources (i.e. a set
percentage of GDP) or follow from some other allocation rule. One can imagine
a number of societal R&D investment rules. In principle, we can treat the R&D
increment as constant, as a variable growing at a constant rate, or as a variable
governed by a more complex functional form. In an another alternative, RI
can be derived from a profit-maximisation rule. Current-period R&D investment
could also be formulated to depend on prior-period R&D, or on past or current
macroeconomic conditions, or simply grow at a constant rate, starting from a
base value RI0.

R&D stock accumulation

Next, we turn to consider the accumulation dynamics of R&D stock. R&D
accumulation consists of two processes: investment and depreciation. The stock
of R&D increases as a result of R&D investment. At the same time, the R&D
stock is subject to depreciation. The law of motion for R&D is described by the
R&D stock accumulation equation :

(15) Ṙ = RI − γR ×R,

where Ṙ represents the net change in R&D stock, RI is the incremental addition
to R&D described by Eq. (14), R is extant R&D stock, and γR is the R&D
depreciation rate.

Knowledge production

Current-period incremental increase in knowledge is described by a knowledge
production function FA, the general form of which is:

(16) AI = FA(O(...)),

where O is a vector of variables representing knowledge production factors. Com-
peting forms of this function were considered in Sections II and IV. If knowledge
production is given by the R&D-based KPF, Eq. (16) can be replaced by Eq.
(13). The R&D stock variable will then be present in the knowledge production
function, as well as in the R&D accumulation equation, a feature that allows
closure of the model of the knowledge sector with respect to knowledge and R&D
dynamics.

Knowledge stock accumulation

Much like R&D stock and physical capital, knowledge too has been theorised to
exhibit accumulation dynamics, that is, being subject to creation and depreciation
(Griliches, 1990). The notion of depreciation in the context of physical capital
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is based on the physical phenomena of wear and breakdown. For R&D stock,
the meaning of depreciation is linked to the wear and tear of equipment used
in research (depreciation of physical capital employed in research), as well as
obsolescence of capabilities embodied in humans working on the creation of new
ideas. In the context of knowledge accumulation, the concept of depreciation
relates to obsolescence of ideas in their capacity to contribute to the creation of
new ideas.11

Mathematically, the treatment of accumulation dynamics in knowledge stock
is identical to that of R&D stock. Accumulated knowledge stock can be defined
as the sum of all additions to knowledge, adjusted for depreciation. In each
time period, the change in knowledge stock Ȧ is determined by the amount of
knowledge currently produced (AI) minus depreciated stock. The evolution of
knowledge stock is described by a knowledge stock accumulation equation :

(17) Ȧ = AI − γA ×A

that has a precedent in the work by Shell (1966). Combining knowledge produc-
tion with knowledge accumulation we get the following general form for the law
of motion of knowledge stock:

(18) Ȧ = FA(O(...))− γA ×A

The knowledge stock in any period is the result of accretion of the above knowl-
edge flows. Integrating

∫m
−∞

˙A(t) dt will give us knowledge stock at time m.

VI. A Model of Knowledge Dynamics

We build the model by giving concrete functional forms to the four building
block equations previously specified in implicit form. The building block equa-
tions can then be integrated into a complete model of knowledge and R&D dy-
namics. A full model will show the state of knowledge and R&D stocks at any
given point in time. It will also reveal the short-term and long-term growth rates
of the two stocks and their sensitivity to parameters in the production and ac-
cumulation equations. Finally, with proportional growth rates in hand it will be
possible to study the conditions under which a double-stock model with accumu-
lation of knowledge and R&D would be consistent with balanced growth.

11Note that an obsolete idea can continue to be useful in the physical economy while losing its capacity
to contribute to creation of new ideas. A bicycle, once invented, can continue to be manufactured and
used while yielding its significance to more cutting edge technological innovations in transportation.
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R&D stock and growth

Let us assume that in every time period, a certain amount of resources, RI(t),
is allocated towards research and development. Let us further assume that this
recurring R&D investment increment starts from a base value of RI0 in time
period t = 0 and grows over time at a constant rate θR:

(19) RI(t) = RI0e
tθR .

The above R&D investment equation defines the stream of R&D flows. Eq. (19)
describes gross allocations to R&D, not adjusted for depreciation.

R&D stock itself evolves according to the previously discussed R&D stock ac-
cumulation equation:

(20) Ṙ(RI(t),R(t), t) = RI(t)− γR ×R(t),

which is net of depreciation.

We can obtain the formula for R&D stock in two steps. The first step is to
substitute the R&D investment equation, Eq. (19), into the implicit R&D stock
accumulation equation, Eq. (20), to get:

(21) Ṙ(R(t), t) = RI0e
t∗θR − γR ×R(t),

which yields the law of motion for R. In step two, solving for R as a function
of time and solving for the constant of integration produces an equation for the
evolution of R&D stock:

(22) R(t) =
RI0e

tθR

γR + θR
− RI0e

−tγR

γR + θR
+R0e

−tγR ,

where R0 is the level of R&D stock at t = 0.

As t → ∞, the last two terms of Eq. (22) approach zero so the evolution of
R&D stock in the long run will be described by Eq. (23):

(23) R(t) =
RI0e

tθR

γR + θR
.

Several observations follow from the above equation regarding the effect of model
parameters on R&D stock. First, the greater the depreciation rate γR, the lower
the R&D stock. R&D stock, however, is positively dependent on the size of the
initial R&D increment (RI0). As for the effect of θR on the stock of R&D, the
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picture is slightly more complicated because this parameter appears twice in the
expression, once in the numerator and again in the denominator of the right-hand-
side of Eq. (23). But we can say that for large values of t the exponent with the
θR parameter predominates over the θR term in the denominator, which means
that the long-run effect of a high growth rate for the R&D investment increment
is positive, as we would expect from intuition.12

In the special case where θR = 0, meaning the R&D effort increment is identical
in each period, the equation for the long-run capital stock at the asymptotic limit
simplifies further to:13

(24) R(t) =
RI0

γR
.

Knowledge stock and growth

Armed with essential information on the evolution of the stock of R&D, we
now consider the production and accumulation of knowledge stock, in which the
former plays a key part. The incremental addition to knowledge stock (AI) is
determined by the R&D-based knowledge production function:

(25) AI(R(t),A(t), t) = δ(R(t))ζ(A(t))φ.

Substituting the KPF given by Eq. (25) into the knowledge stock accumulation
equation we arrive at the following law of motion for knowledge stock:

(26) Ȧ(R(t),A(t), t) = δ(R(t))ζ(A(t))φ − γAA(t).

Solving the differential equation from Eq. (26) for A(t) will give us an equation
describing the time-path of knowledge stock. To arrive at the equation for long-
run knowledge stock, as t becomes arbitrarily large, we proceed in two steps.
First, we substitute Eq. (23) giving the long-run research stock, into Eq. (26).
The next step is to solve for A(t), and eliminate the term with the constant
of integration, which approaches 0 in the limit. The solution of the differential
equation, presented in Eq. (26), is a continuous-time equation describing the
evolution of knowledge stock in the long run, as t approaches ∞:

12We can see from the derivative of R with respect to the growth exponent θR (Eq. (23)) that the
positive term predominates for arbitrarily large values of t:

∂R(t)

∂θR
= RI0

(
etθR

)(
t

γR + θR
−

1

(γR + θR) 2

)
.

13Note that θR = 0 does not imply that the R&D increment is zero. Under assumption θR = 0 the
R&D investments are a constant stream equaling RI0 in each period.
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(27) A(t) =

δ
(
RI0e

tθR

γR+θR

)ζ
(1− φ)

ζθR + γA(1− φ)


1

1−φ

.

Together with Eq. (23) describing long-run evolution of R&D stock, Eq. (27)
is one of two key derivations of our model. If productive capacity of economies
depends on their level of accumulated knowledge, a considerable weight rests on
this one variable, A(t). We now know how A(t) evolves over time, the parameters
determining its level, and their composition into the output variable. And if
knowledge stock, in turn, is determined jointly by a small number of parameters,
these parameters also acquire importance through their effect on the stock of
knowledge. Section VII considers the relationship between knowledge stock and
the parameters of the model.

VII. Knowledge Stock Comparative Statics

In our model, knowledge stock is determined jointly by time, initial R&D out-
lays RI0, and the knowledge and R&D production and accumulation parameters:
δ, ζ, φ, θR, γA, γR. Relationships between parameters of the model and knowl-
edge stock can be measured by the elasticity of knowledge stock (A) with respect
to parameters in the model. The elasticity of Y with respect to X represents the
percentage change in variable Y as a result of a percentage change in variable X.
For measures of elasticity of Y with respect to X we adopt the notation σY X .

How does knowledge stock respond to changes in parameters and other deter-
minants of knowledge accumulation? In the model presented here, R&D stock
is the ultimate tangible factor involved in the creation of knowledge stock. The
elasticity of A with respect to R represents the percentage increase in the tech-
nological sophistication of the economy in response to a percentage increase in
R&D stock, and can be shown to be:

(28) σAR =
ζ

1− φ
.

The interesting aspect of this result is that the sensitivity of knowledge stock to
R&D stock is independent of the parameters of the model pertaining to accu-
mulation: the rates of depreciation γR and γA, and the R&D increment growth
rate, θR. The elasticity σAR depends solely on the two parameters of knowledge
production: ζ and φ. The elasticity σAR is positively related to ζ and φ, provided
that φ < 1.

The relationship between knowledge stock and the rate of investment in R&D
is captured by the following approximation to the elasticity of knowledge with
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respect to θR:

(29) σAθR ≈
ζθR

1− φ
t; for large values of t

The elasticity parameter σAθR depends positively on ζ, φ < 1, and the R&D
depreciation rate γR. The sensitivity of A to changes in θR varies with θR itself;
the greater θR, the higher is the elasticity. Furthermore, the elasticity is time-
dependent, increasing with the progression of time.

As can be expected, knowledge stock is negatively affected by R&D deprecia-
tion. The change in A in response to change in γR is given by the equation for
σAγR :

(30) σAγR = − ζγR
(γR + θR)(1− φ)

.

Higher values for knowledge production parameters ζ and φ < 1 increase the
absolute value of the elasticity of knowledge with respect to the R&D deprecia-
tion rate. An increase in the R&D growth rate θR, on the other hand, reduces
the absolute value of σAγR . Elasticity σAγR tends to be negative under realistic
assumptions for values of the other parameters in Eq. (30). For example, if γR,
θR, and ζ are greater than zero and 0 ≤ φ < 1, σAγR is negative—meaning that
an increase in the depreciation rate of R&D leads to a lower knowledge stock.

A similarly negative relationship holds between knowledge stock and the knowl-
edge depreciation rate γA:

(31) σAγA = − γA
ζθR + γA(1− φ)

.

Under the assumptions regarding the values of θR, ζ, φ, discussed in the preceding
paragraph, and assuming, furthermore, that γA is positive, σAγA will be less than
zero. The elasticity of knowledge stock with respect to the knowledge stock
depreciation rate abates, in absolute value terms, at higher values of ζ and θR.
More robust pace of allocation of new resources for research (reflected in higher
θR) and greater productivity of R&D resources in the generation of new knowledge
(observed as higher ζ) ameliorate the negative effects of knowledge depreciation
on the technology level. Higher values of φ have an opposite effect, leading to
greater elasticity of knowledge stock to knowledge depreciation.

In summary, we turn our attention to the following observations. First, there
exists a tractable relationship between each parameter of the model of knowledge
dynamics and the knowledge stock level A(t), as measured by the elasticity of
knowledge stock with respect to the parameters. Second, the relationship between
long-term knowledge stock and long-run R&D stock is exclusively a function of
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the parameters of knowledge production (ζ and φ), from which the asymptotic
percentage change in knowledge level resulting from a percentage change in R&D
stock can be easily calculated. Third, in most cases, the elasticity of knowledge
with respect to a parameter is static, that is, time-independent. This means that a
change in the parameter will result in the corresponding effect on knowledge level
if given sufficient time to persist, irrespective of the specific point in time when the
change occurred. Furthermore, the elasticity of long-run knowledge stock with
respect to the parameter is constant in time. However, the elasticity of knowledge
level with respect to the growth rate of the R&D investment increment is not
static. The elasticity σAθR varies with time. The impact of a change in resources
devoted to knowledge discovery increases over time, and is infinite as t → ∞.
Finally, Eq. (28) and (29) are interesting from a policy-planning perspective as
they allow calculation of the impact of resources devoted to knowledge discovery
on long-term technology level of society.

VIII. Growth in R&D and Knowledge

Having analyzed R&D and knowledge stock levels, we consider their growth in
time. Taking the derivative of R in Eq. (22) with respect to time, gives us the
equation for growth of R&D stocks:

(32) Ṙ(t) =
θRRI0e

tθR

γR + θR
+
γRRI0e

−tγR

γR + θR
− γRR0e

−tγR .

Asymptotically, as t → ∞, the last two terms approach zero and the equation
giving growth in R in the long run simplifies to the form in Eq. (33):

(33) Ṙ(t) =
θRRI0e

tθR

γR + θR
.

The long-run proportional growth rate for R&D stock R(t), is given by the ratio
of the right-hand sides of Eq. (33) and (23), which reduces to the growth rate of
the R&D increment θR:

(34)
Ṙ(t)

R(t)
= θR.

The result is surprising in its simplicity. The R&D stock (R) and its growth
rate (Ṙ(t)) depend on a number of parameters, and the short-term dynamics of
the proportional growth rate are specified by the ratio of Eqs. (32) and (22)—a
considerably complicated expression. Despite this, the asymptotic proportional
growth rate is a function only of one parameter—the growth rate of the string of
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R&D investments. Even the R&D depreciation parameter γR does not appear in
the expression for the proportional growth rate.14

We obtain the rate of growth of knowledge stock by taking a derivative of Eq.
(27). In its simplest form, the rate of change in the stock of knowledge can be
expressed as a function of current knowledge stock and time:

(35) Ȧ(A(t), t) =
ζθR

1− φ
A(t)

Dividing Eq. (35) by A(t) provides the asymptotic proportional growth rate:

(36)
Ȧ(t)

A(t)
=

ζθR
1− φ

.

Knowledge stock grows at a rate proportional to the growth rate of the R&D in-
vestment increment θR. There is a positive relationship between the proportional
growth rate of knowledge, the R&D growth parameter θR, the R&D stock elastic-
ity of knowledge parameter ζ, as well as the intertemporal elasticity of knowledge
φ. Because Eq. (36) is undefined at the point φ = 1, we need to impose a technical
restriction φ 6= 1.

IX. Along the Balanced Growth Path

Now that we are in the possession of proportional growth equations, let us stop
to consider growth along a balanced growth path. A balanced growth path is
an idealised scenario when key macroeconomic variables grow at a constant rate.
Let us assume that the economy is growing at such a constant rate θ∗Y . If the
economy allocates a fixed percentage of its total output to R&D, the growth rate
of the R&D increment will equal the growth rate of output:

(37) θ∗R = θ∗Y .

The fixed-proportion assumption can be justified on theoretical grounds as arising
from the logic of balanced growth.15

In Eq. (34), above, we have shown that the rates of growth of R&D increment
equals growth of the overall R&D stock. It follows that along the balanced growth
path R&D stock will increase at the same rate as aggregate output:

14The net growth rate γR + θR is present in both the numerator Ṙ(t) and the denominator R(t),
leading to its cancellation.

15It is also in line with business and policy practice, supported by the observation that firms gravitate
towards a fixed-proportion heuristic in budgeting for R&D, which is adjusted infrequently (Nelson and
Winter, 1982). Furthermore, at the level of national policy, governments often commit to spend a target
proportion of GDP on research (European Commission, 2003).
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(38)
Ṙ(t)

R(t)
= θ∗R = θ∗Y .

Previously, in Eq. (36), we found the proportional growth rate of knowledge.
Along a balanced growth path, as output, R&D increment and R&D stock grow
at the same rate θ∗R, the proportional growth of the knowledge stock will equal:

(39)
Ȧ(t)

A(t)
=

ζθ∗R
1− φ

;φ 6= 1.

If the model of the real economy is defined as in Romer (1990), along a balanced
growth path the growth rate of knowledge will determine the growth rate in other
variables, including output, so that:

(40)
Ẏ (t)

Y (t)
=
Ṙ(t)

R(t)
=
Ȧ(t)

A(t)
.

Eqs. (37) through (40) are reconciled under the following additional restriction:

(41) ζ + φ = 1

which imposes constant returns to scale for the two inputs of knowledge produc-
tion.

In summary, our double-stock model of knowledge dynamics is consistent with a
balanced growth path. Along a balanced growth path, the growth rate of the key
variables of the model is given by the proportional growth equations for knowledge
and R&D stocks derived in Section VIII. Balanced path growth also requires the
assumption that the proportion of output allocated to R&D remains fixed. The
proportional growth equations, together with the fixed-proportion assumption,
constant returns to scale, and the relationship between the knowledge and the
real sector as in Romer (1990) provide for a balanced growth path.

X. Cumulable Factors and Their Omission—Implications for Growth

What are the implications of our model of knowledge dynamics for growth the-
ory? The question can be decomposed into two parts. First, are there implications
of using as measures of research effort factors that are cumulable? Second, are
there implications of incorporating additional factors in the knowledge production
function? We consider these question by comparing the results from our model
to the key predictions from Romer (1990) and Jones (1995).

The study by Jones (1995) works with a parametrized knowledge production
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function:

(42) Ȧ = δLλAAφ,

where LA is labour employed in the research sector, A is knowledge stock, λ
is a parameter measuring the return of knowledge from R&D labour and φ is
the intertemporal spillover parameter. The functional form adopted by Romer
is similar, but with parameters λ and φ set to 1. Variations on the knowledge
production functions by Romer and Jones have been widely used in endogenous
growth literature (Freire-Seren, 2001; Sequeira, 2012) and in empirical research
on innovation (Porter and Stern, 2000).

Our model is based on a knowledge production function introduced in Eq. (13)
and reproduced below for easy reference:

Ȧ = δRζAφ,

where R is R&D stock and ζ measures the elasticity of knowledge with respect
to R&D. R&D stock represents the sum of lagged and appropriately depreciated
research effort. It is a cumulable composite factor consisting of labour, human
capital and physical capital components.

What, if any, are the implications for models of economic growth of using a
knowledge production function where the factor representing research effort ac-
cumulates? Jones’ knowledge production function implies a proportional growth
rate of knowledge given by:

(43)
Ȧ

A
=
λ
(
L̇A
LA

)
1− φ

.

According to Eq. (43) the growth rate of the knowledge stock is driven by the

growth rate of the R&D sector labour force ( L̇ALA ).

Our model of knowledge dynamics produces a proportional growth rate for
knowledge stock that is similar in many respects. In Section VIII we showed that
according to our model long-term growth in knowledge will be given by:

(44)
Ȧ

A
=
λ
(
Ṙ
R

)
1− φ

and that, in fact, because in the long run the rate of growth of R&D stock will
approach the growth rate of the R&D increment θR, determining the flow of R&D

investments ( ṘR = θR, as per Eq. (34)), growth in knowledge stock will be driven
by θR, as well. In other words, a knowledge production function with an input
factor that accumulates leads to the same growth rate—in the long run—as a KPF
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where the input factor is treated as a flow. We find that the Romer-Jones and
our R&D-based knowledge production function make similar predictions about
the long-term rate of growth.

Yet, although accumulation makes no difference in the very long run, there is
still a difference in our framework compared to Romer-Jones, the source of which
is a difference in the constitution of the knowledge discovery input factor. R&D
stock in our model is a composite factor consisting of labour, human capital, and

physical capital components. Therefore, the growth rate Ṙ
R will be a weighted

average of the growth rates of its constituent factors. To see how this fact will
affect the long-run growth rate of knowledge we derive from the extended R&D-
based KPF in Eq. (11) the proportional growth rate of the knowledge stock:

(45)
Ȧ

A
=

ζ

(
λ L̇ALA + χ ḢAHA

+ κ K̇AKA

)
1− φ

.

In our model, the engine of idea-based growth can be any singe one or a combi-
nation of the constituent factors of R&D: the size of the labour force devoted to
research, human capital, or physical capital in R&D. Unlike the model in Jones
(1995), in our model, zero growth in LA does not automatically imply dissipation

in the growth rate of ideas. In the case when L̇A
LA

= 0 idea-based growth can be
fuelled by accumulation in human or physical capital. Since the R&D sector re-
quires an educated labour force, and is fairly capital-intensive (Porter and Stern,
2000), an idea-driven growth model is in some sense incomplete without taking
these factors into account. This point, however, is most relevant for empirically-
focused studies, where reliance on current-period employment in R&D to measure
overall research effort might lead to inaccurate estimates of the contribution of
research effort to the rate of creation of new ideas.

Our framework, incorporating cumulable inputs in knowledge production, is
different in another aspect. If we move away from analysis of long-run knowl-
edge growth, we find that accumulation dynamics are important and can lead to
substantial differences in estimates vis-à-vis a flow-based model. In our model,
in the short run, defined by the period t = 0, the proportional growth rate of a
stock-based input factor will be given by:

(46)
Ṙ

R
=
RI
R
− γR.

Restating this expression in plain terms, we can say that the growth rate in R&D
stock is the ratio of the R&D increment to pre-existing R&D stock, minus the
depreciation rate of R&D.

While in the long run depreciation is unimportant, in the short run it surely
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is. The practical consequence of this finding is obvious, since empirical work
on innovation is typically based on data series containing information on a rela-
tively small number of time periods. A measure of growth of the factor used in
knowledge production that does not treat that factor as a cumulable stock will be
inflated upward. This, in turn, will impact the estimates of the relationship be-
tween inputs and outputs to knowledge production. If we had accurate estimates
of the knowledge production technology parameters, ζ and φ, the upward bias in
the measure of effective research effort would lead us to an inflated expectation
for the proportional growth rate of knowledge.

Another observation our model makes evident is that in the short run, the
effect of knowledge depreciation can also be important. Dividing Eq. (17)—the
knowledge stock accumulation equation—by A, gives us the proportional growth
rate for knowledge:

(47)
Ȧ

A
=
AI
A
− γA

The growth rate of the knowledge stock is the difference in the rate of creation of
new knowledge (AIA ) and the rate of obsolescence of the extant knowledge stock
(γA).

In constructing an index of innovation, the literature typically works with mea-
sures of gross knowledge stock, not adjusting for depreciation in the value of
ideas. Together, exclusion of depreciation in accumulated research effort and
depreciation of the stock of knowledge might contribute to explaining the para-
dox observed in Jones (1995): an economy characterised by high growth rates in
scientists and engineers, but much lower growth in innovative performance.

XI. R&D Accumulation Dynamics and Econometric Estimation

In this section we look at the R&D-based knowledge production function and
its Griliches and Romer-Jones alternatives through the lens of econometric esti-
mation. If our model of knowledge dynamics is more complete, then the omission
of knowledge stock from the Griliches KPF can be viewed as a simple omitted
variable problem that can lead to biased and inconsistent estimates of the elas-
ticity of innovation with respect to R&D. The use of current-term employment in
place of R&D stocks is similarly problematic from the perspective of econometric
estimation. This substitution can also be expected to lead to mis-estimation of
the ζ parameter.

Suppose we try to estimate the knowledge accumulation equation in Eq. (26),
which we reproduce below in a slightly modified form, having incorporated the
depreciation term into the dependent variable:

(48)
(
Ȧ(t) + γAA(t)

)
= δ(R(t))ζ ∗ (A(t))φ.
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On the surface this looks similar to the Romer-Jones KPF in Eq. (6). The
difference between the two equations is in the R variable and its content. In
our R&D-based KPF, R consists of labour, human capital, and physical capital
components of R&D, the last two of which are measured as stocks:

R(t) = LA(t)λHA(t)χKA(t)κ

=
(
L̇(t)

)λ( Ḣ(t)

γH + θH

)χ(
K̇(t)

γK + θK

)κ
.(49)

In the Romer-Jones KPF, besides knowledge stock, only current-period labour
flows L̇ are included as input in knowledge production. We can separate R(t)
into included and excluded components:

R(t) = L̇(t)λX(t).(50)

The variable X is a composite of omitted factor components.

Econometric estimation of (48) will typically involve linearisation through log-
arithmic transformation. The log-transformed equation:

ln
(
Ȧ(t) + γA ∗A(t)

)
= ln(δ) + φ ln(A(t)) + ζ ln

(
L̇(t)λX(t)

)
+ ε

= C + φ ln(A(t)) + ζ̃ ln(L̇(t)) + ζ ln (X(t)) + ε,(51)

can then be estimated. Here C is a constant and ε is the stochastic error term.
The parameter measuring the contribution of labour to innovation ζ̃ = λζ consists
of the R&D elasticity parameter ζ multiplied by the labour share λ. Since λ <
1, if R&D labour is the sole measure of R&D effort, ζ̃ will underestimate the
contribution of R&D to innovation—even if ζ̃ is measured accurately. However,
accurate measurement of ζ̃ is itself unlikely.

Estimation of the regression in Eq. (51), with X(t) factors excluded, leads to
an omitted variable scenario. With an omitted variable, the expected value of the
parameter estimated might be biased. The estimator ζ̃∗ from the mis-specified
model will be given by:

(52) ζ̃∗ =
ˆ̃
ζ + ζ̂

Ĉov(ln(L̇), ln(X))

V̂ar(ln(L̇))
,

where
ˆ̃
ζ is the estimator of ζ̃ from the correctly specified model. The expectation
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of ζ̃∗ is:

(53) E[ζ̃∗] = ζ̃ + ζ
Cov(ln(L̇), ln(X))

Var(ln(L̇))
,

which can in turn be expressed as:

(54) E[ζ̃∗] = ζ(λ+ ρ),

where ρ is the ratio of the covariance between the log of labour and the log of the
excluded component X over the variance of the log of labour.

The sign and magnitude of ρ will determine the direction and degree of dis-
tortion of the expected value of the estimator of ζ̃. Of prime interest is whether
exclusion of X is likely to result in an over or-underestimate of ζ̃ vis-á-vis the
true elasticity of innovation with respect to total R&D, given by ζ.

Recall that the parameters λ, χ, κ represent the share of each factor in the R&D
composite and must therefore sum to 1. If ρ = χ+ κ, the estimate will equal to
true ζ; with ρ > χ+ κ, ζ̃ will overestimate ζ; and if ρ < χ+ κ then E[ζ∗] will be
an underestimate.

Exploiting the well-known properties of omitted variable bias, it can be shown
that ρ is determined by the relationship between labour flows and the omitted
variables, so that when the growth and depreciation parameters θH , θK , γH , γK
are constant:

ρ = χ
Cov(ln L̇, ln Ḣ)

Var(ln L̇)
+ κ

Cov(ln L̇, ln K̇)

Var(ln L̇)
.(55)

Because variance is always positive, the sign of the covariance between labour
flows and the two omitted factors will determine the direction of estimation bias.

Here we show that the condition ρ > χ + κ, leading to an overestimate—
although it cannot be excluded—is not very likely. The inequality ρ > χ + κ
obtains only under the following condition:

(56) χ
Cov(ln L̇, ln Ḣ)

Var(ln L̇)
+ κ

Cov(ln L̇, ln K̇)

Var(ln L̇)
> χ+ κ.

Under what scenarios will the condition in Eq. (56) hold? Consider the structure
of estimation bias that emerges when labour is included but capital is excluded
from the knowledge production function. If the covariance between labour flows
and capital flows is negative, as would be the case if one input is used to substitute
for the other, the condition in Eq. (56) is less likely to hold, meaning that E[ζ∗]
is more likely to be an underestimate. If covariance has a positive sign, the

magnitude of bias will depend on the ratio of the covariance term to Var
(

ln
(
L̇
))

.
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If Cov
(

ln
(
L̇
)
, ln
(
K̇
))

> Var
(

ln
(
L̇
))

, as might be expected if R&D labour

and physical capital are strongly complementary, then E[ζ̃∗] could be greater than
true ζ. But this is not likely. Even if labour and capital are complements and
move in the same direction on average, changes in physical capital allocations
would have to be extremely sensitive to changes in R&D employment in order
to meet the conditions for an over-estimate. It can be shown by application of
analogous arguments that the consequences for the relationship between E[ζ̃∗]
and ζ of exclusion of the human capital variable are similar.

Although the true direction and magnitude of bias can only be ascertained
from the data, the chips are stacked against a finding of overestimation. Our
reasoned expectation is that the ratios of covariance to variance in Eq. (55) will
be positive but less than 1, for terms associated with human capital and physical
capital, which will produce an underestimate of the true impact of R&D activities
on innovation.

When it comes to estimation of the R&D elasticity parameter based on the
Griliches specification, the expected value of the estimate will be:

(57) E[ζ∗] = ζ̂ + φ̂
Cov(ln(R), ln(A))

Var(ln(R))
.

Here the direction of estimation bias is less ambiguous. We can conjecture that
changes in R&D stock will be positively correlated with knowledge accumulation:
the term Cov (ln (R) , ln (A)) will be positive. We would also expect positive

values for the knowledge production parameters ζ̂ and φ̂. The conclusion that
follows is that E[ζ∗] is likely to overestimate the true elasticity of innovation with
respect to R&D stock.

In summary, our analysis suggests that the the Griliches KPF will overestimate
the elasticity of innovation with respect to R&D, while the Romer-Jones KPF will
underestimate the relationship between innovation performance and the measure
of research effort it utilises. The prediction of our analysis is that the elasticity of
innovation with respect to a measure of research effort, based on the R&D-based
KPF, will be bounded by the aforementioned two estimates.

XII. Empirical Estimation

In this section we test key predictions of our theory of knowledge dynamics by
comparing how estimates of the R&D-based KPF fare compared to estimates of its
two alternatives. We rely on a country panel for 40 countries spanning the years
1985-2010 obtained from the OECD (OECD, 2014). The dataset contains for each
country information on the total Triadic patents granted to domestic inventors,
annual R&D expenditures,16 as well as country total number of scientists and

16R&D expenditures are in constant-price 2005 U.S. dollars and adjusted for purchasing power parity.
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engineers.

Table 1—The International Knowledge Production Function—Pooled OLS

Dep. Var.: ln(Patents)
Reg.: (1) (2) (3) (4) (5) (6)
Estim.: Pooled Pooled Pooled Pooled Pooled Pooled
Spec.: R&D R-J G R&D R-J G
lnA 1.097*** 1.095***

(0.04) (0.05)
lnR -0.059 1.029***

(0.05) (0.15)
lnSE 0.019

(0.10)
L3.lnA 0.800*** 0.934***

(0.12) (0.05)
L.lnR 0.288** 1.018***

(0.15) (0.15)
L.lnSE 0.224*

(0.12)
Constant -2.056*** -3.141*** -7.119*** -3.936*** -4.441*** -6.947***

(0.45) (0.98) (1.64) (1.00) (1.20) (1.62)
R-sqr 0.707 0.578 0.389 0.594 0.504 0.387
N 905 522 905 785 471 865
F 580.3 272.4 48.3 211.3 247.9 48.3

Significance level: ∗ 10 percent; ∗∗ 5 percent; ∗∗∗ 1 percent

R&D stocks were calculated on the basis of annual R&D expenditures using the
Perpetual Inventory Method (PIM). Initial R&D stocks were estimated by divid-
ing the base year R&D outlays by the sum of estimated R&D growth rate and
depreciation. The R&D stock growth rate was calculated for each country sepa-
rately using the first 10 years for which R&D expenditures were available. We also
went with the assumption of a 5% depreciation in R&D stocks, which is standard
in the productivity literature. In a similar fashion, using PIM, country knowledge
stock was calculated from the annual flow of Triadic patents in conjunction with a
15% depreciation rate assumption for knowledge, and a country-specific estimate
for the growth in knowledge stock in the base year, calculated from the first 10
years of the data.

These variables allow us to estimate the three different specifications of the
knowledge production function and compare their results. In each empirical
model we regress a patent-based measure of innovation on factors featured in
the corresponding theoretical model of knowledge production. In Table 1 we re-
port the results of the first 6 regressions. All regressions in this table represent
pooled OLS estimates. The empirical models contained in columns (1), (2) and
(3) correspond, respectively, to R&D-based, Romer-Jones, and Griliches KPFs.

The first three regressions are econometrically naive OLS estimates that do
not control for endogeneity between the independent variable and factor inputs.
Besides the log of knowledge stock, none of the other factors in the first three
regressions produce statistically significant coefficients. The first three regressions
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are reported for comparison purposes, but the presence of endogeneity is highly
likely, especially between knowledge stock and the dependent knowledge flow
variable, so we should not place too much confidence in the estimated coefficients
from models (1) through (3).

In regressions (4) through (6) of Table 1 we control for endogeneity by using
lagged regressors. R&D stock and count of scientists and engineers are lagged one
period; knowledge stock is lagged three years. In the R&D-based specification,
the parameters on lagged knowledge stock and R&D stock are 0.8, and 0.288,
both statistically significant at least at the 5 percent significance level. The
regression indicates that an increase in knowledge stock of 100% would lead to an
80% increase in innovative output. The doubling of R&D stock would increase
innovation by about 29%.

In the Romer-Jones specification, the coefficient on the variable measuring re-
search input is lower, at 0.224, and with weaker statistical significance—at the
10% significance level. However, the loss of predictive power of the research vari-
able is compensated by a greater magnitude of the knowledge stock parameter.
Albeit the coefficient in the R&D-based KPF is slightly lower, the two models
that include knowledge stock as a regressor yield qualitatively similar estimates
for the inter-temporal knowledge spillover parameter. The Griliches function pro-
duces the highest estimate of the elasticity of innovation with respect to research
effort. The value of the parameter is 1.018, highly statistically significant.

The results are generally in line with our predictions. Here we see that exclusion
of a variable measuring knowledge stock (in the Griliches specification) leads to
inflated measures of the impact of R&D inputs on innovation, as we suspected in
Section XI. We also see that basing research effort purely on a measure of labour
inputs (in the Romer-Jones model) underestimates the impact of research on in-
novation. If one measure of elasticity of innovation with respect to research input
is an underestimate and the other an overestimate, then “truth is in the middle.”
The R&D-based estimate of elasticity of innovation with respect to research effort
is sandwiched between the estimates from the other two specifications.

In Table 2 we exploit the panel nature of our data by estimating fixed-effects and
random-effects regressions for our three KPF specifications. All three knowledge
production models produce atypical results when estimated using fixed-effects.
In the Romer-Jones model the coefficient on the scientists and engineers variable
is negative; in the Griliches model the R&D stock parameter estimate is approx-
imately 75% lower than in Table 1, column (6); and in the R&D-based model
there is, again, a negative return to research effort.

The random-effects regressions in columns (4) through (6) provide much more
sensible parameter estimates, but the Hausman test recommends fixed-effects for
all three specifications. We are set before a dilemma in which the estimation tech-
nique recommended by the Hausman test leads to results that are not plausible
and in contradiction of prior findings in the literature.

The source of this dilemma is likely in the features of the dataset. The main dif-
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Table 2—The International Knowledge Production Function—with Country Effects

Dep. Var.: ln(Patents)
Reg.: (1) (2) (3) (4) (5) (6)
Estim.: FE FE FE RE RE RE
Spec.: R&D R-J G R&D R-J G
L3.lnA 0.249** 0.877** 0.603*** 0.957***

(0.10) (0.35) (0.07) (0.08)
L.lnR -1.170*** 0.155*** 0.314*** 0.327***

(0.22) (0.06) (0.12) (0.06)
L.lnSE -3.358*** 0.024

(0.55) (0.16)
Constant 15.334*** 34.388*** 2.362*** -3.104*** -2.477* 0.278

(2.12) (4.79) (0.64) (1.01) (1.48) (0.66)
R-sqr 0.709 0.630 0.696 0.593 0.501 0.387
N 785 471 865 785 471 865
F 14.1 21.5 6.9
χ2 255.5 221.1 33.5

Significance level: ∗ 10 percent; ∗∗ 5 percent; ∗∗∗ 1 percent

ference in the underlying assumptions of fixed-effects and random-effects models
is that random effects assumes that unobserved country-level effects are uncor-
related with the other regressors, while fixed effects allows for correlation. Fur-
thermore, fixed-effects estimation relies exclusively on variation within countries
over time, to the exclusion of between-country variation. Since variables in our
panel tend to be relatively stable across time, and most of the variation is be-
tween countries, and not within countries across time, it is not at all surprising
to see that estimations exploiting within-country variation are not precisely es-
timated. Random-effects estimates, on the other hand, provide greater precision
in estimates but can show biased coefficient estimates if the country-effects are
correlated with other regressors.

Dieleman and Templin (2014) has considered this bias-precision trade-off and
provided evidence that in panel datasets with large differences between groups
but little variation within groups the random-effects estimator will tend to be
more appropriate than fixed-effects, and the Hausman test will often wrongly
reject the random-effects model for these data. More specifically, the authors find
that in relatively small samples of approximately several hundred observations
or less, where within-group variation is 20% or less of total variation, random-
effects estimates are to be preferred. These attributes roughly correspond to our
country panel.17 This guidance, and the general harmony between the random-
effects models of Table 1 and pooled OLS models of Table 2 makes us place greater
faith in the random-effects regressions.

In the R&D-based knowledge production function estimated using random-
effects, presented in column (4) of Table 2, the coefficient estimate on knowledge
stock is 0.603, slightly lower than in the OLS R&D-based model. This is likely

17Approximately 31% of variation in patent flow is explained by the within-country component.
Within-country variance constitutes 9%, 28%, and 5% of variance in knowledge stock, R&D stock and
number of scientists and engineers, respectively.
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because in the OLS model the knowledge stock variable, being relatively constant
over time, would capture part of the variation in the data owed to country effects.
The elasticity of innovation with respect to R&D is highly significant and slightly
greater in the random-effects model, at 0.314, but is qualitatively similar to the
OLS estimate.

In Table 2, column (5), presenting the Romer-Jones variation of the KPF, the
estimate for knowledge stock does not change appreciably from the analogous
model estimated via OLS, in column (5) of Table 1. However, once we capture
country-effects, the coefficient on scientists and engineers drops considerably and
becomes statistically insignificant. For the Griliches specification, located in col-
umn (6) of the same table, the parameter estimate on R&D stock is two-thirds
lower than when the model is estimated via OLS. Here we will notice that the
Griliches parameter estimate on R&D stock is higher than the estimate from the
R&D-based function, but the difference is not very large. The likely explanation
for this result is that, in this empirical model, country-effects are capturing a host
of country-specific attributes explaining differences in knowledge production and,
with knowledge stocks being relatively constant over time, they are effectively
controlled for via country random-effects. Thus, the Griliches specification, if it
adequately controls for country-effects in a panel data context, can give us a good
estimate of the elasticity of knowledge with respect to R&D stock. The set of
random-effects regressions reproduces the predicted pattern whereby the ζ esti-
mate from the R&D-based regression lies between the estimates from the other
two models.

In reviewing overall model performance, we observe that the R&D-based KPF
generally provides a better fit to the data than its Romer-Jones and Griliches
counterparts. Whether using OLS, fixed-effects, or random-effects estimation,
the R-squared is higher for the R&D-based model than for its alternatives. In the
instance of the random-effects estimation approach, the R-squared is 0.593, 0.501
and 0.387, respectively, for the R&D-based, Romer-Jones and Griliches models.

In addition to the conclusions drawn from econometric models, we note that
basic indicators of innovative activity support the the claim that R&D stock
is a better predictor of innovative performance than measures of scientists and
engineers. As an illustration, Figure 2 compares the level of U.S. R&D stock
and researchers to the number of domestic patent grants at the USPTO. The
indexes show that, short-term volatility in the patent indicator aside, patent
grants have tracked the evolution of domestic R&D stock quite closely. On the
other hand, the gap between research employment and patenting has widened
over time. Between 1985 and 2010 patent grants to domestic applicants at the
USPTO increased 173%. During the same period the U.S. R&D stock increased
in similar proportion, to 167% of its level in the baseline year. On the other hand,
the number of full-time-equivalent researchers in the U.S. economy increased only
98% over the same period. The gap between the research employment and patent
trendlines reinforce the conclusion that R&D, measured as stocks, is the more
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Figure 2. U.S. Knowledge output vs. R&D stock

Note: Figure presents indexes for U.S. R&D stock, total researchers (full-time-equivalent) in the labour
force, and U.S.-origin patent grants at the USPTO. Base year 1985=100.
Source: R&D stock from author’s calculations based on data from OECD; Total full-time-equivalent
researchers from OECD; U.S.-origin patent grants from USPTO.

relevant measure of research effort.

The empirical results presented in this section provide a measure of validation
for our knowledge dynamics framework. On the basis of our econometric estima-
tions we conclude that the R&D-based KPF provides a better approximation of
true knowledge dynamics than either Romer-Jones or Griliches knowledge pro-
duction functions. Nevertheless, greater certainty in the results can come only
from additional confirmatory research, with more, better and different data, and
more sophisticated estimation techniques. These goals are beyond the scope of
any single study, but are well within the reach of future research.

XIII. Discussion and Conclusion

This study set out to develop a model of innovation and knowledge dynamics.
The path toward this objective led through re-conceptualization and synthesis of
existing methods, concepts and frameworks in studies of innovation. The model
presented includes two accumulable factors: a knowledge stock consisting of the
sum total of technologically relevant ideas, and a separate R&D stock, repre-
senting the accumulated effort devoted to the discovery of new knowledge. Prior
research on economics of innovation tended to spotlight only one of these two
stocks and conflate knowledge and R&D. Our approach, on the other hand, in-
sists on conceptual clarity with respect to R&D effort and knowledge. While
R&D is an aggregate of embodied research factors in the production of innova-
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tion, knowledge is a disembodied outcome of that process, that in accumulated
form also serves as an input to innovation. Maintaining the distinction between
knowledge and R&D paved the way first, for a framework, and then for a formal
model capturing the essential dynamics of the knowledge generation-accumulation
process.

At the heart of our model of knowledge dynamics is an R&D-based knowledge
production function that combines accumulated R&D and knowledge stocks in the
production of new knowledge. The R&D-based knowledge production function
is distinct from functional forms commonly appearing in research on rates of
return to R&D—which have considered R&D stocks, but apart from knowledge
accumulation. It is also different from the Romer-Jones knowledge production
function from Endogenous Growth Theory, which includes only current period
discovery effort from labour employed in the R&D sector.

The theoretical analysis of knowledge production draws a relationship between
existing models used in the study of innovation, and proposes a synthesis that
offers to reconcile alternative knowledge production functions as special cases of
our functional form, while promising a better way to model knowledge dynamics.
The R&D-based knowledge production function bridges the gap between the two
alternative formulations of knowledge dynamics from growth theory and R&D
productivity literatures. It is hoped that this feature serves as a land bridge
between the two literatures and provides a footing for fruitful interaction between
them.

In our model, the R&D-based function itself is embedded within a framework
for accumulation of knowledge and R&D effort, completing the general model of
knowledge and R&D dynamics and setting the stage for analysis of its implications
for innovation and growth. Taking R&D and knowledge stocks into account brings
into the field of vision aspects of growth and innovation that theory previously
left out of sight. As one example, it brings into view the possibility of ideas-
driven growth that relies neither on Romer’s razor-edge restriction nor on Jones’
requirement of positive growth in R&D employment. Finally, the model paves
the way for modelling innovation and growth processes while avoiding unnecessary
estimation biases.

The R&D-based knowledge production function offered a set of predictions that
could be tested empirically. The empirical exercise produced estimates which
were consistent with the original predictions. This result lends support to the
R&D-based knowledge dynamics framework. Our estimations offer a number
of preliminary observations about past empirical work, and lessons for work to
come. First, prior studies adopting a flow-based measure of research effort likely
underestimated the contribution of research to innovative performance. In the
future, measures of effort incorporating non-labour contribution to R&D, and
adjusting for accumulation should be pursued. The second lesson following from
this study is that prior research investigating the marginal effect of R&D on
measures of innovation may have produced imprecise, and probably inflated, es-
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timates, although studies on panel data with controls for country-effects could
have provided sufficiently accurate estimates. The message remains—results of
application of research effort depend on context. The current state of knowledge
plays a powerful mediating role between research effort and innovative outcomes.
Future studies on the relationship between R&D and productivity, even while
controlling for country-specific effects, should not ignore accumulated knowledge
stock in their estimations. The third lesson from the empirical exercise is that the
R&D-based knowledge production provides a closer fit to the data and therefore
a better explanation of innovation dynamics than its alternatives. Future studies
interested in explaining innovation can start with, and extend, the R&D-based
specification.

One way to view this study is as an attempt to synthesise the micro-level “re-
search lab” perspective on innovation, and the aggregate knowledge production
framework from country-level growth models with endogenous technical change.
Although the empirical exercise and much of the discussion are framed to ad-
dress macro-level questions, and endogenous growth—one of the base theories
considered—was developed to explain patterns in development at the country
level, the general model of knowledge dynamics presented is just as applicable
to micro contexts. The model of knowledge dynamics achieves a mechanical de-
scription of the evolution of the level, change, and growth rates of knowledge and
R&D stocks. A model in which innovations produced by a unit of observation
other than a country—say, a firm—result from combination of acquired knowl-
edge stocks and accumulated research effort, can also make use of this framework.
As long as other necessary assumptions of the model hold, these mechanics will
be universal, ready to be applied at any scale.

While the model can claim a number of advantages, it also has certain limita-
tions. In developing the model, we abstracted away from market structure and
the decision rule for spending on research. Furthermore, we did not include a sep-
arate accumulation process for physical capital and human capital. Extensions
for physical capital accumulation, and processes for creation and accumulation of
human capital along the lines of Rebelo (1991) or Ziesemer (1995) could very well
have been included. But these features were left out in order to keep the model
general and focused on the process of knowledge dynamics.

Another potential limitations of the above model of knowledge dynamics, it
might be argued, is its focus on R&D. In the model, the ultimate engine of
technological progress is resources allocated to research and development. For this
reason, the model can be subjected to the criticism of being not just “R&D-based”
but “R&D-centric.” What about economic resources engaged in activities that
are not, in a strict accounting sense, R&D, but that nevertheless have innovation
as a propitious by-product? What of innovation resulting from “learning by
doing” activities such as investment in capital goods (Arrow, 1962)? And what
about determinants of innovation that are not a category of primary inputs? The
amount of knowledge created in a society at any given time can be conditioned by



39 VERBA 2015

factors such as the suitability of the general political and economic environment
for innovation, quality of institutions, and the intellectual property regime, among
others. How do they enter into the proposed framework?

Firstly, our perspective on knowledge dynamics does share with the view of
Karl Shell that R&D activity has a preeminent role in explaining the creation
of technologically significant ideas and that “the rate of production of technical
knowledge can be increased by increasing the allocation of economic resources
explicitly devoted to inventive activity” (Shell, 1966, p. 62). This is particularly
true of the most valuable ideas, such as those inscribed in Triadic patent filings.
While “learning by doing” has an important role in the innovation system, its
role is greater in the diffusion, adoption and adaptation of new ideas, and lesser
in their creation.

Secondly, the model is certainly open to the possibility of additional input fac-
tors. Currently, the residual term δ of the R&D-based knowledge production
function is a catch-all for other determinants of the innovation arrival rate. Ad-
ditional determinants of innovation can be “extracted” from this catch-all term.
Future empirical work can use the R&D-based KPF as a starting point and add
additional explanatory variables for a fuller description of the dynamics of knowl-
edge. For example, a decomposition of knowledge stock into its domestic and
borrowed components, the latter capturing external knowledge spillovers, should
be pursued. We leave this extension for future work. Yet, even as it stands cur-
rently, in a rather restricted form, the R&D-based knowledge production function
at the heart of the model of knowledge dynamics proposed here, represents an
improvement over alternative specifications and explains up to 60% of variation
in the innovative performance of nations.
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Belderbos, René, and Pierre Mohnen. 2013. “Intersectoral and International
R&D Spillovers.” SIMPATIC Working Paper No. 02.

Benhabib, Jess, and Aldo Rustichini. 1991. “Vintage Capital, Investment,
and Growth.” Journal of Economic Theory, 55(2): 323 – 339.

Benhabib, Jess, and Mark M. Spiegel. 2005. “Human Capital and Tech-
nology Diffusion.” In Handbook of Economic Growth. Vol. 1 of Handbook of
Economic Growth, ed. Philippe Aghion and Steven Durlauf, Chapter 13, 935–
966. Elsevier.

Berndt, Ernst R., and Laurits R. Christensen. 1973. “The Translog Func-
tion and the Substitution of Equipment, Structures, and Labor in US Manu-
facturing 1929-68.” Journal of Econometrics, 1(1): 81113.

Bernstein, Jeffrey I. 1989. “The Structure of Canadian Inter-Industry R&D
Spillovers, and the Rates of Return to R&D.” The Journal of Industrial Eco-
nomics, 37(3): 315.

Branstetter, Lee. 1998. “Looking for International Knowledge Spillovers: A
Review of the Literature with Suggestions for New Approaches.” Annales
d’Economie et de Statistique, , (49-50): 517–540.

Caselli, Francesco, and Wilbur John Coleman, II. 2006. “The World Tech-
nology Frontier.” American Economic Review, 96(3): 499–522.

Cincera, Michele, and Bruno van Pottelsberghe de la Potterie. 2001.
“International R&D Spillovers: a Survey.” Cahiers Economiques de Bruxelles,
169(1): 332.



41 VERBA 2015

Coe, David T., and Elhanan Helpman. 1995. “International R&D
Spillovers.” European Economic Review, 39(5): 859–887.

Dieleman, Joseph L., and Tara Templin. 2014. “Random-Effects, Fixed-
Effects and the Within-Between Specification for Clustered Data in Observa-
tional Health Studies: A Simulation Study.” PLoS ONE, 9(10): e110257.

Eberhardt, Markus, Christian Helmers, and Hubert Strauss. 2013. “Do
Spillovers Matter When Estimating Private Returns to R&D?” Review of Eco-
nomics and Statistics, 95(2): 436–448.

Esposti, Roberto, and Pierpaolo Pierani. 2003. “Building the Knowledge
Stock: Lags, Depreciation, and Uncertainty in R&D Investment and Link with
Productivity Growth.” Journal of Productivity Analysis, Springer, 19(1): 33–
58.

European Commission. 2003. “Innovation Policy: Updating the Union’s Ap-
proach in the Context of the Lisbon Strategy.” European Commission Commu-
nication from the Commission to the Council, the European Parliament, the
European Economic and Social Committee and the Committee of the Regions
COM (2003) 112 Final, Brussels.

Foray, Dominique. 2004. The Economics of Knowledge. MIT Press Books, The
MIT Press.

Freire-Seren, Maria Jesus. 2001. “R&D-Expenditure in an Endogenous
Growth Model.” Journal of Economics, 74(1): 39–62.

Gerschenkron, A. 1962. Economic Backwardness in Historical Perspective. The
Belknap Press.

Griliches, Zvi. 1979. “Issues in Assessing the Contribution of Research and
Development to Productivity Growth.” Bell Journal of Economics, 10(1): 92–
116.

Griliches, Zvi. 1988. R&D and Productivity: The Econometric Evidence.
Chicago: Chicago University Press.

Griliches, Zvi. 1990. “Patent Statistics as Economic Indicators: A Survey.”
Journal of Economic Literature, 28(4): 1661–1707.

Griliches, Zvi. 1992. “The Search for R&D Spillovers.” The Scandinavian Jour-
nal of Economics, 94: 29–47.

Grossman, Gene M, and Elhanan Helpman. 1991. “Quality Ladders in the
Theory of Growth.” Review of Economic Studies, 58(1): 43–61.

Hall, Bronwyn H. 2007. “Measuring the Returns to R&D: The Depreciation
Problem.” National Bureau of Economic Research Working Paper No. 13473.



42 VERBA 2015

Hall, Bronwyn H., Jacques Mairesse, and Pierre Mohnen. 2010. “Mea-
suring the Returns to R&D.” In Handbook of the Economics of Innovation.
1034–1082. Amsterdam: Elsevier.

Jaffe, Adam B. 1986. “Technological Opportunity and Spillovers of R & D:
Evidence from Firms’ Patents, Profits, and Market Value.” The American Eco-
nomic Review, 76(5): pp. 984–1001.

Jones, Charles I. 1995. “R & D-Based Models of Economic Growth.” Journal
of Political Economy, 103(4): pp. 759–784.

Jones, Charles I., and John C. Williams. 1998. “Measuring the Social Re-
turn to R & D.” The Quarterly Journal of Economics, 113(4): pp. 1119–1135.

Los, Bart, and Bart Verspagen. 2000. “R&D Spillovers and Productivity: Ev-
idence from U.S. Manufacturing Microdata.” Empirical Economics, 25(1): 127–
148.

Mincer, Jacob. 1958. “Investment in Human Capital and Personal Income Dis-
tribution.” Journal of Political Economy, 66(4): pp. 281–302.

Mishra, Sudhanshu Kumar. 2007. “A Brief History of Production Functions.”
Munich Personal RePEc Archive MPRA Paper No. 5254.

Mohnen, Pierre, and Bronwyn H. Hall. 2013. “Innovation and Productivity:
An Update.” Eurasian Business Review, 3(1): 47–65.

Mohnen, Pierre, Jacques Mairesse, and Marcel Dagenais. 2006. “In-
novativity: A Comparison Across Seven European Countries.” Economics of
Innovation and New Technology, 15(4-5): 391–413.

Nelson, R.R., and S.G. Winter. 1982. An Evolutionary Theory of Economic
Change. Belknap Press, Belknap Press of Harvard University Press.

OECD. 2002. Frascati Manual 2002: Proposed Standard Practice for Surveys
on Research and Experimental Development. Organisation for Economic Co-
operation and Development.

OECD. 2014. “Main Science and Technology Indicators.”

Phelps, Edmund S. 1966. “Models of Technical Progress and the Golden Rule
of Research.” The Review of Economic Studies, 133–145.

Porter, Michael E., and Scott Stern. 2000. “Measuring the “Ideas” Produc-
tion Function: Evidence from International Patent Output.” National Bureau
of Economic Research Working Paper No. 7891.

Rebelo, Sergio. 1991. “Long-Run Policy Analysis and Long-Run Growth.” Jour-
nal of Political Economy, 99(3): pp. 500–521.



43 VERBA 2015

Rivera-Batiz, Luis A., and Paul M. Romer. 1991a. “Economic Integration
and Endogenous Growth.” The Quarterly Journal of Economics, 106(2): pp.
531–555.

Rivera-Batiz, Luis A, and Paul M Romer. 1991b. “International Trade with
Endogenous Technological Change.” European Economic Review, 35(4): 971–
1001.

Romer, Paul M. 1990. “Endogenous Technological Change.” Journal of Polit-
ical Economy, 98(5): pp. S71–S102.

Schultz, Theodore W. 1961. “Investment in Human Capital.” The American
Economic Review, 51(1): pp. 1–17.

Schultz, Theodore William. 1964. Transforming Traditional Agriculture. New
Haven:Yale University Press.

Sequeira, Tiago. 2012. “Facts and Distortions in an Endogenous Growth Model
with Physical Capital, Human Capital and Varieties.” Portuguese Economic
Journal, 11(3): 171–188.

Shell, Karl. 1966. “Toward a Theory of Inventive Activity and Capital Accu-
mulation.” The American Economic Review, 62–68.

Solow, Robert M. 1956. “A Contribution to the Theory of Economic Growth.”
The Quarterly Journal of Economics, 70(1): 65–94.

Solow, Robert M. 1957. “Technical Change and the Aggregate Production
Function.” The Review of Economics and Statistics, 39(3): 312–320.

Terleckyj, Nestor E. 1980. “What Do R & D Numbers Tell Us about Techno-
logical Change?” The American Economic Review, 70(2): pp. 55–61.

Verspagen, Bart. 1995. “R&D and Productivity: A Broad Cross-Section Cross-
Country Look.” Journal of Productivity Analysis, 6(2): 117–135.

Wicksteed, Philip. 1894. An Essay on the Co-ordination of the Laws of Dis-
tribution. London: London School of Economics. Reprint No. 12, Electronic
Edition.

Ziesemer, Thomas. 1991. “Human Capital, Market Structure and Taxation in
a Growth Model with Endogenous Technical Progress.” Journal of Macroeco-
nomics, 13(1): 47–68.

Ziesemer, Thomas. 1995. “Endogenous Growth with Public Factors and Het-
erogeneous Human Capital Producers.” FinanzArchiv/Public Finance Analysis,
1–20.



44 VERBA 2015

Appendix

Griliches knowledge production and its relationship to the Perpetual
Inventory Method

The stock of technologically relevant knowledge A is given by the following
equation:

(A1) A = G(W (B)R).

Here, W (B) represents a lag polynomial, in which B is the backward shift oper-
ator, so that:

(A2) W (B)R = w0Rt + w1Rt−1 + w2Rt−2 + ... =
t∑

i=−∞
wt−iRi.

If the constant R&D depreciation rate is γ, the lag polynomial is a geometric series
with common ratio (1− γ). Knowledge stock at time t can then be expressed as:

(A3) At =
t∑

i=−∞
(1− γ)(t−i)Ri.

Note that Eq. (A3) is a modification of Eq. (3) that takes into account the
depreciation of stocks over time.

The current-period investment increment is not adjusted for depreciation—the
addition to the stock in period t equals Rt. Previous investments, however, are
adjusted for depreciation. Extracting Rt from the right-hand side of Eq. (A3), the
total stock at time t can be decomposed into the sum of Rt and the depreciated
stock from the previous period t− 1, leading to the perpetual inventory method
(PIM) equation for calculating stocks:

(A4) At = Rt + (1− γ)At−1.
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Table A1—Share in R&D Expenditure

Country Period Capitala labourb Otherc Total
Argentina 1998-2011 0.09 0.71 0.20 1.00
Australia 1981-2008* 0.10 0.47 0.44 1.00
Austria 1981-2011* 0.10 0.51 0.39 1.00
Belgium 2000-2011 0.09 0.60 0.31 1.00
Chile 2007-2010 0.25 0.46 0.21 1.00
China 1998-2012* 0.19 0.24 0.56 1.00
Chinese Taipei 1998-2012 0.11 0.48 0.41 1.00
Czech Republic 1995-2012 0.14 0.38 0.48 1.00
Denmark 1981-2011* 0.09 0.56 0.35 1.00
Estonia 2005-2011 0.25 0.43 0.31 1.00
Finland 1981-2011* 0.06 0.52 0.42 1.00
France 2002-2011 0.10 0.58 0.32 1.00
Germany 1981-2011* 0.10 0.58 0.32 1.00
Greece 1995-2005* 0.15 0.59 0.26 1.00
Hungary 1992-2011* 0.13 0.43 0.39 1.00
Iceland 1981-2011* 0.10 0.58 0.32 1.00
Ireland 1981-1993 0.15 0.53 0.32 1.00
Israel 1993-2012 0.07 0.74 0.19 1.00
Italy 1981-2011* 0.12 0.56 0.32 1.00
Japan 1981-2011 0.13 0.43 0.45 1.00
Korea 1995-2011 0.14 0.38 0.47 1.00
Mexico 1993-2007* 0.19 0.56 0.24 1.00
Netherlands 1981-2011* 0.10 0.57 0.33 1.00
New Zealand 2005-2011* 0.10 0.52 0.38 1.00
Norway 1981-2011* 0.09 0.56 0.35 1.00
Poland 1994-2011 0.21 0.41 0.38 1.00
Portugal 1982-2011 0.18 0.58 0.24 1.00
Romania 1995-2011 0.12 0.49 0.39 1.00
Russian Federation 1994-2012 0.05 0.53 0.42 1.00
Singapore 1998-2012 0.20 0.42 0.38 1.00
Slovak Republic 1996-2012 0.12 0.44 0.44 1.00
Slovenia 1993-2011 0.11 0.55 0.34 1.00
South Africa 2001-2010* 0.12 0.45 0.43 1.00
Spain 1999-2011 0.17 0.56 0.27 1.00
Sweden 2007-2011* 0.04 0.40 0.32 1.00
Switzerland 1992-2008* 0.07 0.57 0.35 1.00
Turkey 2001-2011 0.17 0.47 0.36 1.00

Note: Table provides a country comparison of the cost structure of total intramural R&D for the time
period indicated in the second column. Total intramural R&D includes R&D spending by government,
business enterprises, higher education and private non-profit entities.
Asterisk (*) indicates that data was not available for some years during the period indicated.
a Consists of expenditure on equipment and buildings. b Expenditure on salaries. c Other current costs.
Source: OECD STAN Database
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