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Abstract 

We propose a method for spatial principal components analysis that has two important 
advantages over the method that Wartenberg (1985) proposed. The first advantage is that, 
contrary to Wartenberg’s method, our method has a clear and exact interpretation: it produces 
a summary measure (component) that itself has maximum spatial correlation. Second, an easy 
and intuitive link can be made to canonical correlation analysis. Our spatial canonical 
correlation analysis produces summary measures of two datasets (e.g., each measuring a 
different phenomenon), and these summary measures maximize the spatial correlation 
between themselves. This provides an alternative weighting scheme as compared to spatial 
principal components analysis. We provide example applications of the methods and show 
that our variant of spatial canonical correlation analysis may produce rather different results 
than spatial principal components analysis using Wartenberg’s method. We also illustrate how 
spatial canonical correlation analysis may produce different results than spatial principal 
components analysis.  

Keywords: spatial principal components analysis; spatial canonical correlation analysis; 
spatial econometrics; Moran coefficients; spatial concentration 

JEL Classification:  R10, R15, C10 
 

  



1 
 

1. Introduction 

“Principal components” is an often used technique used to summarize data. It is based on 
correlation analysis and can roughly be seen as a way to summarize a dataset of many 
variables into only a few dimensions. Spatial analysis has a counterpart of correlation 
analysis, e.g., in the form of the Moran coefficient. The Moran coefficient measures the extent 
to which a phenomenon, measured by an indicator, is spatially concentrated (a positive spatial 
correlation), or spread-out (a negative correlation).  

As spatial datasets often consist of a large number of variables, it was only natural that 
Wartenberg (1985) turned to the principal components method in order to summarize spatial 
correlations. He proposed a method that was closely analogous to principal components. As 
“regular” principal components essentially means to undertake a spectral decomposition 
(obtaining eigenvalues and eigenvectors) of the correlation matrix of a dataset, Wartenberg 
(1985) simply proposed to spectrally decompose the matrix of Moran coefficients of a 
spatially organized dataset. 

While the spectral decomposition has a clear interpretation in the case of regular principal 
components, it does not have the same, nor an alternative, clear-cut interpretation in the case 
of Wartenberg’s proposed method. His justification of the method was purely at the intuitive 
level, both by the analogy of taken eigenvalues and eigenvectors, and by the results that it 
produced for a number of constructed datasets that show different kinds of spatial 
dependence. 

Below, we will first propose an alternative method for undertaking spatial principal 
components. Like Wartenberg’s method, it is based on spectral decomposition. However, 
rather than taking eigenvalues and eigenvectors of the raw matrix of Moran coefficients in a 
dataset, we propose to spectrally decompose a slightly different matrix. Our method results 
from a clear objective, i.e., that the Moran coefficient of the resulting component is 
maximized. Thus, our summary measure is aimed at showing maximal spatial correlation 
itself. 

The spatial principal components method that we propose can also be extended in a direction 
that is similar to canonical correlation analysis. Canonical correlation analysis is a way of 
summarizing two separate datasets, each into one or a few components, in such a way that the 
correlation between these components, across the datasets, is maximized. Since our spatial 
principal components method already maximizes spatial correlation within a single dataset, it 
can easily be extended to maximize spatial correlation between the summary measures of two 
datasets.  

The rest of our paper is organized as follows. The new method for spatial principal 
components analysis is explained in the next Section (2). Section 3 presents the spatial 
canonical correlation method. Section 4 provides a few applications of the two methods, 
illustrating their use, and comparing the weighting schemes that they produce to Wartenberg’s 
method, and regular principal components.  
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2. Spatial Principal Components: A New Method 

Like Wartenberg (1985), our method starts from the Moran coefficient (e.g., Cliff and Ord, 
1981). We will denote our data matrix of n observations (spatial units) and k variables by the 
symbol X (i.e., X is an nxk matrix of observations). Throughout the paper, we will assume that 
the k variables are z-scores, i.e., that for each variable the mean is zero and the standard 
deviation is one (this simplifies the notation). The n x n matrix of spatial weights is denoted 
by W, and we assume that the sum of elements of this matrix is equal to n (i.e., the weights 
matrix is standardized). Then, the n x n matrix of Moran coefficients between the k variables 
is calculated as  

M = XTWX.          (1) 

The superscript T denotes the matrix transpose.  

In case of no spatial weighting (W is the unity matrix), equation (1) would yield a matrix of 
normal (Pearson) correlation coefficients. In that case, an eigenvector of the correlation 
matrix, denoted by u, would yield a set of weights that could be used to calculate a composite 
measure Xu. This composite measure is actually a projection of the data matrix X on to the 
vector u, and it can be shown that the eigenvector that belongs to the largest eigenvalue is 
associated with the projection that minimizes the residual variance between X itself and the 
projection. In other words, that eigenvector maximizes the “fit” between the data and the 
lower-dimensional projection. The eigenvector associated with every next largest eigenvalue 
correspondingly maximizes the fit of the remaining residual variance. This procedure is called 
principal components.  

Note that the length of the vector u is constrained to one, so that the projection is identified, 
and hence the procedure of minimizing residual variance (or maximizing fit) is a problem of 
constrained optimization. In particular, the principal components procedures maximizes 
uTXTXu subject to uTu = 1, which yields the first-order condition and eigenvalue problem 
XTXu = λu. 

Wartenberg’s spatial principal components analysis takes eigenvalues of the matrix M, which 
can be seen as the outcome of maximizing uTXTWXu subject to uTu = 1, which yields the first-
order condition and eigenvalue problem XTWXu=λu. Note that this can also be written as 
Mu=λu, which brings out clearly that what we are in fact doing in this case is taking the 
eigenvalues of the matrix of Moran coefficients M. Thus, Wartenberg maximizes uTXTWXu, 
which can be seen as the covariance of the non-spatially weighted factor (Xu) and the spatially 
weighted factor (WXu). While this is mathematically sound, we argue that this maximization 
does not have a clear intuitive interpretation, and hence the procedure is in need of an 
objective that is more directly related to the basics of spatial analysis. 

Our proposal is to calculate a set of weights v in such a way that the Moran coefficient of the 
weighted summary variable Xv (which, as in the case of principal components, is the 
projection of the original data on the vector v) is maximized. This idea is the intuition that we 
want to put behind the spatial principal components procedure, which then becomes aimed at 
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finding a summary measure that yields maximum spatial correlation. Mathematically, it can 
be implemented as follows. As long as the vector Xv is a z-score, the Moran coefficient that 
we want to maximize can be written as 

(Xv)TW(Xv)          (2) 

The mean of Xv is zero because X is already expressed as z-scores. However, in order for Xv 
to be a z-score, we also need to choose the weights v such that the variance of Xv is one. 
Hence, given our objective of maximizing the Moran coefficient of Xv, we have to maximize 
equation (2) subject to the condition (Xv)T(Xv) = 1. Note that in comparison to Wartenberg’s 
procedure (as outlined above), we only propose to change the constraint, not the objective 
function. Wartenberg (implicitly) uses the constraint vTv = 1, whereas we use (Xv)T(Xv) =1.  

It can relatively easily be shown that this constrained maximization problem leads to the 
following first-order condition: 

(XTX)-1(XTWX)v = v,          (3) 

where  is the Lagrange multiplier. This is clearly an eigenvalue problem. On the left hand 
side of (3), we find the matrix of Moran coefficients (1), pre-multiplied with the inverse of the 
covariance matrix of the non-spatially weighted data. The solution of our constrained 
maximization problem is an eigenvector of this left hand side matrix. The eigenvector that 
belongs to the largest eigenvalue will maximize the Moran coefficient of the projection Xv, 
and the corresponding eigenvalue will be equal to the largest possible value of the Moran 
coefficient, given the constraint of unit variance.1  

Summarizing, our modification of Wartenberg’s procedure is to pre-multiply the Moran 
matrix M of the variables in the dataset by the inverse of its (non-spatially weighted) 
covariance matrix. Doing so provides a clear interpretation of the eigenvectors of the matrix: 
this eigenvector is the set of weights that maximizes the spatial correlation of the projection of 
the raw data on to this eigenvector.  

3. Spatial Canonical Correlation 

The method of spatial principal components as outlined in the previous section has an 
intuitive extension into the direction of canonical correlation analysis. Suppose that instead of 
just one dataset, we have two, i.e., a matrix X and a matrix Y. Both X and Y have n rows 
(observations), but their number of variables (columns, denoted by kX and kY) may differ. As 
before, we assume that X and Y are z-scores. 

The aim of our spatial canonical correlation analysis will be to find two sets of weights, 
vectors vX and vY, such that the weighted summary variables XvX and YvY are maximally 
spatially correlated to each other. This can be achieved by maximizing the Moran coefficient 

(XvX)TW(YvY)          (4) 

                                                            
1 Note that we can also obtain (3) through maximizing vT(XTX)-1(XTWX)v subject to v’v=1, which would be a 
more general form that does not require the data to be standardized.  
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subject to two conditions: (XvX)T(XvX) = 1 and (YvY)T(YvY) = 1 (the rationale for these 
conditions is the same as in the previous section). After re-arranging, this problem yields two 
first-order conditions: 

(XTX)-1XTWY(YTY)-1(WY)TXvX = vX      (5) 

(YTY)-1YTWTX(XTX)-1XTWYvY = vY      (6) 

where  and  are Lagrange multipliers. Each of these conditions is an eigenvalue problem. 
In fact, the first m (where m is the minimum of by kX and kY) eigenvalues of the two problems 
will be identical, and they will be equal to the square root of the (maximized) Moran 
coefficient that is associated to the eigenvectors in each of the two conditions. Defining A = 
(XTX)-1XTWY(YTY)-1 and M=XTWY,  we get   

AMTvX = vX 

ATMvY = vY 

The solution then is  

vX
TAMTvX  = vY

TATMvY 

Thus, the two eigenvalue problems (5) and (6) provide a different perspective on summarizing 
information in a spatial way: for each of the two datasets X and Y they provide a summary 
measure (XvX or YvY) that maximizes spatial correlation to the other dataset. The eigenvectors 
belonging to the largest eigenvalue in either (5) or (6) provide this summary measure, while 
the square of the largest eigenvalue is equal to the Moran coefficient between the two 
summary measures.  

4. Applications 

We now proceed to illustrate the proposed procedures to some real-world data. The datasets 
that we use are taken from Gallup et al. (1999), who provide a wealth of information on 
geography related phenomena on a global, country-level scale. We use data from two of their 
subsets of data: the physical characteristics of countries (mainly access to waterways and 
climate), and agriculture-related indicators (soil condition and climate zone). The data are 
available for 162 countries, and we use data from the CEPII dataset on distances between 
countries (Mayer and Zignano, 2011) in order to construct our spatial weights (we use the 
distance between the largest cities in a pair of countries). 

These spatial weights are constructed as binary weights, where each (row) country has a 
weight of one for each of its closest 10 neighbour countries, and zero for other countries. This 
matrix is symmetrized by taking the average of cells (i,j) and (j,i) and assigning this average 
to both cells. We use such a symmetric spatial weights matrix because it makes the 
interpretation of the various Moran coefficients somewhat easier (e.g., it produces a 
symmetric Moran matrix M), but we have also applied the method to cases with a non-
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symmetric matrix W.2 Finally, the spatial weights matrix is standardized by dividing each cell 
by the matrix sum (which obviously is 162*10).  

4.1. Spatial Principal Components 

We start by applying spatial principal components analysis to the dataset on physical 
characteristics of countries. This dataset has 13 variables, which are presented in Table 1. 
Nine of the 13 variables relate to access to waterways, either navigable rivers, or sea. The 
emphasis on this characteristic comes from the attention to landlocked countries in the debate 
on economic development (e.g., Gallup et al., 1999). The other variables relate to elevation, 
climate, and population density. 

We apply regular (non-spatially weighted) principal components analysis, Wartenberg’s 
spatial principal components analysis, and our own spatial principal components analysis to 
this dataset.3 We start by looking at what would be called loadings in regular principal 
components analysis, i.e., the eigenvectors that were extracted in each of the three procedures. 
These are documented for the first two components (two largest eigenvalues) in graphical 
format in Figure 1a and 1b.  

Table 1. Variables in the physical characteristics dataset 

Variable description Variable 
code 

mean elevation (meters above sea level) elev 

mean distance to nearest coastline or sea-navigable river (km) seariver 

mean distance to nearest coastline (km) coast 

mean distance to nearest inland navigable river (km) landriver 

distance from centroid of country to nearest coast (km) coastcent 

distance from centroid of country to nearest coast or sea-navigable river (km) searivercent 

Ratio of population within 100 km of ice-free coast to total population popcoast 

Ratio of population within 100 km of ice-free coast/navigable river to total 
population 

popcoastriver 

population in the geographical tropics (%) tropicpop 

% Land area within 100 km of ice-free coast areacoast 

% Land area within 100 km of ice-free coast/navigable river areacoastriver

Typical population density experienced by an individual (persons/km2) popdens 

% Land area in geographical tropics tropicland 

 

 

                                                            
2 If the spatial weights matrix (W) is non-symmetric, the matrix of Moran coefficients between the 13 variables 

will also be non-symmetric. This means that that the eigenvalues in the two spatial variants of principal 
components (and spatial canonical correlation analysis) potentially have imaginary parts. When we worked with 
non-symmetric W matrices (i.e., not in this paper), we always obtained large purely real eigenvalues.  

3 All our calculations are done in Matlab. The functions that were written to perform the analysis are available on 
request. 
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Figures 1a (left) and 1b (right): Eigenvectors for physical characteristics dataset, largest 
eigenvalue (left) and second-largest eigenvalue (right) 

 

The average spatial correlation between the 13 variables in the dataset is modest to low (mean 
Moran coefficient of 0.04, with a standard deviation of 0.22). The maximum Moran 
coefficient observed between two variables in the dataset is 0.77. In terms of the Moran 
coefficients between the resulting summary variables (what would be called “scores” in 
regular principal components analysis), the three methods differ by rather much. The regular 
principal components analysis produces no spatial correlation at all (Moran coefficients -0.01 
and 0.01). Wartenberg’s method produces Moran coefficients of 0.38 and 0.78, respectively 
for the first and second largest eigenvalues. Interestingly, the Moran coefficient associated 
with the second-largest eigenvalue is larger than that of the largest eigenvalue. In other words, 
if one would be looking for a high degree of spatial correlation, using the second eigenvector 
would be better than using the first eigenvector. For our version of spatial principal 
components, the Moran coefficients are 0.83 and 0.50, respectively for the largest and second 
largest eigenvalue.  

The profiles of the eigenvectors in Figures 1a and 1b show clear differences between the three 
methods. For the largest eigenvalue (left figure), regular principal components analysis puts 
most emphasis (highest “loadings”) on popdens, coast, popcoast and areacoastriver (positive 
loadings) and popcoastriver, areacoast, tropicland and seariver (negative loadings). 
Wartenberg’s method stresses elev, tropicland, popdens, seariver and coast (positive 
loadings) and popcoast, popcoastriver, areacoast and areacoastriver (negative loadings). Our 
method emphasizes popdens, seariver, popcoast and popcoastriver (positive loadings) and 
tropicland, coastcent, searivercent and areacoastriver (negative loadings). All in all, it is 
clear that the three methods are far from equivalent in terms of which variables should be 
weighted strongest.  

This leads to a rather different picture of which countries are behind the spatial correlation 
that is observed in the dataset as a whole. Maps 1a and 1b provide an overview of these 
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differences. The colours on the maps indicate the “component scores” (data vectors multiplied 
by the eigenvectors) for Wartenberg’s method and our method for spatial principal 
components. In order to save space, we do not document maps for any second largest 
eigenvalues, nor for regular principal components (which produces no spatial correlation).  

As could already be suspected from the loadings in Figure 1, the two maps produce rather 
different pictures. Wartenberg’s method shows high scores around the globe, but especially so 
in the two large countries that border on the North polar area (Canada and Russia). Large 
parts of Africa, the Americas and Asia also show high scores. Europe is the exception: here 
Wartenberg’s method finds mostly lower values. This is exactly opposite for our method, 
which produces very high values for a cluster of West- and Central-European countries, 
stretching into the Caspian Sea area. This method produces also consistently lower values 
around the equator (on all continents).  

 

 

 

Map 1a (top) and 1b (bottom): Component scores for Wartenberg’s method (top) and our 
method (bottom), only largest eigenvalue 

 

4.2. Spatial Canonical Correlation Analysis 
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In order to apply the spatial canonical correlation analysis, we introduce a second dataset from 
Gallup et al. (1999). This refers to agriculture, and consists of two main categories of 
variables: suitability of land (for irrigation and general soil quality) and the percentage of 
cultivated land in a particular climate zone. The variables are listed in Table 2. 

We undertake the spatial canonical correlation analysis for the physical characteristics dataset 
and the agriculture dataset. This means that we will be looking, for each of the two datasets, 
for weights that summarize the dataset in such a way that the spatial correlation (Moran 
coefficient) with the summary variable from the other dataset is maximized. We start by 
looking at the loadings (eigenvectors), and concentrate only on the eigenvectors that belong to 
the highest eigenvalue. The Moran coefficient that belongs to this is 0.79 (i.e., the eigenvalue 
is the square of this value, 0.62).  

The loadings are in Figures 2a and 2b. We compare the loadings from the spatial canonical 
correlation analysis with those of the spatial principal components analysis (our method), to 
see whether any notable differences arise between the cases where we aim for maximizing 
spatial correlation within the dataset, or between the two datasets. For the spatial principal 
components analysis for the agriculture dataset, we do not document further details of this 
procedure, while for the physical characteristics dataset, these are the results from the 
previous section. 

 

Table 2. Variables in the agriculture dataset 

Description Variable code 

Mean irrigation suitability, very suitable (%)  irrsuit1 

Mean irrigation suitability, moderately suitable (%) irrsuit2 

mean soil suitability 1, very suitable (%) soilsui1 

mean soil suitability 2, moderately suitable (%) soilsui2 

% cultivated land in Köppen-Geiger Af zone  cultcaf 

% cultivated land in Köppen-Geiger Am zone  cultcam 

% cultivated land in Köppen-Geiger Aw zone  cultcaw 

% cultivated land in Köppen-Geiger Bs zone  cultcbs 

% cultivated land in Köppen-Geiger Bw zone  cultcbw 

% cultivated land in Köppen-Geiger Cf zone  cultccf 

% cultivated land in Köppen-Geiger Cs zone  cultccs 

% cultivated land in Köppen-Geiger Cw zone  cultccw 

% cultivated land in Köppen-Geiger Df zone  cultcdf 

% cultivated land in Köppen-Geiger Dw zone  cultcdw 

% cultivated land in Köppen-Geiger E zone  cultce 

% cultivated land in Köppen-Geiger H zone  cultch 

 

For the physical characteristics dataset, we clearly see changes compared to the previous 
section. Compared to the principal components analysis, the canonical correlation analysis 
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loads much higher on coastcent, searivercent, popcoast, areacoast and areacoastriver, and 
much lower on seariver. Note that these are all variables related to waterways. The 
differences for the other variables are less strong, but still there are differences for these as 
well (canonical correlation analysis is lower on elev, tropicland and popdens, but higher on 
tropicpop).  

The differences between spatial canonical correlation analysis and spatial principal 
components seem to be somewhat less for the agriculture dataset. Here, many variables are 
remarkably close in Figure 1b, with soilsui2 as a main exception, and irrsuit1, cultcbs and 
cultcbw as more minor exceptions.  

 

 

Figures 2a (left) and 2b (right): Eigenvectors for physical characteristics dataset (left) and 
agriculture dataset (right), largest eigenvalue only  
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Map 2a (top) and 2b (bottom): Component scores for spatial canonical correlation analysis 
between physical characteristics dataset (top) and agriculture dataset (bottom), only largest 
eigenvalue 

Next, we look at the maps for the component scores for the two datasets, again only for the 
scores belonging to the largest eigenvalue. These maps are displayed in Maps 2a and 2b. The 
map at the top (2a) is for physical characteristics, and can therefore be compared to Map 1b 
above. The first thing that catches the eye in this comparison is that the current map (2a) is 
almost a mirror image of the previous one (1b). Here (before), we have high (low) values 
around the equator, and low (high) values in West- and Central-Europe. There are small 
deviations from this comparison (e.g., Kazakhstan, the USA), but overall, this is a rather 
strong similarity, despite the differences in loadings in Figure 2a. 

Naturally (because of the strong spatial correlation as indicated by the eigenvalue), the map 
for the agriculture dataset looks similar. Here, however, the areas with high (low) values are 
somewhat more concentrated within the larger area around the equator (e.g., the Congo and 
Uganda area rather than all of sub-Saharan Africa), or within Europe. 

 

5. Conclusions 

We have presented a method for spatial principal components analysis that has two important 
advantages over the method that Wartenberg (1985) proposed, and which has found its place 
in the toolbox of computational methods for spatial analysis (e.g., the adegenet R package, see 
Jombart, undated). The first advantage is that, contrary to Wartenberg’s method, our method 
has a clear and exact interpretation: it produces a summary measure of a dataset that itself has 
maximum spatial correlation. Thus, rather than working at an intuitive level, our method 
specifies exactly what is the goal of the weighting procedure that is derived using the 
eigenvalue decomposition of the Moran matrix.  

Second, by this goal of the analysis, an easy and intuitive link can be made to canonical 
correlation analysis. Our spatial canonical correlation analysis produces summary measures of 
two datasets (e.g., each measuring a different phenomenon), and these summary measures 
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produce the maximum spatial correlation between them. This provides an alternative 
weighting scheme as compared to spatial principal components analysis.  

The methods that we propose are computationally easy (with modern computers), and can 
easily be implemented in a variety of software packages. We have Matlab routines available 
on request.  

We provided example applications of the methods and showed that the spatial principal 
components analysis may produce rather different results than Wartenberg’s method. We also 
illustrated how spatial canonical correlation analysis may produce different results than spatial 
canonical correlation analysis. We hope that practitioners in the field of spatial statistical 
analysis will apply our methods to different problems, and thus show their usefulness.  
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Appendix. Our approach of a spatial canonical correlation analysis compared to 
standard CCA 

We want to show in this appendix how our broad approach of maximizing equation (4) in the 
main text subject to the unitary variance of Xu and Yv relates to standard CCA. There is one 
main difference between standard CCA and our spatial variant: we introduce the spatial 
weights matrix W, (in the maximand, not in the constraints). In order to show the equivalence, 
we will first drop the spatial weights W, and show that in this case our approach and CCA are 
identical.  

The starting point is our maximization problem, which can be written as the Lagrangean 

L = (Xu)TW(Yv) – λ1((Xu)T(Xu) – 1) – λ2((Yv)T(Yv) – 1).    (A1) 

 

The non-spatial version of our approach 

Dropping W from the Lagrange function above yields the following alternative Lagrangean: 

L = (Xu)T(Yv) – λ1 (u
TXTXu – 1) - λ2 (v

TYTYv – 1)     (A2) 

The maximand is Cov(Xu,Yv), where X and Y have the same number of rows but potentially a 
different number of columns. The constraints are identical to the Lagrangean A1. 

The first-order conditions are  

Lu = XTYv – λ1X
TXu = 0,  

Lv = YTXu – λ2Y
TYv = 0. 

From the first-order conditions we get u = (XTX)-1XTYv/ λ1 and v = (YTY)-1YTXu/ λ2. Insertion 
into the first-order conditions yields 

Lu = XTY(YTY)-1YTXu/ λ2 – λ1X
TXu = 0, 

Lv = YTX(XTX)-1XTYv/ λ1 – λ2Y
TYv = 0. 

Multiplying through by the Lagrange multiplier and (XTX)-1 and (YTY)-1 respectively from the 
left yields 

Lu = (XTX)-1XTY(YTY)-1YTXu – λ2λ1u = 0, 

Lv = (YTY)-1YTX(XTX)-1XTYv – λ1λ2v = 0. 

For the eigenvectors belonging to the highest eigenvalues then the solution is 

 λ2λ1 = uT(XTX)-1XTY(YTY)-1YTXu = vT(YTY)-1YTX(XTX)-1XTYv. 
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Equivalence with CCA 

Going back to the first set of first-order conditions above, we can show that the result is 
equivalent to CCA, but the above version is much simpler because it goes more directly to the 
eigenvectors.  

Define e = (XTX)1/2u and f = (YTY)1/2v. Then, u = (XTX)-1/2e and v = (YTY)-1/2f.  

Replacing u and v in the first set of first-order conditions yields 

Lu = XTY(YTY)-1/2f  – λ1(X
TX)1/2e = 0,  

Lv = YTX(XTX)-1/2e  – λ2(Y
TY)1/2f = 0. 

From these first-order conditions we get e = (XTX)-1/2XTY(YTY)-1/2f/ λ1 and   

f = (YTY)-1/2YTX(XTX)-1/2e/ λ2. Using these latter equations to replace f in the first and e in the 
second equation yields 

Lu = XTY(YTY)-1/2(YTY)-1/2YTX(XTX)-1/2e/ λ2 – λ1 (X
TX)1/2e = 0, 

Lv = YTX(XTX)-1/2(XTX)-1/2XTY(YTY)-1/2f/ λ1  – λ2 (Y
TY)1/2f = 0. 

Multiplying through by the Lagrange multiplier and (XTX)-1/2 and (YTY)-1/2 respectively from 
the left yields 

Lu = (XTX)-1/2 XTY(YTY)-1/2(YTY)-1/2YTX(XTX)-1/2e – λ2λ1e = 0 

Lv = (YTY)-1/2 YTX(XTX)-1/2(XTX)-1/2XTY(YTY)-1/2f – λ1λ2 f = 0  

Multiplying with eTand fT from the left yields and solving for λ2λ1 yields:  

λ2λ1 = eT(XTX)-1/2XTY(YTY)-1/2(YTY)-1/2YTX(XTX)-1/2e =  

fT(YTY)-1/2YTX(XTX)-1/2(XTX)-1/2XTY(YTY)-1/2f 

Taking the eigenvectors and values and calculating u and v is exactly what CCA does (see 
Johnson and Wichern 2007, chap. 10), but here it has been obtained from our method. By 
implication, our method is equivalent to CCA if W is dropped.   
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