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Self-organization of knowledge economies∗

François Lafond †

August 2, 2013

Abstract

Suppose that homogenous agents fully consume their time to invent new ideas and

learn ideas from their friends. If the social network is complete and agents pick friends

and ideas of friends uniformly at random, the distribution of ideas’ popularity is an

extension of the Yule-Simon distribution. It has a power-law tail, with an upward or

downward curvature. For infinite population it converges to the Yule-Simon distribution.

The power law is steeper when innovation is high. Diffusion follows S-shaped curves.

Keywords: innovation, diffusion, two-mode networks, cumulative advantage, quadratic at-

tachment kernel, power law, Yule-Simon distribution, generalized hypergeometric distribution.

1 Introduction

The importance of knowledge in explaining economic outcomes has been widely documented.

At the individual level, educational training and skills determine income (Schultz 1961) and

capabilities (Sen 2001). At the firm level, innovation is the source of competitive advantage

and profits (Schumpeter 1934). At the country level, technical change explains most of GDP

growth (Solow 1957).

To understand the process of economic development, one should therefore study the gener-

ation and diffusion of ideas. The literature on endogenous growth has significantly clarified the

∗This paper supplants the relevant parts of “Learning and the structure of citation networks”, UNU-MERIT

working paper 2012-071, where the model is extended to explain the structure of citation networks. Here I

give additional results and improved proofs for the basic model, and I do not include a citation network. I

thank Robin Cowan, Luis Lafuerza, Daniel Opolot, Giorgio Triulzi, and the participants to ECIS seminar and

INSNA conference. Financial support from METEOR is gratefully acknowledged. All errors are mine.
†Address: UNU-MERIT, Keizer Karelplein 19, 6211 TC, Maastricht, The Netherlands.

E-mail: lafond@merit.unu.edu.



mechanisms through which knowledge can lead to GDP growth (Lucas 1988, Romer 1990), but

less efforts have been devoted to the study of the detailed distribution of ideas in simple, de-

centralized “knowledge economies” in which agents create and exchange ideas. Some patterns

are more likely or efficient than others (Cowan & Jonard 2004). My intention here is similar to

general equilibrium economics. Under which conditions there exists a form of balanced state in

which agents produce and exchange ideas? Is this state unique? I describe a simple stochastic

process of innovation and imitation which has a unique mean-field steady-state. The main

assumptions and results are as follows

Assumption 1 (Knowledge growth and innovation). Knowledge is a set of discrete ideas.

This set is expanding because new ideas are invented over time. I assume that ideas are

indistinguishable, except for their age and who knows them.

Assumption 2 (Social embeddedness and diffusion). Agents imitate ideas of their friends.

More precisely, agents choose uniformly at random (u.a.r.) an (unknown) idea of a friend

chosen u.a.r. (the friendship network is assumed to be complete).

Assumption 3 (Limited attention and innovation/imitation trade-off). Homogenous agents

supply inelastically a fixed amount of attention to obtain ideas. Because some ideas must be

invented (assumption 1), and some must be imitated (assumption 2), attention is split between

these two activities. I assume that this split is the same for all agents and is constant over

time.1

Result 1. Social embeddedness creates cumulative advantage for ideas’ diffusion, that is, if

diffusion was unbounded, ideas would diffuse at a rate proportional to their current popularity.2

However, diffusion is constrained by the population size, as in logistic diffusion models. Thus,

ideas’ diffusion is S-shaped.

Result 2. This logistic diffusion of sequentially created ideas gives rise to a steady-state dis-

tribution of ideas’ popularity which is close to a power law but with an upward or downward

curvature in the tail. This curvature disappears when n → ∞ and the distribution is the Yule-

Simon distribution. A higher share of attention devoted to innovation (respectively, imitation)

generates a steeper (flatter) power law.

1I regard the innovation/imitation choice as exogenous, because the forces determining choice can be mod-

elled independently, that is, there exists several choice theories compatible with the innovation/diffusion process

that I describe.
2Throughout the paper, the popularity of an idea is the number of times it is known, that is, the number

of agents who have adopted/learned/imitated it.
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In the model, new ideas arrive regularly, and each idea is eventually known by everybody.

The competition of ideas for the attention of agent i can be characterized by computing which

ideas are known by a friend of i and unknown to i. This could never be completely stable

nor exactly equal across pairs. However, at the mean-field level, there exists a fixed point,

self-consistency equation which allows to derive a steady-state that is unique.

The proposed model is an extension of Simon’s (1955) model. In Simon’s original model,

there are agents and ideas. At each period, a new idea arrives. With some fixed probability b,

it goes to a new agent (created simultaneously). Otherwise, it goes to an agent chosen with

probability proportional to the number of ideas that he holds. This process leads to a steady-

state distribution of the number of ideas per agent which has power law tail, and is called the

Yule-Simon distribution. For instance, among many other fields of application, Simon fitted

his distribution using scientific authors and their papers. My starting point is that diffusion is

missing. Scientific papers, like technologies and social norms, diffuse through the population.

For clarity let me abstract from agent’s heterogeneity, and consider a fixed number of agents.

I still want to have a growing number of ideas (assumption 1), consistent with reality, but

also wish to allow agents to learn ideas of/from others (assumption 2). Since I contend that

attention is limited (assumption 3), I assume that at each period, a randomly chosen agent

chooses either to innovate, or to learn an existing idea. The agent then gets a new edge in

the two-mode network of agents and ideas, a (bipartite) network where an edge between agent

i and idea j means that “i knows j”. The other side of the new edge is either an existing

idea or a new one. As described, the process is close to Simon’s, but with one fixed set of

nodes. This is important because the finiteness of population is necessary for diffusion to be

S-shaped. This imposes to modify Simon’s master equation for the degree distribution, using a

quadratic instead of linear attachment kernel. The resulting distribution is an extension of the

Yule-Simon distribution, and resembles the beta distribution. It converges to the Yule-Simon

when the population is infinite.

The paper is organized as follows. The next section discusses related literature. Section

3 presents the model and clarifies key mathematical relationships in this setup. Section 4

gives the main results. Section 5 provides some results for two key generalizations (with a

sparse social network, and with differentiated productivity of the time spent on imitation or

innovation). The last section concludes.

2 Related Literature

Cohen & Levinthal (1989) argued that R&D activities allow firms to absorb knowledge spillovers
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from their environment, reinforcing innovation capabilities. This paper is about the global

organization of knowledge systems resulting from the allocation of time between “true” (new-

to-the-world) innovation and learning/imitation/diffusion. The literature on diffusion is huge

(Geroski 2000), but generally takes the new technology (idea, product, etc.) as pre-existing,

and is concerned only with adoption, elaborating the mechanisms behind diffusion and looking

for their idiosyncratic traces in empirical data (Young 2009). In the information age, much

more information is available online, and we could think that individuals and firms learn from

a database, instead of from their friends. Why would neighborhood effects in learning be so

important then? One reason is that knowledge is tacit, situated, localized or embedded. This

stickiness of knowledge implies that it can diffuse only, or preferably, face-to-face. Relatedly,

social embeddedness channels awareness of ideas: one may learn new knowledge from a book

or online after having been referred to it (by a peer). An important consequence of word-

of-mouth interaction is that the diffusion pattern is likely to be S-Shaped, in agreement with

the literature on diffusion (Mansfield 1961). In fact, learning from others naturally introduces

increasing returns in ideas’ diffusion due to the fact that well known ideas have more chances

to diffuse, because they have more carriers. In the model below, as in the literature, this expo-

nential growth is constrained by the population size in such a way that the diffusion is logistic.

Logistic diffusion is well established theoretically and empirically, which leads to the two fol-

lowing questions: (i) What happens when there are many ideas competing for attention? (ii)

What happens when there is continuous arrival of new ideas?

A way to characterize a system in which ideas are created and diffuse is by keeping track

of the distribution of of ideas’ popularity.3 In the language of networks, this is the degree

distribution of the “ideas” set of a two-mode network of agents and ideas. I assume one

fixed set of nodes (the number of agents does not change) and one growing set of nodes (the

number of ideas increases without bound). This framework allows to keep track of who knows

what in a very detailed way, and provides a bridge between social network models (a one-

mode network of agents) and epistemic network models (a one-mode network of ideas). Such

a representation of the co-evolutionary dynamics of social and knowledge networks has been

used in empirical studies (Roth & Cointet 2010) and simulation modelling (Börner et al. 2004).

Cowan & Jonard (2009) study a closely related system, where firms form an alliance network

3For models of knowledge growth and diffusion which do not involve networks, see e.g. Jovanovic & Rob

(1989), König et al. (2012) and Lucas & Moll (2013). The model presented here is complementary, because these

models are more elaborated in terms of agent’s choice and economic observables (e.g. GDP or productivity),

but my model is richer in terms of the underlying combinatorial structure. For instance, since ideas are discrete

in the model below, two agents with the same number of ideas can imitate ideas of each other, whereas two

agents with the same productivity level cannot learn from each other in e.g. Lucas & Moll (2013).
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based on knowledge matching. In their model, firms hold ideas and form pairwise alliances

with other firms in order to innovate. Partner choice is based on knowledge overlap: too much

overlap would mean that partners have few things to learn from each other; too little overlap

may hinder mutual understanding. Their model reproduces several empirical facts of R&D

networks, such as small wold properties and skewed degree distribution.

The model is also closely related to models of network growth based on copying (Vázquez

2003). For instance, in Jackson & Rogers’s (2007) model for social networks, newborn agents

choose to link to random existing agents (“random meetings”), and to random neighbors of

their random meetings (“search”). Here cumulative advantage comes from search meetings,

because the more friends an agent has, the more chances he has to be found through a friend.

Likewise, in a two-mode network, search can generates cumulative advantage and, ultimately,

fat tail distribution of popularity. This was clearly demonstrated by Evans & Plato (2008),

who consider a fixed set of agents and a fixed set of artifacts. Agents are linked to one and

only one artifact, and, when they are chosen, connect to another artifact by imitating a friend.

Their model is a two-mode network with both sets of nodes fixed, and a rewiring process.

Actors are linked to one and only one artifact, and the distribution of artifacts popularity

is studied. Their model applies for instance in anthropology where one is interested in the

transmission of cultural artifacts. The model proposed below also applies to this context, but

assumes that new artifacts appear over time, and that actors accumulate artifacts over time.

Another closely related model was studied by Ramasco et al. (2004). As Simon, they

consider only the production of ideas (papers) but the number of agents is allowed to grow

and papers are co-authored. Their work focused on reproducing the empirical data on the “co-

authorship” network. Assuming that authors are chosen for new authorship with probability

proportional to the number of their previously authored papers, Ramasco et al. (2004) derive

the Yule-Simon distribution (with modified parameters) for the distribution of the number

of papers authored by an author, and a shifted power law for the degree distribution of the

co-authorship network. There have been other studies of two-mode or multi-mode networks

in which all sets of nodes are growing. For instance, Beguerisse-Diaz et al. (2010) studied a

system in which users rate videos. Liu et al. (2011) study a social tagging system, which can

be seen as a three-mode network (users, resources tagged, and tags). Zeng et al. (2012) show

that certain recommender systems produce more unequal popularity distribution than others.

The model proposed below contributes to the literature on “self-organizing” networks by

providing a detailed analysis of the artifact degree distribution under the assumption of a non-

growing population of actors and assuming a specific one-mode network for agents’ interactions.
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Technically, the most noticeable feature of the model presented below is that the probability

for a given idea to diffuse at time t (the attachment kernel) is a quadratic function of its

popularity at time t. This gives rise to a combinatorial interpretation of the partition factor

of this attachment kernel. In the classical growing network model with sub-linear attachment

kernel (Krapivsky et al. 2000), the value of the partition factor of the attachment kernel cannot

be solved for in closed-form, and is computed numerically. In the model below, such a solution

may exist but it is hard to find as it involves solving a polynomial of order n (number of

agents).

Following Simon’s own applications of his model, notably to the size distribution of firms

(Ijiri & Simon 1977), there has been a large literature impossible to review here. In an influ-

ential contribution, Price (1976) applied Simon’s process to explain the power law distribution

observed for the in-degree of citation networks. He assumed that existing papers are cited

with probability proportional the number of citations that they have already received. This

assumption can be microfounded, by assuming that papers are found by searching through the

bibliography of other papers (Vázquez 2003). The model below allows for an alternative micro-

foundation of citation networks. In a related paper (Lafond 2012), using the model described

below, and assuming that (an infinite number of) agents cite papers chosen u.a.r among the

papers that they have previously learned or written, the predicted citation distribution is a

shifted power law. Hence, in the model below, the arrival of new ideas may be thought of as

emerging from the recombination of existing ideas held by individual inventors.

3 The model

Assuming an infinite population and deterministic diffusion, the model can be summarized as

follows. Once an idea is invented, it diffuses. Since agents learn ideas of their friends, the more

carriers an idea has, the more chances it has to diffuse. So it diffuses at a rate proportional

to its popularity. However, it competes with all other ideas, which equally count as function

of their popularity – so to write the diffusion rate it will be necessary to divide the popularity

of each idea by the “total popularity” in the system. If exactly one agent-idea relationship is

added per time period, the total of all popularity is the number of periods, t. Hence kj , the

popularity of idea j born at time tj , evolves as follows

k̇j(t) = (1 − b)kj(t)/t

The factor (1 − b) has been added because I assume that a fraction b of time is spent on

innovation, which limits the speed of diffusion. Using the initial condition kj(tj) = 1 (j is

6



invented by one agent, at some time tj) this differential equation has solution

kj(t) =

(
t

tj

)1−b

(1)

Knowing when ideas are born and their popularity, one can tell, at any point in time, how

many of them have a certain popularity. Indeed, the share of ideas known k times, denoted

p(k), can be found starting from the cumulative distribution function

prob(kj ≤ k) = p

((
t

tj

)1−b

≤ k

)

= 1 − p
(
tj ≤ tk−1/(1−b)

)

Assume that ideas arrived sequentially, in such a way that the tj ’s are uniformly distributed

i.e. prob(tj = Y ) = 1/t for Y from 1 to t, so prob(tj ≤ Y ) =
∑Y

1
1
t = Y

t . This leads to

p(kj ≤ k) = 1 − k
−1
1−b . Apply p(k) = dp(kj≤k)

dk to retrieve the probability distribution of ideas’

popularity,

p(k) = b̂k1+b̂

where b̂ = 1/(1−b). It is easy to check that
∫∞
1

p(k)dk = 1. This is a power law which steepens

with b. The power law exponent is best rewritten γ = 2 + b
1−b to show that for 0 < b < 1 it is

greater than 2, and depends positively on the ratio of the share of innovation over the share

of diffusion.

The heuristic description above does not account properly for the finiteness of the popu-

lation, and therefore fails to feature an S-shaped diffusion pattern (see equation 1). It does

not include the structure of social interactions, and is deterministic. I describe below a more

complete mathematical model and its numerical (agent-based) simulation.

3.1 The algorithm

Consider a two mode network with n agents and w ideas. Ideas are either known or unknown

by any given agent, which is represented by the presence or absence of a link between an agent

and an idea. The number of agents is kept fixed, but the number of ideas grows. Time is

discrete and indexed by t. Denote by Et the total number of actor-ideas relationships, i.e. the

number of edges of the two-mode network. At the beginning (t = 1), there is one idea known

by one randomly chosen (r.c.4) agent (w1 = 1 and E1 = 1). Then at each time period, the

following algorithm is applied (where random always means uniformly at random):

I/ pick an agent i at random.

4Throughout the idea, “random” refers to a uniform distribution
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II/ with probability b, the agent i creates a new idea (a new node is added to the set of

ideas, and an edge is added to the two-mode network, between i and the new node).

III/ otherwise (i.e. if the r.c. agent does not create a new idea), pick another agent i′ at

random. Then pick at random an idea j among those ideas known by i′ and unknown

by i. Then i learns j (an edge is added to the two-mode network, between i and j)5.

The following section clarifies the setup of the model by deriving key mathematical relation-

ships implied by the algorithm (I-III).

3.2 Preliminary results

Consider a matrix Q which has a fixed number of rows (n agents) and a number of columns

that depends on time (wt ideas). The entries Qij are equal to one if agent i knows idea j, and

zero otherwise. This matrix is the incidence matrix of the two mode network where agent i

is linked to idea j iff agent i “knows” idea j. Start at t = 1 with a column vector filled with

a one and (n − 1) zeros. At each period, with probability b, a column is added (a new idea

is created). Then, with probability 1, one entry of Q is changed from zero to one (if a new

column has been added, this modified entry must be in that new column). Since exactly one 1

is added at each period, the total number of ones in Q, which is the total number of edges in

the network, is Et = t. The total number of ideas wt is a random variable equal to W if there

has been exactly W − 1 successes out of t − 1 trials. success happening with probability b.

Hence the expected number of ideas is E(wt) = 1− b + bt. Throughout the paper the concern

will be on the long run equilibrium state of the system so I will use wt = bt. Then, it is direct

to see

Lemma 1. The density of the system, defined as the two-mode network density and denoted

D, is stable:
5If both b and n are very small, there are not enough new ideas to satisfy the number of required learning

events. This problematic configuration always happen with non negative probability, and to ensure that the

model always run, the computer code is as follows: when a r.c. agent i is supposed to learn but his chosen

neighbor has nothing new, i creates a new idea. Again, there will always exist a positive probability to find a

(directed) pair that cannot perform the exchange. This probability is small in the region of interest, so I do not

include this effect in the derivations. In particular, I consider that a knowledge economy is defined for μ > 0 (μ

is an increasing function of b and n to be defined later. See infra and figure 3). Moreover, one can correct the

main theoretical result equation 10 simply by using the “empirical” (from the simulation) values of b = wt/Et

and μ (equation 4)). This condition μ > 0 illustrates that there cannot exist a knowledge economy in which,

at a global level, ideas are imitated faster than they are created. This constraint is due to the assumption of

inelastic supply of (cognitive) labor. It is possible for individual agents to imitate faster than they innovate,

because one newly created idea can be imitated (n − 1) times.
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1 2 3 4 5

With probability 1−b,
an existing idea is imitated

r.c. agent

(Diffusion)

agents

ideas 1 2 3 4 5

With probability b

a new idea is created

r.c. agent

(Innovation)

Figure 1: Schematic description of the model. At each time step, one and only one of the two events

represented above happens. In both cases, a link is added. The main focus here is on the degree distribution of

the top nodes (ideas’ popularity), p(k). The degree distribution of the bottom nodes is discussed in appendix

B but is purposefully uninteresting (agents are homogenous so it is binomial). On the left panel, the r.c. agent

is learning. In this case, a neighbor has been randomly chosen and turns out to be the leftmost (in white).

There are only two ideas unknown by the r.c. actor and known by the r.c. neighbor (1 and 2). The randomly

chosen agent chooses uniformly at random an idea of the r.c. neighbor that he doesn’t know himself— in the

example above he turned out to choose the second idea. On the right panel, the r.c. agent has created a new

idea. The social network between bottom nodes, not depicted here, is assumed to be full throughout the paper

except in section 5.1.

Proof.

Dt =
Et

nwt
≈

1
nb

Hence, if fluctuations due to the stochastic nature of wt are omitted (which is legitimate in

the long run), the density of the two-mode network is constant (independent of system time t).

Time independence of the two-mode network density suggests that there may exist a steady

state degree distribution. Lemma 1 shows that an increased rate of innovation b will make the

system sparser (since there are more ideas and agents are learning less often), whereas a high

rate of learning (1−b) will make it denser. In this model, growth corresponds to the increment

of a column. Diffusion ensures that the density of the system stays stable, by adding positive

entries in existing columns.

The key to characterize the self-organized steady-state of the system is to find the number

of ideas shared by two r.c. agents, that is, the number of common ideas in a r.c. pair. This
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is because diffusion takes place between two agents, and is conditioned by what both agents

know, since an agent learns only something that his neighbor knows but that he doesn’t know

himself. Denoting by Ni the set of ideas of agent i and by |Ni| its cardinal, we have

Lemma 2. Consider all pairs of agents (i, i′) in a system with n agents and w ideas. Then

the average (over all pairs) of the number of ideas known by both i and i′ is

〈|Ni′ ∩ Ni|〉 =

∑
i′<i |Ni′ ∩ Ni|

#ofpairs
=

∑n
k=1

(
k
2

)
P (k)

(
n
2

) =
w(〈k2〉 − 〈k〉)

n(n − 1)
(2)

Proof. Observe that the sum over all pairs of |Ni′∩Ni| is simply the total number of “overlaps”

in the system, i.e. the total number of times that the triplet “two agents linked to an idea” can

be found in the network. Since each idea known kj times produces
(
kj

2

)
overlaps between pairs,

and denoting P (k) the number of ideas with degree k, we obtain the sum. Using P (k) = wp(k)

and denoting 〈kr〉 =
∑w

j=1 kr
j =

∑n
k=1 krp(k) gives the simplified form

Note that lemma 2 holds in quite general conditions but gives only the average value of

pairwise overlap, not its distribution across different pairs. The average will be very informative

because the distribution turns out to be tightly peaked around its mean, since I have excluded

all structural sources of agents’ heterogeneity. In practice, lemma 2 will often be used after

substituting 〈k〉 = Et/wt = 1/b.

The main objective is to derive pt(k), the probability that a r.c. idea in t is known k

times (i.e. has degree k). Under which conditions idea j will be learned at time t? First, the

r.c. agent i must be learning, which happens with probability (1 − b). Second, the r.c. pair

must be such that j ∈ {Ni′\Ni}. Third, idea j must be the one chosen among all other ideas

j′ : j′ ∈ {Ni′\Ni}. At each period, conditional on the event “learning” being realized, exactly

one idea must be chosen. The attachment kernel gives the probability that a particular one

be chosen, that is

At(kj) := prob(kj(t + 1) = kj(t) + 1) ;
wt∑

j=1

At(kj) = 1 − b

At(kj) = (1 − b)
1
(
n
2

)
∑

i<i′

P (j ∈ {Ni′\Ni})
|N ′

i\Ni|

At(kj) = (1 − b)
P (j ∈ {Ni′\Ni})

|N ′
i\Ni|

(3)

In the equation above, all pairs (i, i′) have an equal chance of being chosen, and pairs are

treated symmetrically. The probability that j ∈ {Ni′\Ni} can be computed as follows. There

are
(
n
2

)
pairs in the system. Idea j has degree kj so there are

(
kj

2

)
pairs where j ∈ {Ni ∩ Ni′}

10



and
(
n−k

2

)
where j /∈ {Ni ∪ Ni′}. The rest of the pairs are either such that j ∈ {N ′

i\Ni} or

such that j ∈ {N i\Ni′}. If we treat Ni and Ni′ symmetrically, we find that the number of

pairs such that j ∈ {N ′
i\Ni} is equal to (n

2)−(kj
2 )−(n−kj

2 )
2 = kj(n−kj)

2 . Hence, a r.c. pair will

exhibit j ∈ {N ′
i\Ni} with probability kj(n−kj)

2 /
(
n
2

)
= kj(n−kj)

n(n−1) . Using equation 2, we readily

determine |N ′
i\Ni| = μt

n−1 . where μ is defined as

μ(t) := 1 −
wt

Et

〈k2〉
n

= 1 −
〈(k/n)2〉

Dt
(4)

where I omit the time subscript in 〈k2〉 =
∑wt

j=1[kj(t)]2. Thus, equation 3 becomes

At(kj) =
kj(n − kj)

b̂μnt
(5)

The condition
∑wt

j=1 At(kj) = 1 − b is the same equation as the definition of μ (equation

4). μ ensures that the attachment kernel is correctly normalized, that is, if the event of period

t is imitation, the chances that a particular idea diffuses are such that exactly one will diffuse.

In this sense, μ characterizes the degree of competition among ideas. The higher μ, the lower

the chances that each particular idea diffuses. μ indicates how many ideas are available for

diffusion, in a precise sense. Since the chances of “meeting” an unknown idea j is the number

of times that j is known by somebody else (or by a friend, if the friendship network is sparse),

at this level each idea competes with all ideas unknown by a r.c. agent (not with all other ideas

in the system). Algebraically, μ as defined in equation 4 admits the following combinatorial

interpretation

Proposition 3.1. μ is the average of the individual quantities μi, where μi is the fraction of

edges that are pointing to ideas unknown by agent i.

μ =
1
n

n∑

i=1

μi ; μi =

∑
j /∈Ni

kj
∑w

j=1 kj
(6)

Proof. The denominator of μi is simply the total number of edges, Et. The numerator of

μi can be rewritten
∑

j /∈Ni
kj =

∑w
j=1 kj(1 − Qij) where Qij are the entries of the incidence

matrix, equal to one if i knows j and zero otherwise. Hence,

μ =
1

nEt

n∑

i=1

w∑

j=1

[kj(1 − Qij)]

Transposing the two sums and decomposing the sum over i, this becomes

μ =
1

nEt

w∑

j=1

[
n∑

i=1

kj −
n∑

i=1

kjQij ]
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It is easy to see that by definition
∑n

i=1 kj = nkj and
∑n

i=1 kjQij = k2
j . Therefore,

μ =
1

nEt

w∑

j=1

[nkj − k2
j ] = 1 −

wt

Et

〈k2〉
n

The factor μ(t) is defined at all periods of time and helps characterizing the dynamics of

the system. However, it depends itself on the dynamics of the system. How is this feedback

loop solved? Does the system stabilize? Since the distribution p(k) depends on the attachment

kernel, and the attachment kernel depends on μ which depends on the second-order moment

of the distribution, equation 4 is a fixed point equation, i.e. μ = f(μ, b, n, t). If the popularity

distribution is stable, its second order moment is stable and so is μ.

I show below that assuming that μ is constant and that a steady-state exists, the steady-

state is unique. This gives a steady-state value of 〈k2〉, which can be inserted into equation 4

to obtain a steady-state fixed point equation for μ.

4 Results

4.1 Distribution of ideas’ popularity

In view of the attachment kernel (5), the flows in and out of the kth bin of the histogram can

be written explicitly, following the method of Simon. Recall that Pt(k) is the total number of

ideas with degree k at time t. Then,

Pt+1(k) − Pt(k) = Pt(k − 1)At(k − 1) − Pt(k)At(k)

Using Pt(k) = btpt(k) and At(k) from equation 5

t
(
pt+1(k) − pt(k)

)
+ pt+1(k) = pt(k − 1)

(k − 1)(n − (k − 1))

b̂μn
− pt(k)

k(n − k)

b̂μn

Assuming a steady state in the sense that pt+1(k) = pt(k) = p(k) gives the recurrence

p(k)(k(n − k) + b̂μn) = p(k − 1)(k − 1)(n − (k − 1)) (7)

Equation 7 can be iterated to give

p(k) = p(1)
k−1∏

i=1

i(n − i)

b̂nμ + (i + 1)(n − (i + 1))
(8)

Making use of the quadratic formula, the denominator can be rewritten (−1)(i − u1)(i − u2)

where {u1, u2} = 1
2

(

2 − n ±
√

n(n + 4b̂μ)

)

. Now consider the definition of the Pochhammer

symbol

(x)y = x(x + 1)(x + 2) . . . (x + y − 1) =
Γ(x + y)

Γ(x)
(9)

12



Expanding the product in (8) and using (9) on each of the terms gives

p(k) = p(1)
(1)k−1(n − (k − 1))k−1

(−1)k−1(u1 + 1)k−1(u2 + 1)k−1

From Slater (1966) formula I.5 p. 239, (n − (k − 1))k−1 = (−1)k−1(1 − n)k−1. Therefore,

Proposition 4.1. The steady-state distribution of ideas’ popularity is given by

p(k) = p(1)
(1)k−1(1 − n)k−1

(r1)k−1(r2)k−1
(10)

where

{r1, r2} =
4 − n ±

√
n(n + 4b̂μ)

2

and

p(1) =

(

1 +
n − 1

nb̂μ

)−1

(11)
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Figure 2: Distribution of ideas’ popularity. For each of six configurations of parameters, the model is

run once for 3 × 106 periods (only 106 when n = 5, n = 10). In the left panel, n = 20 and the effect of b is

studied. In the right panel, b = 0.4 and the effect of n is studied. The plain lines are the theoretical results,

computed using equation 10 and values of μ computed using the fixed point equation (14). These six points of

the parameter space are marked in figure 3. When a point in figure 3 is in the lower left half of the (μ, b) plane,

the corresponding curve in the figures above exhibit an upward curvature, otherwise it exhibits a downward

curvature.

The term p(1) is found by setting up the appropriate master equation, in which there

are no inflows from the 0th bin but there is a probability of innovation: Pt+1(1) − Pt(1) =

b − (1 − b)Pt(1)At(1). Assuming a steady-state and solving for p(1) gives (11).
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The probability mass function (10) is plotted against simulations in figure 2. In some

region of the parameter space, it has an upward curvature in the tail6. This curvature exists

when the function admits a minimum at some k = k∗ < n. Using (10), the point at which

p(k∗) = p(k∗−1) is given by k∗ = 1
2 (1+n(1+ b̂μ)) and the point at which p(k∗ +1) = p(k∗) is

given by k∗ = 1
2 (−1 + n(1 + b̂μ)) so that we may take k∗ = 1

2n(1 + b̂μ). The condition k∗ < n

is then the same as μ < 1 − b. The region of the parameter space for which this condition

holds, such that an upward curvature exists, is the lower left half of figure 3 (see section 4.2),

which corresponds to relatively low values of b and n (but conditional on b and n being large

enough to have μ > 0; see footnote 5).

To obtain further insights onto the nature of the distribution (10), consider verifying that

the terms sum up to one. These terms are hypergeometric, so the sum is of the form

n∑

k=1

p(k) = p(1)
n∑

k=1

(1)k−1(1 − n)k−1

(r1)k−1(r2)k−1
= p(1) 3F2[{1, 1, 1 − n}, {r1, r2}, 1]

The five parameters of this generalized hypergeometric function (3F2[]) satisfy an important

constraint. This 3F2 is 1−balanced, that is, its parametric excess is equal to one:

(r1 + r2) − (1 + 1 + (1 − n)) = 1

It means that this 3F2 is Saalschutzian. Hence, the Pfaff-Saalschutz summation theorem can

be applied to check that (10) and (11) define a properly normalized probability mass function

3F2[{1, 1, 1 − n}, {r1, r2}, 1] =
(r1 − 1)n−1(r1 − 1)n−1

(r1)n−1(r1 − 2)n−1
=

n(1 + b̂μ) − 1

b̂μn
= 1/p(1)

Note that many other distributions are, in this sense, Pfaff-Saalschutzian. More generally, the

steady state distribution (10) is a generalized hypergeometric probability distribution (GHPD).

It is named so because its generating function is a ratio of generalized hypergeometric functions

(Johnson et al. 2005). In the case of (10), the generating function takes the following particular

form7.

G(z) =
n∑

k=1

p(k)zk = 3F2[{1, 1, 1 − n}, {r1, r2}, z]

3F2[{1, 1, 1 − n}, {r1, r2}, 1]
(12)

This class is interesting because there exists a deep connection between Pfaff-Saalschutz

and Gauss hypergeometric theorem, and Gauss hypergeometric function is the generating
6A similar phenomenon was found by Peruani et al. (2007) on the degree distribution of the fixed set of

nodes, in a growing two-mode network with mixed (random and preferential) attachment, and a high value

of the parameter tuning the relative amount of preferential versus random attachment. The model of Evans

& Plato (2008), which is a fixed two-mode network with rewiring, can also produce a U-shaped distribution,

when the relative amount of preferential v.s. random attachment is high.
7More general cases involving 5-parameters generalized hypergeometric functions are given in Johnson et al.

(2005) and Gutirrez Jimez & Rodrguez Avi (1997).
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function of, inter alia, the Poisson, binomial, negative binomial, hypergeometric, and Waring

distribution. In fact each theorem can be obtained starting from the other (Slater 1966, p.

48-49). The convergence of Saalschutz to Gauss theorem, applied to the finite population

distribution (10), shows that

Proposition 4.2. For n → ∞, the distribution of ideas popularity is the Yule-Simon distri-

bution

p(k) = b̂B(k, b̂ + 1) (13)

where B() is the Beta function.8 The condition
∑∞

k=1 p(k) = 1 can be verified using Gauss

hypergeometric theorem.

Proof. Consider the limit of each term of (10). Assuming lim
n→∞

μ = 1, as will be justified

in section 4.2, lim
n→∞

p(1) = b̂
b̂+1

. Also, lim
n→∞

r1 = 2 + b̂. Furthermore, lim
n→∞

1−n
r2

= 1 so

lim
n→∞

(1−n)k−1

(r2)k−1
= 1. Combining all three limits, lim

n→∞
p(k) = p(1) (1)k−1

(2+b̂)k−1
= p(1)(1+ b̂)B(k, 1+ b̂)

which simplifies to (13)

A last remark on the distribution (10) is its relation to the beta distribution. In the mean

field-deterministic-continuous approximation of the stochastic process, the variable k/n follows

a distribution proportional to ( k
n )−1−b̂μ(1 − k

n )−1+b̂μ(see appendix A). However, the support

is on [1/n, 1] instead of [0, 1] for the classical beta distribution, and the restriction on the

parameters in the beta (both parameters must be positive) does not hold. The mean-field

deterministic approximation is also useful to see that the (expected) diffusion is S-shaped

(equation A.2 on page 20).

The distribution (10) is not fully closed form, in the sense that the term μ appears in it,

while also depending on it. I now turn to determining the steady-state value of μ.

4.2 Properties of the partition factor

Practically, to compute the predicted steady-state distribution, the value μ(b, n) is needed.

This value can be recorded from the simulations, using either (4) or (6), which are equal by

proposition 3.1. However, it is also possible to compute in advance of the simulations the

tables of μ at its steady-state (so that (10) is genuinely closed-form), for all values of b and

n. The steady-state value of μ attained by the stochastic system turns out to be unique, even

though the self-consistency fixed point equation studied below admits a second fixed point in

8The Beta function is defined in terms of the Gamma function: B(x, y) =
Γ(x)Γ(y)
Γ(x+y)

. The Gamma function

generalizes the factorial function for non integer values, such that when x is an integer Γ(x + 1) = xΓ(x) = x!,

but x can also take non-integer values. It relates to the Pochhammer symbol through equation 9.
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Figure 3: Left panel: Numerically computed fixed points of equation 4 at the steady-state (i.e. solutions of

equation 14). From the clearest to darkest points, n = 2, 5, 10, 20, 50, 500. The six large black dots corresponds

to the six points of the parameter space used in figure 2. Their position with respect to the line μ = 1 − b

(above or below) determines the shape of the curvature in figure 2 (downward or upward). Right panel: The

decreasing curves represent the average overlap θ computed using equation 15 (the increasing curves correspond

to the fixed point μ = 1 − b).

the interval of interest. The second fixed point is μ = 1 − b for all values of n. As already

mentioned, this fixed point separates the two regions of the parameter space for which there

exists or not an upward curvature in the steady state distribution (10).

In the general case the objective is to solve equation 4 for μ with 〈k2〉 taken at its steady

state value. The steady-state value of 〈k2〉 and other moments are readily determined

Proposition 4.3. The moments of the popularity distribution are

〈kr〉 = p1 r+1Fr[{2, 2, 2, . . . , 1 − n}, {1, 1, . . . , r1, r2}, {1}]

Proof. Each successive term is found by multiplying by k = (2)k−1

(1)k−1
.

Inserting the steady-state value of 〈k2〉 and wt in equation 4 gives the fixed point equation

μ = 1 −
b

n
p1 3F2[{2, 2, 1 − n}, {r1, 4 − n − r1}, 1] (14)

This equation is solved numerically in the region of interest (b ∈]0, 1[). I computed values

of fμ (the RHS of the equation) for 99 values of b and a few values of n, and then obtained

the fixed points by studying at which points μ − fμ changes sign. The results are reproduced

in figure 3 where one can see that μ is monotonically increasing and concave in b and n.9

9Upon substituting μ = 1− b, which cancels b, one obtains the surprising one-parameter generalized hyper-
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For small values of n, μ can be found explicitly but at considerable computational cost. It

involves solving polynomials of the order of n. One root will always be 1 − b. When n = 2,

appendix C shows that the other root is

μ(n = 2) = −
1
2

+ b

4.3 Average overlap

Consider the average overlap between two given agents, defined as follows

θii′ =
|Ni ∩ Ni′ |
|Ni ∪ Ni′ |

=
|Ni ∩ Ni′ |

|Ni| + |Ni′ | − |Ni ∩ Ni′ |

The average over all pairs of agents is

θ = 〈θii′〉 ≈
〈|Ni ∩ Ni′ |〉

〈|Ni| + |Ni′ | − |Ni ∩ Ni′ |〉
=

〈|Ni ∩ Ni′ |〉
2〈|Ni|〉 − 〈|Ni ∩ Ni′ |〉

The first relationship is not exact because the expectation of a ratio is, in general, different

from the ratio of expectations. However, pairs are very similar in terms of the sizes of their

intersections and unions, so that the distribution of these sizes are very tightly peaked, making

the approximation fairly good. Now we can use 〈|Ni|〉 = t/n, lemma 2 and equation 4, to get

Proposition 4.4. The average overlap between agents is well approximated by

θ =
1 − μ − 1/n

1 + μ − 1/n
(15)

Since μ is monotonically increasing in b, the average overlap θ decreases with innovation

and increases with learning. Intuitively, an agent who learns ideas of others gets closer to

them, and an agent who invents his own ideas increases his distinctiveness. It can also be seen

in figure 3 (right panel) that θ is also decreasing in n, because it is harder to maintain a high

overlap with everybody when there are many agents.

Since there is a one-to-one mapping between b and μ, equation 15 implies a one-to-one

mapping between b and θ. Hence, for a given number of agents, the rate of innovation deter-

mines the average overlap between two agents’ portfolio. If the model is reversed in the sense

that agents choose to imitate or innovate so as to have a certain θ∗, then, given n, the effective

b = wt/Et is uniquely determined.

geometric function identity

3F2[{2, 2, 1 − n}, {
1

2

(
4 − n +

√
n(n + 4)

)
,
1

2

(
4 − n −

√
n(n + 4)

)
}, 1] = 2n − 1

It can be proven using the computer implementation of Gosper’s (1978) algorithm by Paule & Schorn (1995).

On this topic, see Petkovšek et al. (1996).
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5 A few generalizations

5.1 Social network

The derivation of the distribution (10) was made by assuming a complete social network.

Consider an opposite case.

Proposition 5.1. If the social network is a circle in which agents have one friend on each

side, the distribution is geometric (with a slight modification for p(n))

p(k) = b(1 − b)k−1 for k ∈ [1, n − 1]

p(n) = (1 − b)n−1

Proof. Appendix D

If we allow a larger number of neighbors on each side, this creates the possibility for an

idea to be known by two neighbors of an agent, and the derivation above becomes inexact.

However, this configuration would not happen very often, so that for circle networks with small

degree, the distribution stays geometric. However, when the number of neighbors increases to

a maximum, the network becomes complete, as assumed previously. Note that the important

criteria to determine the shape of the popularity distribution is not the average degree of an

agent, because the competition among ideas cancels out this effect. For instance, simulations

show that sparse Erdős-Renyi networks give results roughly similar to complete networks. The

decisive criteria is the dependence or independence of the attachment kernel on kj , that is, the

fact that the rate of diffusion of an idea depends or not on its popularity.

5.2 Differentiated Productivity

This section relaxes the unrealistic assumption that conditional on investing one unit of time,

agents get as many ideas by learning than by innovating. Instead of learning or creating one

single idea, agents now have a fixed productivity. When they innovate, they create λP ideas,

and when they learn, they learn λL ideas (sampling a new neighbor with replacement every

time)10. The attachment kernel is now given by

At(k) = (1 − b)λL
P (j ∈ Ni′\Ni)∑
j P (j ∈ Ni′\Ni)

where P (j ∈ Ni′\Ni) = k(n−k)
n(n−1) does not change. The productivity of learning does not change

the nature of the diffusion process, but simply its speed. The productivity of innovation
10λL must be a small number to ensure that there are enough ideas to be learned. See footnote 5.
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now determines the total number of ideas, wt = bλP t, and the total number of edges Et =

t(bλP + (1 − b)λL). It still holds that.
∑w

j=1 P (j ∈ Ni′\Ni) = nEt−wt〈k
2〉

n(n−1) so that

At(k) = (1 − b)λL
k(n − k)

nEt − wt〈k2〉
=

k(n − k)
(ζ + 1)μnt

where μ is still defined by equation 4, and the combinatorial interpretation (proposition 3.1)

still holds. The parameter ζ is defined as ζ = bλP

(1−b)λL
. Note that if we set λP = λL = 1,

we find ζ + 1 = b̂ as it must to recover the attachment kernel (5). The procedure to find

the steady-state distribution (section 4.1) can be followed here as well. The resulting degree

distribution simply now balances the rate of innovation bλP with the rate of learning (1−b)λL

(instead of only b with 1 − b). In the limit of an infinite population, the exponent of the

Yule-Simon was 2 + b
1−b , and with productivity parameters it can be shown that it is 2 + ζ.

This highlights that the original and productivity-augmented models can really be thought of

as one parameter (ζ) models.

6 Conclusion

A parsimonious model of knowledge growth and diffusion was presented. It gives rises to a

stable organization, in terms of the distribution of ideas’ popularity. I refrained from extending

the model by adding extra assumptions, as I believe that such additional assumptions shall be

guided by the particular theoretical problem and/or empirical data one wishes to explore.

At this level of generality, one can conclude that in a society which facilitates relatively

more diffusion than innovation (which implies a high λL, and a low b if the choice of innovation

imitation depends on the relative returns to each activity), we should expect the distribution

of ideas’ popularity to be very skewed and the average overlap to be very high. On the other

hand, in a society which favors the emergence of genuinely new ideas, we should expect the

distribution of ideas’ popularity to fall faster, and the average overlap to be lower. If we think

that pairs of agents must have a given overlap in equilibrium, then for a given social network

the relative rate of innovation and imitation is uniquely determined.

Besides applications related to the organization of knowledge systems, the model might be

of interest in the numerous domains where Simon’s (1955) model proved useful, and contributes

to the ongoing research agenda on the evolution of networks.
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Appendix

A Distribution of ideas’ popularity: mean-field continu-

ous deterministic approximation

Consider that each idea j diffuses deterministically and assume that time is continuous. Using

(5),
dkj(t)

dt
=

kj(t)(n − kj(t))

b̂μnt
(A.1)

This is a first-order ordinary differential equation. It looks similar to Verhulst’s equation of

population growth, except that it has non constant coefficients since t appears on the RHS. It

is non-linear, but it is a Bernoulli equation so it can be linearized and integrated. We could

also note that it is an exact differential equation and apply relevant techniques. The simplest

is probably to separate variables to obtain

b̂μn

∫
1

k(n − k)
dk =

∫
1
t
dt

b̂μ
[
log

(
k

k − n

)

+ C1

]
= log(t) + C2

kj(t) = n/(1 − Ct−1/b̂μ)

where C is an arbitrary constant. Using the initial condition kj(tj) = 1, it follows that

C = (n − 1)/(t−1/b̂μ
j ), and therefore the solution of (A.1) is

kj(t) = n

[

1 + (n − 1)

(
tj
t

) 1−b
μ

]−1

(A.2)

Note that equation A.2 is a logistic curve, that is, diffusion is S-shaped (from equation A.1,
d2kj(t)

dk2 changes sign at kj = n/2). The continuous distribution is computed thus (using equa-

tion A.2)

p(kj ≤ k) = p



n

[

1 + (n − 1)

(
tj
t

) 1−b
μ

]−1

≤ k





= 1 − p

(

tj ≤

(
kj − kjn

kj − n

)b̂μ

t

)
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Since the tj ’s are uniformly distributed11 their probability mass function is prob(tj = Y ) = 1/t

for Y from 1 to t, so prob(tj ≤ Y ) =
∑Y

1
1
t = Y

t . This leads to

p(kj ≤ k) = 1 −

(
kj − kjn

kj − n

)b̂μ

Applying p(k) = dp(kj≤k)
dk gives

p(k) = b̂μn(n − 1)−b̂μ (n − k)−1+b̂μ k−1−b̂μ (A.3)

One can check that this is a proper distribution function,
∫ n

1
p(k)dk = 1. This distribution

has the shape of a particular beta distribution. Rewrite (A.3) as

p(K = k) ∝ (n − k)−1+b̂μ k−1−b̂μ

Define the random variable X = K/n

p(X = x) = p(K = nx) ∝ (n − nx)−1+b̂μ (nx)−1−b̂μ

The factors n are now absorbed into the constant

p(X = x) ∝ (1 − x)−1+b̂μ x−1−b̂μ

which is the definition of beta distribution beta(α, β) with α = −b̂μ and β = b̂μ. However,

negative parameters are not allowed in the definition of the beta distribution. Moreover, the

factor of proportionality is different from that of the beta distribution because the support

is different. This distribution has to have a strictly positive support, because the integral

diverges at 0.

B Distribution of agents’ number of ideas known

Below it is shown that the the number of ideas known by a r.c. agent has a binomial distribu-

tion. To “know” ka ideas at time t, a r.c. agent needs to have been chosen exactly ka times,

and not chosen exactly (t − ka) times. Thus it follows that:

Proposition B.1. The distribution of agents’ number of ideas known is the binomial distri-

bution

pt(ka) =

(
t

ka

)(
1
n

)ka
(

1 −
1
n

)t−ka

11Contrary to one-mode scale free network models, this is not exactly true, since there is not one new

paper per period, but only one at each period with probability b. The uniform distribution is, nevertheless,

an appropriate approximation since the tjs of many independent realizations of the stochastic process are

uniformly distributed over [1, t].
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C Exact solution of the fixed point equation for n = 2

Written explicitly the fixed point equation 14 becomes

μ = 1 −
b

n
p(1)

n∑

k=1

k2 (1)k−1(1 − n)k−1

(r1)k−1(4 − n − r1)k−1
(C.1)

For n = 2, the series has only two terms and r1r2 = −2b̂μ. The series itself is thus 1+4 1−2
r1r2

=
b̂μ+2

b̂μ
. The term p(1) is (p1|n = 2) = 2b̂μ

2b̂μ+1
. Substituting into (C.1),

1 − μ =
b(2b̂μ)(b̂μ − 2)

2(2b̂μ + 1)a
=

b(b̂μ + 2)

2b̂μ + 1

that is

−2b̂μ2 + b̂μ + 1 − 2b = 0

μ = {1 − b,−1/2 + b} (C.2)

This result can also be derived using the inclusion/exclusion formula or by writing the dynamic

process for μi.

D Distribution of ideas’ popularity when the social net-

work is a circle

Consider a network in which agents are placed around a circle and have only one friend on

each side. Because ideas diffuse face to face, the number of social network (directed) pairs

with j ∈ Ni ∩ Ni′ is simply 2(kj − 1). It is also easy to see that there are only two directed

pairs such that j ∈ Ni′\Ni. In total, there are 2n directed pairs. Thus P (j ∈ Ni′\Ni) = 2
2n ,

so that|Ni′\Ni| = w
n . The attachment kernel is then At(kj) = 1−b

bt , and the master equation

for the steady state becomes p(k) = (1 − b)p(k − 1). The first term is found to be p1 = b,

hence iterating the master equation gives the geometric distribution

p(k) = b(1 − b)k−1

However, when an idea is known n times, it cannot diffuse more. There are no bias as long as

k ≤ n − 1, but for k > n it must be that p(k) = 0. For k = n the master equation becomes

p(n) =
(1 − b)

b
p(n − 1) − 0

p(n) =
(1 − b)

b
b(1 − b)n−2 = (1 − b)n−1
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The key point in the derivation above is that P (j ∈ Ni′\Ni) is independent of kj . As long

as this is the case, the same distribution will be obtained, because of the normalization by the

sum (the competition among ideas).
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