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ABSTRACT

This paper analyses the requirements for a social welfare-optimized transition path toward a
carbon-free economy, focusing particularly on the role of R&D and other technological measures
to achieve timely supply-side transformations in the global production regime that will avert
catastrophic climate instability. We construct a heuristic integrated model of macroeconomic
growth constrained by a geophysical system with climate feedbacks, including extreme weather
damages from global warming driven by greenhouse gas emissions, and ‘tipping point’ for
catastrophic runaway warming. A variety of options for technology development and
implementation, and the dynamic relationships among them will be examined. Technology
options differ in terms of their primary functionality and in emission characteristics. The
specifications recognize (i) the endogeneity and embodiment of technical innovations, and (ii)
the irreversibility and long gestation periods of required intangible (R&D) and tangible capital
formation. Efficient exercise of these options is shown to involve sequencing different
investment and production activities in separate temporal “phases” that together form a
transition path to a carbon free economy. To study the requirements of a timely (catastrophe-
averting) transition, we formulate a sequence of optimal control sub-problems linked together
by transversality conditions, the solution of which determines the optimum allocation of
resources and sequencing of the several phases implied by the options under consideration.
Ours is a “planning-model” approach, which departs from conventional 1AM exercises by
eschewing assumptions about the behaviours of economic and political actors in response to
market incentives and specific public policy measures. Solutions for each of several multi-phase
models yields the optimal phase durations and rates of investment and production that
characterize the transition path. Sensitivity experiments with parameters of economic and
geophysical sub-systems provide insights into the robustness of the requirements analysis
under variations in the technical and geophysical system parameters.

JEL codes: Q540, Q550, 0310, 0320, 0330
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Optimal Multi-Phase Transition Paths toward a
Stabilized Global Climate:

Integrated Dynamic Requirements Analysis for the ‘Tech Fix’

1. Background and Motivation

Climate change is now convincingly linked to increasing atmospheric concentrations of
GHG (greenhouse gases).I Among those who have examined the relevant scientific data
there has been a growing consensus that this poses an inter-related host of worrisome
problems. Moreover, rather than conveniently going away, or gradually being
accommodated by adaptations on the part of the world’s peoples, these problems are
likely to grow worse. While on many specific points of climate science uncertainties,
doubts and disagreement persist, the underlying physical and chemical processes
responsible for anthropogenic “greenhouse effects” warming the Earth’ surface are
firmly grounded, as is the accumulating mass of empirical observations attesting to the
rise in mean global temperature that has taken place during the past two centuries.2
Together, these findings firmly undergird the scientifically informed warnings about the
consequences of continuing “business as usual” based on burning fossil fuels.

The rising levels of moisture that will accompany the warming of the Earth’s surface in
the temperate latitudes can be expected to drive more frequent and more severe
weather cycles, bringing heavier precipitation, stronger winds and weather-related
damages to physical property and losses of human life. Moreover, it is more than
conceivable that at some point in the not very distant future continuing the current rate
of GHG emissions and unimpeded global warming will usher in an age of
catastrophically abrupt climate changes, characterized by chaotic instabilities in Earth’s
climates. This would drastically curtail the fraction of the world’s current population
that would be able to achieve a state of “adaptive survival” preserving substantial
resemblances to the present state of civilization.

Mitigating environmental damages from CO2, methane and dangerous particulate
emissions by more extensively deploying known technologies, and replacing carbon-

1 See IPCC (2007): p.2.

2 See Solomon et al. (2007) on the physical basis and scientific evidence for IPCC conclusions regarding
global warming and its sources in human activity. “Climate scepticism” and “global warming denial”
should not be confused with the generally acknowledged scientific uncertainties that still surround the
values some key parameters in quantitative models of the processes involved in anthropogenic global
warming -- e.g., the magnitude of the “climate sensitivity” (linking changes in mean global surface
temperature to relative gain in atmospheric GHG concentration), and the critical level of temperature gain
that would trigger irreversible runaway warming and catastrophic climate instability. See further
discussion below and details in footnotes 6-7.



based production systems with those that utilize new and economically efficient
“carbon-free” technologies, are two obvious courses of action that may be able to avert
these grim future prospects. Together with still more radical adaptations that possibly
may be achieved by geo-engineering to capture and sequester existing atmospheric
carbon and methane, these form the core of the technological options whose
development and deployment are the focus of this exploratory examination of the
dynamics of a feasible and timely transition to a sustainable low-carbon global
economy.

A program of public and private R&D investments yielding directed technical changes of
this kind should be viewed as a “supply-side strategy” in the campaign to stabilize global
GHG concentrations at a viable level. Such a “technology fix” program would be
complementary to carbon taxes, and the “cap and trade” schemes that have envisaged
the development of a global market for carbon-emissions permits and derivative
instruments. These latter mechanisms would work primarily by raising the current and
expected future relative prices of carbon-intensive goods and services. Were they to
have that effect, the volume demand for goods and services (e.g., electricity supply,
transportation) that are especially carbon-intensive in their methods of production,
would be reduced. Whereas the “carbon emissions-pricing” policy proposals to meet
the challenges of climate change are directed toward achieving the same ultimate goal
as the “technology fix” strategy, they give at best secondary notice to the role that
publicly supported R&D investments directed towards the generation of carbon-free
technologies may play in the dynamics of a transition to a new, radically less carbon-
intensive system of production for the world economy.

The “supply-side” approach that this paper explores, however, should not be
understood merely as an optional supplement to “demand-management” through
emissions-pricing policies that to date have received preponderant analytical and
practical attention in the economics literature on climate change. Previous economic
arguments for greater investment in R&D and diffusion of technologically enhanced
production methods are relatively few and far between in the economics literature
concerned with climate change, but it is notable that academic papers in that genre had
begun to emerge even before the debacle of the attempt at the 2009 Copenhagen
Conference to strengthen and expand to Kyoto Treaty protocols.3 Neither these early

3 In the wake of the Stern Report (2007) and the Copenhagen Conference economic arguments for greater
public and private investment in R&D, and subsidies for the diffusion of advanced technologies directed
to lowering CO; emissions began appearing more frequently - although these typically remained
unspecific. Early statements proposing a “technology fix” approach include Arrow, Cohen, David et al.
(2008), Nelson and Sarewitz (2008), Klemperer (2007 /2009), David (2009), David, Huang, Soete and van
Zon (2009), and Hendry (2010). None, to our knowledge, venture to examine the required behaviour of
directed R&D and capital formation embodying innovations that would lower the global rate of GHG
emissions per unit of real output, which is the focus of the present work. Such theoretical and



forays into this area, nor other works to our knowledge, ventured to examine the
required dynamic sequencing of directed R&D and other technology policies affecting
public and private sector investments required for a timely transition to a low-GHG
emitting production regime, the policy issue that is the focus of the research reported
here.

It has been suggested that CO; emissions abatement achieved by the introduction of
carbon-taxes or “cap-and trade” schemes for “pricing” transferable emissions permits,
could indirectly achieve what public research expenditures and tax subsidies for private
investment in “green” R&D would otherwise have been directed to accomplish.# The
argument is that the effect of raising the cost of carbon-intensive processes and
products to producers and consumers will be to stimulate producers’ demands for
offsetting, carbon-free technologies and induce incremental private funding of the
search of those innovative methods.

Although that is a possibility, so too is the opposite outcome. If raising carbon taxes
does effectively curtail demand for highly carbon-intensive products, the result may
well be a weakening of the market incentives for R&D investment in those lines of
business.> Moreover, the imposition of carbon taxation that is likely to be maintained
and even rise in the future might well have the perverse first-order effect of depressing
the present value of fossil fuel stocks in the ground. Beyond this possible drawback in
reliance upon carbon taxes, there is still greater room for doubts regarding the efficacy
of downstream cap-and-trade schemes, which price the emissions from burning carbon,
but not the carbon material that is the energy source. It is not at all obvious that putting
a price on the emissions from the burning of hydrocarbons necessarily would suffice to

computational modelling that has been undertaken to date has largely following the pioneering work of
Goulder and Schneider (1999), which is noted below.

4 Among the pioneering efforts to examine the proposition that raising the price of carbon would induce
beneficial private investments in technological innovation, see the working papers by Nordhaus (1997),
and Goulder and Mathai (1998). Goulder and Schneider (1999) carried this line of inquiry farther by
using a computable multi-sector general equilibrium model to quantitatively assess the extent to which
real GDP costs of imposing CO; abatement taxes would be altered by the effects of endogenous
technological improvements resulting from R&D investment induced by the effect of the tax on the
relative prices of carbon vs. non-carbon inputs. This modelling exercise did not, however, undertake an
evaluation of the efficacy of the hypothesized induced technical changes in terms of the magnitude of the
absolute abatement of the economy’s aggregate CO, emissions rate. More recent exercises in integrated
climate policy assessment have undertaken to do so, as is noticed below (in section 2).

5 The question cannot be settled on theoretical grounds, but see Gans (2009) for analysis of the conditions
under which carbon-taxes would have a perverse effect of discouraging carbon emissions-reducing
technology research and innovation. Acemoglu, Aghion, Bursztynx, and Hemous (2010) explore the
conditions for carbon taxes in a growth model with environmental (carbon emissions) constraints and
endogenous directed technical change driven by private sector R&D investments. They find that with a
sufficiently high elasticity of substitution between high carbon-intensity and low carbon-intensity inputs
in production, carbon taxes can switch directed R&D to “clean” (low carbon intensity) technological
research, and that there is a complementary role for “temporary R&D subsidies” as well.



raise the combined price of the material and its combustion, so the possibility of a
perverse relative price change cannot be definitively ruled out.6 By contrast, the
proposal of an “up-stream” implementation of the cap and trade mechanism (see
Repetto 2011) is attractive because effective restriction of the volume of fossil fuels
available from all “first sellers” would necessarily raise the cost of carbon-based energy
sources. Further monitoring and enforcement of the “caps” would be greatly simplified
by the limited number of “first sellers” and the ease of identifying them - especially in
comparison with the myriad downstream users that would require CO2 emission
permits. Nevertheless, as efficient as it might be, the political economy of national and
international agreements to impose this very direct way of fixing the greenhouse gas
externality does not seem to give it any advantage vis-a-vis the more familiar
“downstream” cap-and-trade mechanism: government regulations banning unlicensed
first sales of fossil carbon sources of energy is tantamount to state expropriation and
control of those forms of natural resource wealth, and therefore is likely to be strongly
resisted by politically powerful private interests.

In these circumstances it may be pointed out that the present and likely future social
and political resistances to their being introduced in modern, market-oriented countries
provides compelling reasons for greater priority “tech fix” strategies than they have
been receiving in past and current analyses and popular discussions of climate change

policy.

Moreover, it may be argued that there is a case to be made for deferring efforts to
remedy the under-pricing of fossil fuel-based energy and focusing instead on “tech fix”
implementations. The argument for pursuing that course rests upon the temporal
symmetry in the complementary (or super-modularity) relationships between the two

6 This source of ambiguity regarding the effects of using the “cap and trade” mechanism to set a positive
price on carbon emissions, it should be emphasized, is distinct from the concerns about the possible
disincentive effects of carbon taxes’ negative impacts on demands for carbon-intensive goods and
services - e.g., those relying heavily on production processes using energy sources such as coal, oil and
natural gas. The theory of exhaustible natural resource pricing, following the classic work of Hotelling
(1931) tells us that the resource valuation must rise at the rate of interest, and with marginal extraction
costs constant, the price of the flow of materials traded in the market must rise pari passus with that of
the resource deposit. But, the downward pressure on the valuation of existing resource reserves of
expectations that the future demand for carbon-based energy sources will be curtailed, whether by the
effects of impeding high charges for CO, emissions, or anticipations that carbon-free substitute energy
sources and more energy efficient production process innovations will be forthcoming, would work to
lower the levels from which the market prices of coal, oil and natural gas would be trending upwards.
Whether this offset’s magnitude would be large enough neutralize the intended impact of a global cap-
and-trade scheme, or so large as to perversely push the unit costs of burning carbon downwards, is a
second empirical question - one that needs to be answered by advocates of “cap-and-trade” schemes -
although not by proponents of carbon-taxes. On first consideration, the answer would seem to turn on the
extent of the anticipated demand displacement in relation to the size of the resource reserves that could
be accessed from the markets in question, which make a complete offset seem unlikely in the case of the
world’s coal reserves.



policy approaches when political economy as well as market effects are considered.
When viewed in this expanded and explicitly dynamic perspective, “tech fix” is seen as
being complementary to (and not a substitute for) strategies focused on getting the
market “price of carbon” to reflect its marginal social costs

2. Preliminaries for modelling a “Tech Fix” strategy’s dynamic requirements

All of the previously mentioned supply-side options, however, require paying explicit
attention to major changes in production systems and/or changes in life-style and
consumption patterns. Furthermore, to explore the dynamics of transitions towards a
less carbon-intensive production regime and the role that research policy would have to
play, it is necessary to consider the temporal duration of R&D activities directed to
altering the performance characteristics of various classes of technology, as well as the
duration of tangible capital formation processes required by technologies that must be
“embodied” in new physical plant and equipment. Such questions can be most usefully
explored in this paper within the framework of a heuristic model of endogenous global
economic growth, which is the research approach pursued here.

It is no less essential to begin by explicitly taking into account the dynamic behaviour of
the geophysical system within which the global economy is set. That larger physical
context quite obviously imposes both natural resource and environmental constraints
upon the production regime, as well as impinging directly upon human welfare - in this
instance through the continuing anthropogenic emissions of greenhouse gases and their
destabilizing impacts upon global climate and the accompanying alteration of weather
patterns.

2.1 Geophysical system constraints

There are now firm scientific foundations for the growing concerns that to allow GHG
emissions to continue at anything close to their present rate may soon set in motion
irreversible runaway global warming, with potentially catastrophic consequences for
global ecosystems and for human life as we know it. This conclusion has survived the
persisting doubts voiced by a dwindling fringe of academic “climate change sceptics”
and outright deniers of the seriousness of the problems that continued global warming
will pose.”

7 Despite the evidence presented by Solomon et al. (2007), doubts have been raised about conclusion that
the warming trend observable during the second half of the 20t century resulted from radiative forcing
due to human activities. These doubts are rooted in criticism of IPCC models of general climate circulation
models (GCMs) on account of their poor performance in predicting the high frequency and high relative
amplitude variations in global climate during the past 50-60 years. See, e.g., Scarfetta (2011) and
references therein for studies showing that the latter variations can be more accurately predicted by
statistically fitting harmonic (Fourier series) regression models that combine indicators of multiple
astronomical cycles with differing frequencies. Such research, however, sheds scant light on the dynamics
of the physical forcing processes that would account casually for the observed statistical correlation, nor



The mass of evidence provided by chemical analysis of the gases in the deep ice cores
that have been extracted from Arctic and mountain glaciers during the past decade-and-
a-half has allowed climate scientists to document a history of abrupt alterations of the
Earth’s climate(s) during pre-Holocene epoch. The record points to the possibility that
even modest global warming driven by continued anthropogenic emissions of GHG
could trigger the onset of irreversible global warming, but as a form of climate
instability that during the most recent transition between glacial and stadial epochs
featured a prolonged era of “climate flickering.”8 This latter term refers to a climate
regime characterized by high frequency switching (with periodicities as shortas 3 to 5
years) between markedly warmer and cooler average temperatures -- the latter
differing by as much as half the 12° C. range between the lowest and highest extremes
recorded during Earth’s glacial and stadial episodes. The possibility of catastrophic
state change of that sort undermines the sanguine suppositions that the continued
emissions of CO2 would simply result in a smooth transition to a warmer global climate
to which human societies would be able to successfully adapt.

The positive feedbacks that would drive runaway global warming dynamics --and its
manifold entailed damages to human welfare - are those generated by the amplification
of the linkage between elevated GHG concentration levels of anthropogenic origins and
stronger radiative forcing that produces faster warming of Earth’s surface. The
warming at various points triggers self-reinforcing alterations in the behaviour of the
geophysical system. These feedback processes would operate to increase the strength
of the radiative forcing resulting from a given atmospheric GHG concentration level;
boost the surface absorption of heat, and hence the rate of warming produced by a
given level of radiative forcing; supplement direct anthropogenic emissions of CO2 by

does the existence of unexplained fluctuations around a trend vitiate the positive statistical significance of
the trend itself. Recent theoretical efforts, such as that by Stockwell (2011), offer a general physical basis
for the skeptics’ contention that periodic radiative forcing from astronomical sources, not accounted for
in the IPCC’s GCMs, could be responsible for the latter’s failures in predicting recent high frequency
variations observed in the Earth’s temperature. The trouble with this line of speculative criticism seems
obvious enough: variations in solar radiation are not thought to be a concurrently emerging feature in the
history of our planet’s astronomical environment. Consequently it is hard to understand how that
phenomenon could account for the break observed in the last half-millennium’s worth of data indicating
the long-term trend in the Earth’s temperature.

8 Hall and Buhl (2006) review the findings from recent advances in climate science, and point out that its
implications thoroughly undermine the supposition long maintained by mainstream contributors to the
literature on energy and environmental economics, namely, that “climate change” driven by rising GHG
concentration levels could be satisfactorily modelled as a smooth transition to a higher equilibrium level
of the global mean surface temperature - as has been assumed by the integrated assessment models
(IAMs) that have figured prominently and remain salient in the energy and environmental economics
field. See Hall and Behl (2006: pp.461-462) for a detailed discussion of this and related features of the
geophysical sub-system in Nordhaus and Boyer’s (2000) updating of the original (Nordhaus 1994) DICE
model, The assumption that radiative forcing due to the accumulation of atmospheric CO2 would drive a
smooth transition to a higher equilibrium temperature of the Earth’s surface is retained by Nordhaus
(2010) in the latest update of DICE (2010), as well as in the annualized version of the model that Cai, Judd
and Lontzek (2012) create as a basis for DSICE, a stochastic version of the model.



triggering releases of methane (a much more powerful GHG) - which, at lower
temperatures, would have remained naturally sequestered in the permafrost beneath
glacial ice and in the methane hydrates lying on the shallow seabed at the northern edge
of the arctic ocean.

Some of the intervening steps of such sequences (depicted schematically in Figure 1)
have a cascade-like sub-structure that serve to extend and further accelerate the
positive feedback process.? For example, glacial retreat, by lowering albedo (the
fraction of sunlight reflected by the earth’s surface) in the affected regions leads
immediately to greater local heat absorption. This in turn promotes thawing of the
exposed permafrost and the formation of “thaw lakes” from which (like other wetlands
covering decaying organic material) methane will bubble to the surface. Similarly, the
warming of the upper ocean, particularly in the shallower Arctic waters can destabilize
the methane clathrate compounds that had formed there - and, more generally in the
deeper ocean - during an earlier epoch. Similarly, warming of the large peat deposits in
the arctic Siberian shelf would augment the release of methane from that natural source.

Methane in the atmosphere is over 20 times more potent than COZ2 in its greenhouse
effects, and so clouds of the gas, bubbling up to the surface and flowing quickly to the
atmosphere will cause the COz-equivalent concentration level and the strength of
radiant forcing to spike upwards. But, methane (CH4) is an unstable molecule that is
subject to immediate degradation by exposure to the water molecule called “OH
radical,” which sets in motion a chemical chain reaction that within several days will
have converted the newly added methane molecules to water and CO;.19 Consequently,
the strong effect upon radiant forcing of a sudden jump in atmospheric methane
concentration (unlike that of gains in COz ppmv) is only transient and its persisting
direct result upon the rate of global warming will be equivalent to that of the additional
(unabated) CO2 produced by the chemical reactions that degrade CHs. A surge in
warming resulting from a prolonged elevation of the rate of methane flux, nevertheless,
may be sufficiently extended to induce further positive feedback effects that are self-
reinforcing and contribute to raise the persisting atmospheric concentration of CO2.11

9 See Stern (2007), pp- 11-14, for a short overview of the positive feedbacks, including reduction of albedo
through reduced ice-coverage of the arctic regions, thawing of permafrost and induced release of
methane, as well as the release of methane from oceanic hydrate stores.

10 See Archer (2011:Ch5) for a lucid exposition of the methane cycle, drawing largely on Jacob (1999). The
OH radical (denoted OHe) is produced naturally by the effect of sunlight on water, which causes the later
to lose a hydrogen atom, and to immediately steal one from an available methane molecule --yielding H,0
and the methyl radical (CHze ), which a chain of simple chemical reactions ends up producing 2 stable
molecules of water and one of carbon dioxide.

11 While it appears that there is little likelihood of this happening spontaneously through natural events
(such as disruptions of the deep ocean seabed) that would take place on large enough scale to have
catastrophic climate consequences, the size and instability of the Earth’s methane hydrate reserves and



Clouds of methane gas could be abruptly released by the warming of shallower ocean
waters along the Arctic Ocean’s edges, since it is expected that a rise of only 22 C. in
water temperature would be enough to destabilize the methane clathrate compounds
that are holding CH4 trapped in its cage-like molecular structure. This, - the
hypothesized “Clathrate Gun” effect - which would operate analogously to produce
abrupt methane releases when the permafrost retreated, is now thought to be a primary
mechanism of the pre-historic episodes of pronounced high frequency temperate
fluctuations that have left a record in the deep Arctic ice-cores.12

Yet another perverse feedback loop involves forest die-back. This worries scientists
studying the boreal forest stretching across the northern latitudes of the North
American continent and Russia -- a zone whose trees represent between 25 and 30
percent of the world’s forest cover, and which is reported to have experienced the most
pronounced temperature increases observed anywhere on the planet during the last
quarter of the twentieth century. In the northern latitude of Siberia the predominant
needle-shedding larch forests are being replaced by evergreen conifers that grow more
rapidly in the summer warmth, but the evergreen trees absorb more sunlight and their
expansion is thus contributing to the global warming trend.3

The loss of predictability of local environmental changes accompanying profound
ecological damage and losses of human life and welfare, and the socio-economic
repercussions that would exacerbate the process thereby set in motion, can be left to
the imagination at this point. Suffice it to say that the prospect, however remote, imparts
considerable urgency to the task of developing a workable approach to identifying the
requirements of an effective “technology fix” to averting its realization.

the uncertainties surrounding the present state of scientific knowledge lead a sobre climate scientist like
Archer (2011) to characterize those potentialities as “frightening”.

12 Even quite moderate warming of the ocean waters along the continental shelves is thought to be
sufficient to destabilize the methane clathrate compounds that have formed on the seabed in northern
latitudes. On the “Clathrate Gun” hypothesis, and it’s relevance as an explanation of abrupt climate
change and the phenomenon of “climate flickering” at the end of the last ice age, see Kennett et al (2003),
Maslin et al. (2004), Hall and Behl (2006), Reagan and Moridis (2007). The high frequency of the
temperature fluctuations recorded in the ice-cores are held to militate against the earlier theory that this
abrupt and catastrophic alteration of the climate system could have been produced by a “thermohaline
collapse”, which would result in climate cycles of much lower frequencies.

13 Whether this is compensated by their greater capacity for absorbing CO; is not clear. If such is the case,
it is being offset in the southern drier boreal zone, where water-stressed trees in the summer grow less
rapidly and the forests are being replaced by grasslands and pasture.
http://en.wikipedia.org/wiki/Boreal forest#Climate change



Our modelling approach in this paper builds upon the pioneering work of economists on
climate policy analysis represented in so-called integrated assessment models (IAMs)
that provide a simplified characterization of the essential features of the geo-physical
system.!* These quantify the linkage between the flow of GHG emissions from economic
activity and the augmented radiative forcing that drives higher mean global
temperatures at the Earth’s surface (the “green-house” effect). Modelling the carbon
cycle takes account of the natural sequestration of CO; in the forests and oceans, and the
consequent lagged effect in the adjustment of the accumulated atmospheric stock of
GHG (equivalent CO; ppmv); the “climate sensitivity” parameter describes the
equilibrium mean surface temperature’s response to a doubling of the CO;-e
concentration in the atmosphere. 1> Within that characterization of the physical
framework, our model adds specifications of the production sector of an endogenous
growth model in which directed R&D expenditures can raise the productivity of newly
formed capital goods embodying novel “carbon-free” technologies, and hence enhance
the economic efficiency of those additions to aggregate (sustainable) production
capacity.1¢ This is the nexus through which public “research policy” interventions that
boost investments in science and R&D can positively affect social welfare by lowering
the costs of switching to production systems characterized by low, or in the limit “GHG
emissions-free” technologies.1”

14 For surveys and reviews of the evolving field of research on [AMs, after Nordhaus (1993), see
Dowlatabadi (1995), Kelly and Kolstad (1999), Parker, Letcher, Jakeman et al (2003), Ackerman,
DeCanio, Howarth and Sheeran (2009).

15 For purposes of our model described below, atmospheric GHG (ppmv) concentration levels are given by
an initial baseline level plus a scalar function of the integral of (CO; -e) emissions from the baseline date,
the latter being proportional to the mean rate of CO, emitted per unit of output produced (proportional to
utilized capacity) and not being absorbed by the forests and the upper and lower ocean. This
simplification ignores the lag effects of emissions on changes in atmospheric CO; that result from the
carbon-cycle diffusion of the gas between the atmosphere and the upper ocean, between the upper ocean
and the lower ocean, and the upper ocean and the atmosphere. In addition it linearizes the relationship
between the atmospheric concentration of carbon relative to its level at a base date ( E¢/Eo, in our
notation) and the absolute gain in radiative forcing from the atmosphere, F; - Fo. Widely used IAMs --
e.g., versions of DICE due to Nordhaus (2002, 2007) - typically represent the change in atmospheric
radiative forcing as taking the form AF;= n[log (E:/Eo) - log(2)] with adjustments for the direct and
indirect effects of radiative forcing from the upper and lower oceans. Ignoring the latter, and the lags in
the relationship between changes in the radiative forcing and those in Earth’s surface temperature, the
parameter 1 is the approximate “climate sensitivity”: the expected long-run gain in T relative to its base
level resulting from doubling the atmospheric CO; concentration. Our simplified dynamics of the
geophysical subsystem is more acceptable in modeling the transition paths to climate stabilization than it
would be in simulating the course of carbon emissions and temperature changes over the 600 year long
time span of optimally "moderated” CO; emissions envisaged by DICE (2007) and its precursor IAMs.

16 Presently, R&D outcomes are completely deterministic in our model, but we envisage the introduction
of stochasticity in several relationships, including this one.

17 In proceeding in this way we have not ignored the controversial suggestion advanced by Weitzman
(2009b) that the scientific uncertainty surrounding the behaviour of the geo-physical system, such as the
distribution of the “climate sensitivity” parameter, leaves open the possibility of catastrophic outcomes



-10 -

But in this matter the timing as well as the magnitude of remedial action is a critical
concern. The Intergovernmental Panel on Climate Change (IPCC) has concurred in the
conclusion that there is a critical threshold at 2 degrees C. of global warming from the
earth’s preindustrial mean temperature beyond which the probability of being able to
avert catastrophic runaway global warming begins to drop below 50-50. Due to the
cumulative volume of persisting GHG emissions up until this point in time, however, the
world already is committed to a future rise in mean global temperature (relative to the
present) on the order of 0.5 to 1 degrees - even if carbon emissions were completely
stopped. Even if the” tipping-point” were set at a 3 degree gain, this leaves relatively
little room for further warming without catastrophic consequences, as the Stern Report
pointed out (Stern, 2006: p.15). The implication is that under a “business as usual” rate
of GHG emissions there may not be very much time left before the critical threshold will
be crossed and the problem facing the world’s population will be transformed to one of
learning to adapt as best we can to the almost unimaginable mounting damage and
societal disruptions entailed in coping with a destabilized climate system.

Against this worrisome background, it is a particularly harsh fact of present economic
life that to make major changes in production systems also takes considerable time (and
resources). This is because the transition from carbon-based production to carbon-free
production involves first the (further) development of carbon-free alternatives and
secondly the subsequent implementation of these alternatives through investment in
tangible capital formation projects, including infrastructure modifications that will have
long gestation periods. Furthermore, the development of the new technologies required
will entail the commitment of resources to R&D projects of uncertain and possible
extended durations. The claims of these programs of tangible and intangible investment
therefore will press upon consumption levels for some period without yielding resource
savings or significantly lowering the rate of GHG emissions.

Thus, the reality of transitioning towards a carbon-free economy in time to avoid
crossing the critical temperature threshold into climate instability will be, at best, an

that may occur with vanishingly small “fat-tailed” probability. The dismal implication for economic policy
design would seem to be the extreme form of the “precautionary principle” in which all other
considerations are outweighed by this threat and the willingness to pay to avert it become infinite. To
accept that view would militate utterly against any effort to pursue social welfare optimizing policy
analysis within the framework of an equivalent deterministic system. But while the existence of a “fat-
tailed” distribution follows from Bayesian statistics, as shown by Weitzman’s mathematical result, the
implications of his “dismal theory” concerning the economic policy implications have been found to come
from the assumed constant relative risk aversion (CRRA) property of the tradition social utility function
that has been posited by Weitzman, along with other economists working on the welfare analysis of
climate policy. Millner (2011), in a lucid and insightful review of the controversy ignited by Weitzman
(2009b), shows that the “harmonic absolute risk aversion” (HARA) utility function -- a generalization of
the traditional (CRRA) utility function that is widely used in the finance literature -- not only yields finite
welfare measures when risks are fat-tailed; under plausible parameter conditions it also makes policy
evaluations relatively insensitive to the tails of the consumption distribution.
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uncomfortable, unremitting and perilous journey for humanity. The particular analytical
challenge that is taken up in this paper is how best to schedule R&D expenditures and
related tangible capital formation at the macro-level so as to maximise the societal
welfare (or more realistically minimize the damage to social welfare) associated with
the entire transition path towards a carbon-free production regime in a GHG-stabilized
environment, taking into account the diversion of resources away from consumption
that those investments entail. Towards this end we have constructed a multi-phase,
multi-technology endogenous growth model that allows for the expenditure of R&D
resources on the creation and improvement of “carbon-free technology” and
acknowledges that this form of investment diverts real resources from consumption
and hence adversely affects societal welfare in the short run (doing ‘nothing’ would
have negative welfare effects in the long run, however).

Taken together, the economic and geo-physical sub-systems pose a timing problem,
since old carbon-based technologies generate COz emissions, and postponing the
implementation of new, carbon-free technologies reduces the time available for building
up new capacity while cumulative emissions of CO; (and other GHG’s) remain below the
associated critical threshold concentration (and associated mean global surface
temperature) that can trigger the onset of climate instability. Starting soon enough to
undertake the R&D (which takes both time and resources) can make available a better
performing family of low-carbon and carbon-free technologies in time to embody that
knowledge in new production facilities and avoid crossing that “tipping point”, but how
soon is soon enough will depend upon the rate of R&D investments and their impact on
the productivity of carbon-free production facilities, as well as the economy’s capacity
to replace “dirty” carbon-using capacity with a carbon-free capital stock.

The following section of the paper demonstrates how this and related questions can be
answered by formulating and solving a sequence of optimal control sub-problems for
each distinctive phase in the transition from a “business-as- usual” carbon based
economy to a sustainable carbon free economy, and then tying optimized phases
together in “stacked Hamiltonians” by the use of transversality conditions that
guarantee the optimality of the transition path as a whole. The sub-sections of section 2
apply this approach in developing increasingly more complicated models, all
constructed on the basis of the most elementary growth model. Section 3 comments on
a number of insights that the three partial models provide about questions of timing in
exercising various technology-fix options. It also reports preliminary results from the
use of sensitivity analysis to assess the effects on optimal investment paths of variations
in the assumed location of climate “tipping points”. The paper concludes in Section 4
with a brief review of what has been learned, what remains to be studied, and the
proximate next steps in pursuing this line of research into the design and
implementation requirement for a successful technology fix for global climate
instability.
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2. Modelling the phases of a timely transition to a” carbon-free”
production system

2.0 An incremental model-building agenda

Rather than undertaking from the outset to specify the structure of an equivalent
deterministic dynamical system that incorporates numerous features of each of the
various possible technological strategies that could be deployed to stabilize global
climate, we proceed towards that goal in a step-by-step manner, taking three discrete
partial model-building steps, and investigating what can be learned about the dynamics
of an optimal transition path from each of them, considered separately.

We start from a basic model in which there are two available technological options, a
mature carbon-intensive technology that is embodied in existing fixed production
facilities and a carbon-free technology that has yet to be deployed by appropriate
capital formation. The tableau in Figure 1 (below) provides a summary overview of
activities that distinguish the three phases of the transition that transforms the
economy of our Basic Model from a carbon-burning “business as usual” regime to one in
which the switch to producing exclusively with carbon-free capital facilities has
stabilized the global climate. The tableau’s columns indicate the different production
technologies that can be used by the generic economy, whereas the different kind of
tangible (and intangible investments) that may be undertaken are shown in the rows.
The shading (in red, for the Basic Model) shows the combinations of concurrent
investment and production activities that are compatible with efficient resource
allocation in each phase of the transition path.

Next, we introduce into the Basic Model set-up the possibility of undertaking R&D
expenditures during the “business as usual phase”. These investments in “directed
technological change” are aimed to reduce the unit capital costs of production facilities
embodying the carbon-free technology, raising the average productivity of KB enough to
be competitive with that of capacity based on the carbon-using technology. In this
elementary model of a three-phase “endogenous R&D-driven transition”, only when that
technological goal is attained does R&D expenditures (and further tangible investment
in carbon-intensive production capacity) come to a halt, and tangible capital formation
begins deploying the carbon-free technology. This is indicated in Figure 2 by the
tableau’s blue shaded areas.

In the third of the partial models to be examined, the structure of the basic model is
extended by allowing for the exploitation of a third class of technological opportunities.
These do not require significant R&D investments, since they make use of known “core”
engineering techniques to provide an “intermediate”, less carbon-intensive set of
production technologies that in effect serve to “green” existing carbon-using direct

production facilities and infrastructure. Because they are characterized by lower rates
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of COz emissions per unit of capital than the old carbon-based technologies (although at
a higher capital cost per unit of output), they provide a reduced emissions-output ratio.
Thus they can “buy time” to make the tangible investments needed to switch to a

carbon-free production regime.

Figure 1: Basic Model (Red)
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Production (Capacity in Operation)
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capital K*
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Carbon-free

joint production

High emission rate

Greened Carbon Carbon Free
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Figure 2: Basic Model with R&D (Blue)
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Figures 3.1 and 3.2 display in tableau form the pair of alternative 5-phase trajectories
that arise in the case of the buy-time model. Each version can be solved for an optimal
transition path, but to find the optimum optimorum it is necessary to evaluate and
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compare the implied present value of the social welfare index associated with each of
them. 18

Figure 3.1: Buy Time Model Trajectory 1 (Dark Green)
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Figure 3.2: Buy time model Trajectory 2
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Carbon-free capital
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18 Note that the production constraints in the model, including those derived from the technological
parameter values, may determine which of the alternative trajectories can satisfy the optimality
requirements, so that the answer to the question which to choose becomes an empirical matter. See
section 2.3 for further discussion.
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In the optimal control solutions each of the three foregoing “partial” models of a climate
stabilizing transition, the internally optimized phases of the model are tied together by
transversality conditions. That makes it possible to obtain the “requirements” of the
entire optimal transition path, in terms of the optimum durations of its phases, and the
optimized within-phase levels of activity for production, consumption, and investment
rates (both the intangible R&D and the alternative tangible forms of technology-
embodying capital formation) - as well as the implied flows of CO2 emissions up to the
point at which the global economy’s production regime reaches the goal of a carbon-
free state that averts the onset of irreversible climate instability. Even in the simplest of
possible growth-model settings that has been specified, the solutions of each of these
successively more complicated models to find their respective overall optimal transition
paths must be obtained by numerical analysis of the resulting systems of “stacked
Hamiltonians” - the details of which following section discusses ad seriatim.

The presence of different phases of transition in which production capacity embodying
new (comparatively “clean”) technologies is built up and that based on old (“dirtier’)
techniques is run down and eventually discarded, is the feature that renders this
modelling framework different from the standard AK growth model. A central task for
our analysis of each of the models, therefore, must be to find the optimal configuration
of specific investment and production activities, in combination with the optimality of
their scheduling during the course of the transition to a viable and stabilized climate.

The questions addressed by this modelling exercise are not predictive. Rather than
venturing to throw light on what will happen, they ask what has to be done, and when
must it be done in order to get from a carbon-based production system to a carbon free
production system that would avert runaway global warming, while maintaining the
highest present value of social welfare that is consistent with attaining that goal.

We have begun by setting up a Hamiltonian system with a standard CIES inter-temporal
utility function in which consumption (per capita) is its argument, since population and
labour inputs) are suppressed and implicitly assumed to be constant.1® The latter is
consistent with our making use of the simplest possible overall dynamic setting, namely,
the AK-model of endogenous economic growth due to Rebelo (1991), and Barro and
Sala-i-Martin (2004, ch. 4). We have extended the latter structure by replacing its
specification of a single, linear capital-using production technology by the assumption
that there are multiple discrete (linear) technologies that may be used either

19 Readers interested in the details of the structural equations and solutions of the models discussed here
may consult the “Technical Annex: Modeling Optimal Multiphase Transition Paths to Sustainable Growth”
(July 2011), which is available at http://siepr.stanford.edu/system /files/shared /OptimalMulti.pdf, or can
be downloaded as a supplement to an earlier version of this paper (presented on 12/14 at the SIEPR-
GEEG Social Science and Technology Seminar) at:

http://siepr.stanford.edu/programs/SST Seminars/index.html.
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simultaneously or sequentially, including one that can be enhanced by directed
investments in R&D activities.

The reduced unit cost of capital embodying the carbon-free technology as a result of
directed R&D expenditures, however, is only realized through the technology’s
subsequent deployment in gross tangible capital formation. To put a somewhat sharper
point on this, it is not enough to think about R&D policies and programs. Mechanisms of
diffusion into use, as distinct from the dissemination of information about technological
innovations also must be figured explicitly among the requirements of a “technology
fix.”

Although the AK-setting is extremely simple, because we allow for different phases in
the transition from carbon based to carbon free production, the resulting model is able
to generate a set of time paths for the transition to a stabilized climate (and stationary
level of atmospheric GHG concentration) that, in practice, can be determined only by the
use of numerical methods.20 A future, more complicated extension of this set-up is
envisaged, in which the cumulative increase in GHG concentration, or the mean global
surface temperature gain associated with it, enters the utility function negatively.21

The transition phases mentioned earlier are linked together through transversality
conditions (cf. Leonard and Van Long (1992), ch. 7 in particular) that implicitly define
the phase changes in terms of rather general optimality conditions that often give rise to

20 Given the fact that we distinguish explicitly between different sub-phases during the transition, we end
up with a ‘stack’ of Hamiltonian problems that are linked together through a set of transversality
conditions (TVC'’s), see further below in the text. The first order conditions, in combination with the TVC'’s
and the given initial values of the state variables (and the given terminal value of cumulative emissions),
give rise to a set of strongly non-linear constraints on the remaining initial values of the model’s implied
time paths for co-state and control variables. Using these initial values, the simplicity of the AK-setting
allows us to obtain closed form analytical expressions by means of direct integration for the time paths of
all variables—except for the cumulative stock of GHG emissions. The resulting paths themselves are in
part highly non-linear and largely intractable (except for their underlying roots/structural equations)
necessitating recourse to numerical exercises in order to investigate the properties of the model, some of
which are not intuitively transparent a priori. Moreover, the path for cumulative emissions cannot be
obtained by analytical means and requires numerical integration starting from some initial guess of the
length of the BAU phase. The optimum duration of the BAU phase then is implied by the requirement that
total cumulative emissions over the entire transition (all phases) should just match a pre-specified
“threshold” value. Evidently a different approach will be required by a stochastic formulation of the
transition process - of which the model discussed here can be viewed as the equivalent deterministic
system.

21 See Arrow (2009) and Weitzman (2009a, b) on the significance of specifying an additive temperature
effect that is negative, interpreting this as a direct “environmental” effect upon social welfare. An
alternative formulation is available -- in which the negative term in the social utility function is the
inverse of the difference between the critical “threshold,” or “tipping point” temperature (beyond which
the warming process is expected to become self-reinforcing) and Earth’s prevailing global mean surface
temperature. This formulation would have essentially the same consequences for inter-temporal resource
allocation, but it would admit the adverse psychic effect of approaching the expected point at which
humanity will, for all intents and purposes have lost its ability to stabilize the warming trend and avert
the catastrophic onset of climate instability.
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conditions on the co-state variables that have a clear-cut economic interpretation. For
example, it can be shown that it is never optimal to simultaneously invest in two
existing technologies that are different with respect to their capital productivity and
their emission characteristics.

Thus, in the current model setting, the existence of a cumulative emission tipping-point
will generate notional emission costs associated with the use of carbon-based capital.22
Investment in the latter type of capital will stop and that in carbon free capital will start
the moment the shadow price of carbon based capital falls below that of carbon free
capital. As the cost of investment is represented by the welfare loss associated with
consumption foregone, and as one unit of investment generates one unit of
consumption foregone in both cases, this transversality condition implies the
requirement that investment will take place in the technology that generates the highest
marginal net welfare per unit of investment. Likewise, the discarding of existing
capacity is typically an activity that signals the end of a particular phase and the
beginning of the next one.

The optimum timing of such a phase change, and hence the phases’ durations, will be
governed by a general transversality condition, namely that the shadow price of an
incremental unit of production capacity embodying the particular type of technology
should be zero at the exact moment that it is taken out of production; otherwise, if it had
a positive productive use, why discard it? This transversality condition turns out to be
equivalent to the requirement that a unit of existing carbon-based capital should be
discarded at the moment that the marginal welfare benefits of using that unit of carbon-
based capacity drop below the corresponding marginal emission costs.23

The features of the Basic Model of “technology switching” that have been presented
above may be formally summarized in the equations set out below, which describe the
objective (social welfare function, U, system of intertemporal production constraints
and the transversality conditions that determine the optimal solution for the multi-
phase transition path (see Table 0) . This, the simplest of the models, is discussed in
further detail, and then extended in the sections that follow.

22 We use the term “notional” here to denote the existence of a real cost, that is, however, generally not, or
at least not fully, paid for in practice.

23 This condition closely resembles the negative quasi-rent condition that governs the economic lifetime
of clay-clay vintages in a perfect competition setting (see Malcomson (1975), for example).
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2.1 The Basic Model

The first and foundational version of our suite of multi-phase transition models is called
(appropriately enough) the Basic Model. In this there are two already available
production technologies, one that is carbon-based and already in use, and a carbon-free
technology that at the outset is yet to be deployed.?* This set-up creates the possibility
of there being three distinct phases.

Table 0

Phase-Specific Equations of the Basic 3-Phase Transition Model

Y4 = AK4 (production, BAU, JPR)

KA =YA—-(C—§4KA (net investment, BAU)

KA = —§4KA (net investment, JPR)

EA = g4y4 (emissions, BAU,JPR)

YB = BKB (production JPR,CFR)

KB =YB —(C—6§B.KB (net investment CFR)

KB =YA+YB—(C—68.KB (net investment JPR)

E=E,+ fOT]PR EAdt +fTT]i:;R EAdt (Cum. Emissions)

U= fooo{e_p't}{Cl_g/(l —0)}dt (intertemp. social welfare, ALL phases)

HEfpR = HﬁffR o M4 =)8 (TVC defining TJPR (equality
Hamiltonians))

HIER . = HEER, & 1BA = — 25 (TVC defining TCFR: deactivation YA)

A cpr=0 (TVC value of deactivated capital = 0)

lim, AB.KBE=0 (TVC, standard AK TVC CFR phase)

24 For purposes of this analysis it is supposed that the period under consideration commences when a
carbon-free (B) technology becomes available, although its average productivity is lower than that of the
capital (KA) embodying the carbon-using technology; or, equivalently, that the cost of the production of
capacity (KB) per unit of output exceeds that of KA,
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In the first phase, which can conveniently be labelled BAU (for ‘Business as Usual’) the
carbon-free technology remains un-deployed, and the only positive tangible capital
formation taking place adds to the stock of carbon-using production facilities, which are
the current source of the system’s real gross output. We have assumed that the available
carbon-free production technology cannot match the carbon-based alternative in the
average productivity of the capital facilities that embody it. To start deploying and using
it immediately therefore would entail an immediate sacrifice of consumption that could
be enjoyed by continuing to invest and rely upon carbon-based capacity. Better,
therefore, to plan to sacrifice future consumption, the present utility value will be
discounted - until the future negative shadow price of the associated CO2 emissions
begins to approximate the incremental utility of the extra consumption flow. This is the
economic logic of prolonging the BAU phase, up until the a point when it ceases to be
optimal to go further along that path and gross capital formation switches from carbon-
using to carbon-free production facilities.

A second phase opens with the start of positive investment in facilities embodying the
CFR technology, and the cessation of BAU capital formation, therefore marks the
opening of the Basic model’s second phase. From this point forward there is negative
net investment in carbon-using facilities, since the physical depreciation of the existing
stock is no longer being offset by positive gross investment in capital of that type. This
phase of the Basic model is referred to as ‘the joint production’ (JPR) phase, as capital
goods embodying both classes of technology are being used to generate output. The
transition to a carbon-free production regime and climate stabilization is complete with
the shut-down of the remaining carbon-using facilities and, hence, stoppage of the flow
of CO; emissions just as the cumulative stock of emissions (and the temperature)
approach their respective critical threshold levels. That marks the beginning of the third
and final phase of system’s transition to sustainable, carbon-free growth.2>

The intensity of the flows during each phase, as well as the moments in time at which
the various phase changes are scheduled, all follow from the first-order conditions
(FOCS), the transversality conditions and from the given initial and terminal values for
the state-variables that are part of the optimum control problem. Events and phase-
changes in the context of the Basic Model are summarised in Figure 4 (below), which
shows the development over time of the stock of carbon-based capital K4, the stock of
carbon-free capital KB and cumulative emissions, labelled COx.

The points marked on the time-axis of the Figure (TU, TJ], TF) indicate the optimal
moments at which the respective phases (BAU, JPR, CFR) begin. It may be noted that
although the cumulative stock of emissions continues to rise during the JPR phase, is

25 As the BAU technology has higher capital productivity than the CFR technology by assumption, welfare
would not be maximised if the flow of CO2 emissions would stop before the cumulative emission
threshold would be reached.
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does so at a decreasing rate as the stock of carbon-based capital K2 is run down and
replaced by its carbon-free substitute. The final, carbon-free production phase starts
when cumulative emissions atmospheric concentration (COz ) almost reaches the
expected climate “tipping-point, and the curve marked CO, becomes flat to the right of
TF.

BAU JPR CFR

stable CO2 concentration

TU=0 TJ TF

Figure 4. The 3 - Phase “Basic” (Technology Switching) Model:

This transition path to a Carbon Free Economy requires an eventual cut
In production just before the “trigger-point” atmospheric concentration
of CO; -equivalent ppmv is reached, but output growth (YB) can resume
thereafter.

Evidently, the various phases in the model are qualitatively different. The first phase, i.e.
the BAU phase, uses a high growth technology which unfortunately quickly raises the
stock of cumulative CO; emissions that is bounded from above by the cumulative
threshold. Before that level is reached, investment in carbon free technology must have
taken place during phase JPR to bring carbon free production capacity up to a level
where the switch from using carbon-based capacity to using carbon free capacity would
not force changes in consumption levels that are too disruptive, since consumers dislike
consumption shocks, as is implied by our use of a social welfare function that depends
upon the discounted levels of per capita consumption, and is of the CIES form allowing
for relative risk aversion.

For t>TF the world is “green”, and, given the more expensive carbon-free production
facilities that are required to stabilize the atmospheric COz-equivalent concentration
level, the output (per capita) will have to grow for some while at the relatively slow
pace at which the KB is accumulating with the gross carbon-free capital formation rate
constrained not to cut too heavily into consumption. Eventually, however, the build-up
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of the carbon-free capital stock is sufficient to support both rising consumption and a
higher rate of investment in KB, which thereafter accumulates at a quickened pace.26

2.2 A Basic Model with Endogenous R&D

In addition to the Basic Model, we have specified a version in which R&D can be
undertaken to improve the productivity of the CFR technology before its actual
implementation through gross investment in the CFR technology. R&D requires
resources to be invested now in return for a future intangible asset in the form of
knowledge of how to embody CFR production techniques in production facilities whose
capital cost per unit of output will be lower than is the case at present. Surprisingly, this
view of the role to be played by R&D in controlling future GHG emissions is something
of a novelty in the small economic literature that has employed integrated assessment
modelling of climate policy options, because insofar as the contribution of investments
in R&D to “directed” technology change and innovation has been considered at all, the
“direction” has been taken to be the lowering of CO; emissions per unit total output in
the economy. 27 To sharpen the contrast with the latter approach, Section 2.3 (below)

26 The structure of the Basic Model has some commonalities with the analysis in Valente (2003) of a two-
phase endogenous growth model in which production based on essential (energy) inputs obtained from
exhaustible resources switches to a “backstop technology” that provides a constant supply of sustained
(e.g., solar) energy. R&D investments permit growth through productivity improvements that occur at the
same rate with either technologies (although the levels of productivity can differ), and the optimal timing
of technology switching is determined by welfare maximization in which utility depends upon discounted
per capita consumption. Valente similarly obtains optimal control solutions for each stage and ties these
paths together with transversality conditions. However, Valente doesn’t allow for technology specific
capital, and so, unlike in the present analysis, the point at which the renewable technology can be
efficiently embodied in tangible capital used in production is not endogenously determined by directed
R&D expenditures and the diversion of output to building the “renewables-base” capital stock. In order to
do the latter a much more complicated multi-stage transition model is required.

27 To the best of our knowledge, the earliest previous investigation of the effects of allowing for
endogenous technological change in a computational climate policy assessment model appears in the
related papers by Goulder and Mathai (1998), and Goulder and Schneider (1999), which specify the effect
of R&D expenditures on changes in an economy-wide total factor productivity coefficient. In these
pioneering investigations of the impact of induced technological change on the attractiveness of CO,
abatement policies, absolute changes in productivity (or real marginal cost) levels, rather than the
proportionate rate of change in productivity was specified as a positive increasing (decreasing) function
of R&D expenditures. In Goulder and Schneider (1999: pp.216, 223) this functional relationship is not
further restricted in their mathematical analysis of a 2-period model; whereas the linear specification,

B = ¢ - R was used in their dynamic multi-period general equilibrium simulation studies. Nordhaus

(2002) takes a different approach, in effect assuming that induced research effort focuses solely on
reducing the CO; emissions intensity of production. Nordhaus posits a separate production function for
carbon-based energy inputs which are used in fixed proportion to the non-energy inputs in an economy-
wide production function. He then specifies that the rate of change of the carbon-intensity coefficient in
energy production is given by (do/o) = - [URP - ], where W>0 is a constant and (>0 is a (constant) rate
of obsolence of the technical knowledge gained through R&D and reflected in 6. The empirical findings of
Griliches (1973), Hall (1995) and others on the link between commercial R&D and industrial productivity
growth are cited by Nordhaus in support of this specification, although in general the time-spans to which
the -industry-level and firm-level data relate are far shorter, and hardly of the global scope typically
contemplated in IAM models.
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examines the option of achieving greater efficiencies in the use of carbon-based energy
without R&D expenditures, but by investments in the engineering implementation of
existing technological knowledge that would result in higher unit (tangible) capital
costs of carbon-based production facilities.28

Furthermore, in specifying the impact of such R&D investments on the unit cost of CFR
capital goods (Kg) we deliberately depart from the “R&D production function”
formulation that is familiar in endogenous growth models following Lucas (1988),
Romer (1990) and Aghion and Howitt (1991). Rather than taking the instantaneous rate
of improvement in the productivity of CFR-embodying capital, B/ B, to be proportional
to the current absolute flow of R&D resource inputs, R, as in

B=¢-R-B 0<¢<lI ,
an alternative specification is proposed here:

B=¢-R.(B-B), 0<fB<l

where ¢ is a constant productivity parameter, and B represents the maximum value that B can
attain.2?

There are several features of this specification that argue for its’ use in the present
applications context. Firstly, it has the advantage of introducing decreasing returns to
R&D in a setting that, unlike the conventional endogenous growth models, excludes the
possibility of a specific technology being rendered infinitely productive (and so
resulting in infinitely rapid growth) merely by the application of more and more
massive R&D expenditures at any particular moment in time.3? Allowing decreasing
marginal returns in R&D recognizes that at a given stage in the advance of knowledge
the state of fundamental scientific understanding of the physical processes involved

28 Of course, this distinction is not necessary because one can model the situation in which R&D
expenditures are allocated between the two “directions” of technological change, raising the ratio of gross
output per unit of CO2 emissions, and raising the productivity of carbon-free tangible capital used in
production. But because the present investigation is confined to modeling the paths to successful climate
stabilization, and the time scale for that is far shorter than the hundreds of years contemplated in the
existing variants of the Nordhaus (1994, 1999, 2002, 2007) DICE model], it is not unreasonable to suppose
that the presently existing stock of implementable techniques for enhancing the productivity of carbon-
energy inputs could suffice for a considerable number of decades without requiring “refreshment” by
focused investment of R&D efforts. See further discussion of the “buy time” option in section 2.3, below.

29 With B, {, B as constant positive parameters, B and R therefore become additional state- and control
variables in our dynamic system.

30 The equilibrium (steady-state) growth rate in a standard AK-model rises linearly with the productivity
of capital (cf. Barro and Sala-i-Martin, 2004), and a positive impact of B on B, as in the standard
neoclassical or in Schumpeterian growth model, would therefore lead to explosive growth, ceteris
paribus.
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may still be inadequate to permit the effective application of more and more resources
to the solution of a particular practical problem -- such as the further improvement of
the productivity of a particular class of technology-embodying capital facilities.

Secondly, this formulation of the effects of investment in R&D activities may be thought
to reflect a Platonic world in which a finite number of solution possibilities for technical
transformations are present from the start of time, but these as a rule will not reveal
themselves spontaneously. They can be uncovered, however, and formulated for
practical application through costly research and development procedures based upon
the existing state of fundamental scientific knowledge, rather than being created de
novo and without limit by the expenditure of resources in the performance of R&D
activities.31 That more restrictive view of the transformative power of investment in
R&D is appropriate not only for the foregoing general reasons, but also because the
concern in this context is not with the undirected global expansion of the technological
opportunity set typically envisaged in theoretical growth models. Rather, the aim of the
“directed R&D” in the present model is to enhance the economic properties of particular
kinds of process inventions, with new product inventions only insofar as alterations in
product characteristics are consequential for the raising the efficiency of capital inputs
into carbon-free production processes.32

Within the framework created by introducing this (or any other) R&D production
function into the Basic model, there are again three distinct phases of the transition to a
stabilized climate. Table 1 (below) compares the phases in the original basic model with
the version introducing R&D. It should be noted that while the R&D model resembles
the Basic Model, because it has three phases and two optimum switching moments, it
differs in having three state variables and two control variables.

The reason is that it turns out to be optimal to start doing R&D to improve a particular
technology from the very first moment that information about a workable CFR-
technology becomes available. On the assumption that the CFR technology is discovered
at time zero but is less productive than the mature carbon-using technology when
embodied in equally costly production facilities, R&D activity then be undertaken (only)
during the phase when tangible capital formation and production adhere to the carbon-
dependent features of the Basic model’s BAU phase. Following that, a JPR phase will

31 [t also has the advantage of being jointly concave in B and R, which is a necessary condition for the
welfare maximization problem to have a solution.

32 Following this interpretation, adding endogenous technological change to the Basic Model allows us to
characterize the optimal path of global R&D that is directed to increasing the productivity of CFR capital.
Correspondingly the impact of R&D investment on economic welfare is modeled as being felt indirectly,
rather than directly in the form of pure product quality enhancements. In other words, the welfare gains
come through reduction of the sacrifice of consumption utility required in the transition, and for the
subsequent sustained growth of (per capita) consumption under stabilized climatic conditions.
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commence with gross investment directed to deploying the improved CFR technology in
KB-type production facilities.

Table 1. Comparison of the Basic and Endogenous R&D Models

Basic model
BAUl — JPR1—> CFR1
Phase ) ) .
Business as usual Joint production Carbon-free
Investment in | Carbon-based capital Carbon-free capital Carbon-free capital
. . Both carbon-based and Carbon-free capital
Output using | Carbon-based capital o )
reduced emission capital only
Endogenous R&D Model
BAU2 — JPR2 > CFR2
Phase ) ) .
Business as usual Joint production Carbon-free
Investment in | Carbon-based capital Carbon-free capital Carbon-free capital
R&D
. . Carbon-free technology
investment in
] . Both carbon-based and Carbon-free capital
Output using | Carbon-based capital i
carbon-free capital only

2.3 A “Buy-Time Model” - Greening Carbon-based Capital in the Basic Model

We now turn to the third of the partial models, in which the structure of the basic model
is enriched by introducing a third category of technologies, namely a known
“intermediate” class of carbon-using production techniques that are characterized by
lower rates of CO2 emissions per unit of capital but capital productivity per unit of
output that is lower than of the mature carbon-based technologies, but not as much
lower than that of the initial (pre-R&D) versions of the carbon-free techniques of
production.33 This conceptualization corresponds broadly to the variety of well-

33 On the latter, see the recent noticed example of the annual consumption of over $3 billion worth of
electric power in the U.S. by HD TV “set-top” boxes supplied by cable companies, due to the choice of low
cost designs that that do not actually stop draining power when they are switched off (see, “Atop TV Sets,
a Power Drain that Runs Nonstop,” The New York Times, June 26, 2011: p.1.). The McKinsey Global
Institute devoted considerable attention in the years before the financial crisis to studies of current and
near-term options for energy efficiency routes to CO2 emissions-reductions and private costs saving
through upgrading of production and distribution systems. See, e.g., Farrel and Rennes (2008); Grove and
R. Burgelman (2008). In the U.S., numerous proposals for this kind of “retrofitting” have had difficulty
gaining policy-traction due to the prevailing policy bias towards research subsidies to support
“innovation” in renewable energy technologies.” More recently, the case for expanded exploitation of
natural gas and greater investment in other opportunities to improve the productivity of carbon-based
technologies that (similarly) offer higher output per volume of GHG emitted has been cogently and
vigorously advanced by Burton Richter (2010). During the crisis and recession years the attention of the
European Commission shifted away from the expensive and longer-term research envisaged by its
ambitious Strategic Energy Technologies Plan [SET, COM (2007) 723]; it focused instead on a variety of
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grounded engineering methods that may be used to upgrade carbon-using production
facilities, whether by improving the energy efficiency of residential, business and
government office buildings by better insulation, heating and cooling systems, and
reducing the passive consumption of electricity by electrical and electronic appliances
by configuring them to switch off completely when not in use, and so forth. But it also
subsumes proposals for the expanded exploitation of natural gas as a reduced GHG-
emissions source of energy, including the acknowledgement that incremental costs per
BTU would be required to curtail the environmental damage currently associated with
“fracking” methods.

Break-through research and novel engineering principles, however, are not required to
exploit this class of carbon-based energy sources and production technologies here, but
specific applications of core engineering knowledge adaptation of existing designs to
local contexts will raise the average unit capital costs carbon-using plant equipment
that has undergone this kind of “green-upgrading,” as well as that of a “less dirty”
energy source such as natural gas, and safer nuclear power-plants with provisions for
long-term sequestration of their toxic waste. The gain to be had by seizing this “low-
hanging fruit” comes in the reduced rate of CO; emissions, which means undertaking the
entailed incremental capital expenditures constitutes a way to “buying time” early in the
transition in order to be able to subsequently proceed more slowly in replacing the
whole carbon-based production regime with one based on new, carbon-free production
facilities.

Not surprisingly, therefore, the extent to which the “buy time option” will be attractive
to exploit in the context of our Basic model, by building up production capacity (KP) in
this intermediate “greened” form rather than capital that embodies the mature, more
carbon-intensive technology, depends not only on the associated capital productivity
but also on the reduction gained in emissions per unit of output. It turns out that
introducing the possibility of utilizing this third class of technologies gives rise to a
model in which there are 5 distinct phases that can be arranged in either of two
alternative transition trajectories, as indicated by Figures 3.1 and 3.2 and detailed in
Table 2.34

shorter-term tactics aimed at stimulating aggregate demand in ways that would implement already
available technologies for “green” purposes, notably : retro-fitting buildings for greater energy efficiency,
supporting the automotive industry to increase production of low-CO; vehicles using electric batteries
and second generation bio-fuels (see discussion in David, op.cit. (2009). In the U.S., numerous proposals
for this kind of “retrofitting” have had difficulty gaining policy-traction due to the prevailing policy bias
towards research subsidies to support “innovation” in renewable energy technologies.

34 Note that the act of ‘buying time’ involves using a technology with a relatively high output/emission
ratio. Hence, logically speaking, buying time is associated with production using that technology rather
than with investment in that technology. Therefore, in this case, the BTM phase is subdivided into three
sub-phases, in which we have positive output from the BTM technology (here indexed ‘D’), and the CFR
phase starts when the BTM-technology is deactivated.
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Moreover, which trajectory will be the one that is optimal for this simple economy to
follow depends upon the parameter configuration that sets the BTM technology’s
output/emission ratio. Given these ‘technical data’, the choice between the alternative
trajectories that will be followed in exploiting the “buy time option” is prescribed by
comparing the welfare valuations of the two solutions of the two optimal control
programs.3> Trajectory 1, as described by the following Table, is found to be the welfare
dominant member of the pair when that ratio is high, whereas when the ratio is low it is
better to follow Trajectory 2, which calls for a shorter period of investment in building
stocks of KP and an earlier switch (in the third phase rather than the fourth) to gross
capital formation embodying the carbon-free technologies.

In Table 2 (below), the header lines contain the labels for the sub-phases in each
trajectory.3¢ The entries below each phase label belonging to a trajectory contain a
shorthand description of the activities taking place during or at the beginning of the
sub-phases. Notice that the main difference between both trajectories is the time at
which the carbon-using A-technology is de-activated. As a consequence, output during
sub-phase BTM22 2 comes from three different sources, so the equation describing the
accumulation of BTM capital is more complicated than that for trajectory 1.37

By solving the stacked optimum control problems associated with the model versions
outlined above, we arrive at a complete and intertemporally consistent description of
the nature and timing of the various phases, as well as the shape of the time-paths of
tangible and intangible capital investment, levels of production and consumption, as
well as cumulative emissions as a function of the structural parameters of the model.
These parameters include the location of the cumulative emissions threshold, the
productivity of the R&D process as well as the productivity differences between carbon-
based and carbon-free technologies, and the ‘standard’ preference parameters for the
consumption component of the social utility function, i.e. the rate of time discount and
the intertemporal elasticity of substitution.

35 That the model itself directs attention in this way to the relevance of empirical information about
certain parameters is worth notice, because it may help in prioritizing areas warranting more concrete
and detailed empirical research in engineering and applied economics.

36 Typically, the j-th BTM sub-phase of trajectory k is labeled BTMj,k.

37 Although this makes the entire model considerably more difficult to solve, it was solvable for
Mathematica (C) Wolfram.
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Table 2. Alternative trajectories involving the buy time (BTM) technology

Trajectory 1
BAUl—
. BTM11 - BTM21— BTM31— CFR1
Phase Business as . L N
| Buying time Buying time Buying time Carbon-free
usua
Reduced Reduced
) Carbon- o o Carbon-free Carbon-free
Investment in ) emission emission ] ]
based capital ) ) capital capital
capital capital
Both carbon- Carbon-free
based and Reduced capital and
. Carbon- o Carbon-free
Output using . reduced emission reduced .
based capital o ) o capital only
emission capital only emission
capital capital
Trajectory 2
BAU2 —>
. BTM12 — BTM22 — BTM32 > CFR2
Phase Business as o L N
| Buying time Buying time Buying time Carbon-free
usua
Carbon- Low emissions | Carbon-free Carbon-free Carbon-free

Investment in

based capital

capital

capital

capital

capital

Both carbon-

Carbon-free

based and capital and
. Carbon- All three types Carbon-free
Output using . reduced . reduced )
based capital o of capital o capital only
emission emission
capital capital only

3. Preliminary results, experiments with physical system interactions

To this point in the present research program, the models described in the foregoing
pages have not been calibrated on actual data for the global economy. Nor have we
completed our work on the integration of the BTM model with the endogenous R&D
model. The latter is a matter of particular interest because we expect that being able to
extend the length of time during which R&D expenditures are maintained is likely to be
the most productive use of the added time “bought” by CO2 emission-rate reductions
effected by exercising the BTM option. Using known techniques to upgrading carbon-
using infrastructures and directly productive capital facilities certainly would be a
socially more productive purpose than hastening the inevitable descent into climate
instability just for the sake of prolonging current enjoyment of the higher consumption

levels associated with “business as usual.”

Comparisons of the results obtained with the different partial models, however, yields a
number of useful insights about the role of directed R&D investment in the transition to
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climate stabilization. One striking and intuitively understandable finding that emerges
from the optimized solution of the endogenous R&D model is highlighted by its
juxtaposition with the features of the transition path found for the basic model. In the
latter case, business-as-usual investment in carbon-using capital (KA) comes to a halt
when carbon-free technology can be embodied in production facilities, regardless of
their greater unit capital cost; whereas in the former model the BAU phase ends only
when R&D succeeds in rendering the unit costs of production facilities embodying CFR
techniques competitive with that of KA.38

Allowing for the possibility of investment in R&D directed towards lowering the unit
capital costs of carbon-free production processes has the effect of raising the tangible
investment in carbon-using production facilities, shortening the absolute and relative
duration of the BAU phase -- leaving the length of the subsequent joint production
phase essentially the same. In other words, being able to invest in the research required
for a “technical fix” has the expected result of speeding the beginning of CFR production,
the cessation of investment in carbon-using production facilities, and correspondingly,
the retirement of the old carbon-based capital stock.

The underlying economic logic here is that the anticipation of being able to build more
productive CFR capacity in the future generates a heightened derived demand for BAU
capacity, and hence a higher rate of tangible capital formation in carbon-based facilities
-- since the desired stock of CFR capital is a produced means of production. The
resulting higher volume of KA generates a larger output flow, providing a greater pool of
resources that can be spent on R&D investment during the BAU phase, and
subsequently for CFR-embodying capital formation in the JPR phase. It should be noted,
however, that this would be a dangerous plan to have pursued were the technical
improvements in carbon-free production systems that had been expected to result from
R&D expenditure to fall short of expectations. In such circumstances - hardly unrealistic
in view of the uncertainties surrounding the performance of R&D -- it would be
necessary to eventually make the required switch to much more costly CFR production
capacity, attended by consequently greater losses of consumption and welfare.

This suggests the practical relevance of combining the endogenous R&D model and the
BTM model, because, by adding the “ buy time option” of reducing the CO; emissions

38 Strictly speaking, the last part of this statement is not quite true in the model on which this discussion
is based, because the upper limit on the capital productivity of the CFR technology, B-bar is set below the
that for the carbon-using technology. R&D removes as much as possible of the productivity deficit of KB
relative to KA before implementing the CFR technology tangible capital. B. But this is in no way essential,
and there are no a priori reasons for not entertaining the possibility that CRF technologies can
(eventually) have lower unit capital costs than carbon-based technologies, so that if the exponent and
constant in the productivity change-R&D input function are quite small, the model is not inconsistent with
the observation that the world we live in is (still) dependent upon a carbon-using regime of production.
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rates on the carbon-using production capacity, there would be more time left to build-
up the necessary carbon-free capital stock. Since that capital formation process would
weigh all the more heavily on consumption levels, exercising the “buy time option” can
serve as a partial insurance against the adverse welfare consequences of disappointed
expectations regarding the effectiveness of R&D investment in enhancing the
productivity of production facilities embodying carbon-free technologies. Although the
two options often seem to be discussed as alternative, substitute “climate policies” they
are more properly seen to be complements in an expanded “technology fix” portfolio.

It is a fairly straightforward matter to conduct sensitivity experiments with these partial
models, in order to get a qualitative impression of the impact of parameter variations
that, given the deterministic form the model can begin to suggest the range of
distributions in the dynamics the system exhibits were the model components
reformulated more realistically in stochastic terms. Moreover, such sensitivity
experiments also shed light on the way in which the requirements for a successful
climate-stabilizing transition will be affected by -- and therefore need to make ex ante
allowance for -- alterations in the perceived and actual dynamic feedbacks arising from
interactions between the economic and the geo-physical subsystems. 39

Since at this stage of our work the results of the solution of the model considering both
the buy-time option and R&D directed to innovations in carbon free production
technology are still being analysed, we report the results of using sensitivity
experiments with the “external” physical specifications of our partial economic models
as a preliminary means of exploring the impacts of their interactions. Among the variety
of computational experiments that can be readily executed, the following pair has
yielded results that are of principal interest: (i) lowering the cumulative GHG emissions
tipping-point, and (ii) increasing the annual rate of physical depreciation of carbon-
based production capacity.

The first of these offers a simple way to assess the gross effects of making precautionary
allowances for the ambiguity surrounding the exact level of the atmospheric GHG
concentration level that will be a “tipping point” into the domain of irreversible climate
instability.#? The robust result we find for all variants of lowering the critical threshold

39 For example, a more cautionary stance towards the dangers of surpassing the cumulative emissions
threshold may involve a lowering of the ‘model’- threshold below its ‘real world’ expected level.

40 The implications of allowing for the ambiguity in the location of the “tipping point” beyond which
warming becomes a self-reinforcing process even where GHG emissions of immediate anthropogenic
origins have ceased completely will need to be assessed within the context of a fully integrated stochastic
version of our model. Leomine and Traeger (2011) introduce probabilistic functions for crossing a
climate regime tipping point into a recursive formulation of the DICE integrated assessment model for
establishing optimal climate policies. The tipping point's probability and timing thus become
endogenously determined by the chosen emission policy. Recognizing that the probability distribution for
the “temperature Threshold” corresponding to the “tipping point” is not known with confidence, policy
decisions can be made that reflect “ambiguity aversion” by selecting strategies that reduce the downside
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for temperature gain (or equivalently, the cumulative emissions tipping point) is that
the required length of the transition to a stabilized climate would be shortened by
abridgement of the BAU phase, leaving the duration of the joint production phase
essentially unaltered. Initially, output is reduced but consumption is raised, so that
investment in tangible capital formation is postponed; although consumption
subsequently will be reduced, there also is less investment in the new CFR technology,
and, indeed lower levels of activity across the board - compared to those found for the
(basic) reference model when the temperature-gain threshold is set at a higher, less
constraining level.

The general finding, then, is that with less scope for CO2 emissions before the expected
critical threshold will be reached, production with carbon-using capacity must be
curtailed and the length of the transition abridged; with less time to build up carbon-
free capital goods, the eventual growth of output and consumption has to be deferred
until climate stabilization with a carbon-free production regime has been achieved. A
further, consistent result applies in the specific cases of the endogenous R&D and BTM
models: because a lower critical threshold leaves less time to do R&D or to buy time, in
order to counter that effect to some extent, the distribution of R&D activity over time
must be shifted in favour of R&D now and against R&D later.

Thus, the planning messages to be taken from this is that setting a lower GHG ppm
target --in keeping with greater aversion to risk ambiguity and consequent adherence to
the maximin strategy dictated by the “precautionary principle,” calls for rapidly
ramping up the rate of R&D expenditures. Similarly, it warrants boosting at the outset
the rate of capital formation in production facilities with upgraded output/emissions
performance. Later, both types of investment will have to decline, first relative to output
and then absolutely, once the build-up of carbon free production capacity gets under
way.

Our second set of experiments provide a simplified way of emulating the higher
frequency of damages that can be expected to result from extreme weather events
associated with changing climate(s), and to assess the impact on the optimized
transition plan of anticipating the consequences of warming that already is “in the
pipeline,” due to the past history of GHG emissions. An increased rate of unscheduled
capital losses (damages from increased climate instability) has the effect of postponing
the arrival of the CFR phase, primarily because production using the carbon based
technology is negatively affected, leading to a lower flow of CO; emissions in the
process. This is “the good news”, but, unfortunately it is not the whole story.

variance around the expected “threshold temperature. Lemoine and Traeger’s simulations show that
under reasonable parameterization of the DICE model, allowance for tipping points in this way can raise
the near-term social cost of carbon emissions by as much as 50%.
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Since it seems reasonable for purposes of this analysis to assume that these negative
climate effects will impact old carbon-based facilities most severely, if not exclusively,*!
the rate of return on investment in carbon-using facilities will be lower than is the case
in the absence of allowance for this feedback of climate destabilization (i.e., in the base
model). The “bad news” is that this results in lower initial rates of carbon-using capital
formation (gross investment in KA and KD) and higher rates of consumption in an
extended BAU phase. Consequently the constraint placed on the growth of productive
capacity during this early phase of the transition curtails the rate of R&D investment,
and the global economy’s subsequent ability to rapidly accumulate the necessary stock
of capital embodying carbon-free technologies.

One implication of the foregoing findings would seem to be that expenditures aimed at
averting “unscheduled losses” in production capacity due to climate instability-related
damages, may be quite a “good investment”. It should be noted that under the
assumption of increased damages, the level of R&D activity is also negatively affected.
But, considering that in a fully endogenous integrated model, climate-related capital-
losses will be driven by rising GHG concentration levels and higher mean surface
temperatures, they are likely to take a heavier toll on existing production capacity at
dates farther in the future, rather than from the outset of the transition.

That particular form of non-stationarity can be emulated (albeit roughly) by a further
simulation experiment in which the physical depreciation rate on carbon-using capital
jumps to the higher level only after the tangible investment in that type of capital has
stopped. We may suppose that the anticipation of those future capital losses, as before,
will exert a depressing effect (albeit less heavily) upon the expected net rate of return to
investment in KA during the BAU phase. Consequently, although the induced near-term
reduction in tangible (carbon-technology using) capital facilities, and the rise of
consumption per capita will occur during the BAU phase, that would not happen from
the phase’s outset. Instead, it would be concentrated in the period just before the
carbon-using stock attains it maximum, when (under the assumed timing of the
increased rate of unscheduled capital losses) the weather-created damages start to
occur with greater frequency. 42 The overall effect of these alterations in the timing of

41 The consideration underlying this assumption is that since a large portion of the carbon-based
infrastructure and directly productivity capital stock will be legacies from the BAU regime and the
historically antecedent state, it will be located in temperate latitudes and built in fashions that will leave it
more vulnerable to the effects of coastal and riverine flooding, and suffer wind-damage from hurricanes
and monsoons, than the recently constructed carbon-free facilities. The latter, ideally, will have been
designed and sited with those risks in mind.

42 This difference in timing has the effect of releasing resources that allow for a faster build-up of carbon-
free capital (by assumption, designed so as to be not susceptible to the elevated severity of the weather).
In addition, due to the specification adopted for the R&D production function in our model, the release of
those resources at a later point in the future, after considerable R&D expenditures have taken place, is
less costly (in terms of CFR productivity gains foregone) than is the case when the volume of R&D is
lowered from the outset.
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intangible (R&D) investments upon on the terminal value of the productivity of capital
embodying CFR technologies is bounded, however, because the BAU phase during
which R&D is taking place will have been stretched out. That change compensates for
the cumulative effect of a decrease in the flow rate of R&D inputs, and so ameliorates
the latter’s negative impact upon the extent of productivity improvements in KB.

A major message that emerges from the foregoing modelling exercise and
parameterization exercises is one that might well have been anticipated at its outset.
What we learn from heuristic model building of the present kind is how to think about
the problem, and not necessary what to conclude about the best course of action in
meeting the challenge it poses. Even the highly simplified dynamical system that we are
studying has sufficient interconnected and mutually interdependent “moving parts” to
tax one’s unassisted intuitions as to the ways that variations in the parameters of the
geophysical and economic subsystems will alter the optimized transition paths to a
stabilized global climate.

Moreover, while the simplicity of the heuristic growth model makes more transparent
the logic of changes in the directions of investment and production activity in their
various forms, the sequenced phase structure of the transition is not so immediately
obvious. Nor can the impacts of parametric variations on the optimal phases’ relative
durations be ascertained without undertaking explicitly quantitative analyses. The
latter can serve to prioritize areas for empirical research, by identifying technical
parameters (and in models with richer specifications of agents’ behaviours, critical
behavioural parameters)--the magnitudes of which are found to strongly impact the
welfare properties and shape the resource allocation requirements in the early stages of
the optimal transition path. Building such models, and investigating the implications of
more sophisticated, integrated systems of economic-climate interactions, should not be
seen as a pursuit intended to produce a substitute for the exercise of intuitive
judgements about matters of economic policy design. In the end, the latter will have to
weigh many important practical considerations of human behaviour, culture and
politics than will resist accurate capture in tractable quantitative models. Instead, we
regard the exercise of experience-based intuitions and quantitative analyses to be
complementary ingredients in the policy design process; and believe they will work
more effectively and reliably when each is allowed to inform, sharpen and qualify the
conclusions to which one is led by their joint employment.

4. What is to be learned from the next stage in this research program?

The present paper focuses on understanding the deterministic system of the modelling
framework we have constructed, and has indicated the directions in which we can
proceed to complete the integration of the partial models within a complete
endogenous economic and geo-physical system.
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In the next major stage of the program, it will be important to move to a stochastic
integrated model, by specifying the probability distributions governing the “climate
sensitivity” of the physical system, which is the principal nexus between the altered
production system and the welfare consequences of the climate changes brought about
by global warming.#3 Similarly, we also must recognize the stochastic nature of the
output of R&D expenditure inputs and the payoffs of technological advances permitting
higher productivity in the available stock of capital embodying carbon-free
technologies. But for the present there are many interesting things to learn, and
questions to answer by exploring the equivalent deterministic version of our model.

For different parameter constellations we are able to show how the timing of the phases
will change, and how the evolution over time of welfare per capita will be affected, but
also how the required R&D expenditures and the volume of gross capital formation will
change, both in terms of their distribution and intensity over time. We also show how
uncertainty regarding the position of the climate tipping point in combination with
different degrees of precautionary behaviour would affect the optimum timing and
intensities of the various activities distinguished in the model.

The flip side of the latter computational analysis is our ability to explore the welfare
damage of “policy implementation failures”. Starting from the optimal program for the
transition to a viable and stable GHG concentration level, it is feasible to show the
effects of budgetary or political constraints that result in specifically timed
postponements of public investment in R&D, or uncompensated private cuts in the
upgrading of carbon-based production facilities, or in the roll-out of the carbon-free
technology when, under normal business conditions it would be advantageous to
undertake installation of the required capital investments. How much the timing of
action matters in this system, and the penalties for deviation from the optimal path can
be shown under the assumption that no effort is made to re-optimize from the position
that has resulted in the aftermath of such “shocks”, and also under the assumption of
trying to “catch up” after a particular range of delays by means of re-optimizing the
transition path. Thus it is possible computationally within this heuristic modelling
framework to describe the relationship between the lengths of implementation delays
during specific phases of a successful transition to climate stability, and the consequent
costs in terms of net-welfare foregone.

43 The nature of the distribution of the feedback parameter describing the physical system’s response (in
terms of global mean surface temperature to a doubling of the atmospheric GHG concentration level) is
surrounded by very substantial uncertainties arising from the complexities of the interactions among the
physical and chemical processes that underlie the feedback sequences indicated in the introduction. In
the present context there is an important issue as to whether it is reasonable to assume that the effects on
the distribution around the mean “climate sensitivity” of changes in the mean GHG concentration level
will be variance-preserving.



-34 -

5. Getting “Tech Fix” into the climate policy mix: A beginning, not a conclusion

This initial stage in our projected explorations of the “requirements” for a socially
optimal transition to sustainable global economic growth in a viable stabilized climate
has been motivated primarily by the belief that it is vitally important to give “technology
fix” options a central place in a structured analysis of policies that can respond
effectively to the challenge of climate destabilization. Environmental and energy
economists have been quick to emphasize the allocational efficiency of various fiscal
and regulatory means of raising the market prices of carbon fuels, and suggested that
the efficacy of that policy approach would be enhanced by their effects in inducing
“carbon-saving” technical innovation from private sector.

As has been pointed out, however, the latter proposition presupposes that raising the
cost of fossil fuel sources of energy would not have negative income effects that
dampened private R&D expenditures by energy-intensive sectors of the economy.
Furthermore, the integrated assessment models that economists have developed as
quantitative tools to guide policies aiming to raise the price of carbon typically fail to
show the conditions under which they would elicit a sufficient flow of innovations that
were directed specifically to curtailing and eventually displacing fossil fuels as a
dominant global source of energy. To address this “policy assessment gap” would entail
giving greater attention to specifying the relevant characteristics of the array of energy-
using technologies, and the corresponding “endogenous technological progress” sub-
system, and to connect them with the other components of the aggregate economic
growth models that will govern the pace and extent of deployment of improved
production techniques.

The dynamic integrated requirements analysis modelling (DIRAM)approach that has
been introduced here may be viewed as a preliminary step towards a more illuminating
representation within the context of familiar IAMs of the potential role of technological
measures in the transition from the present dominance of carbon-based energy to a

low carbon global regime of production. It surely will occur to some readers to question
according priority to elaborating the technological specifics of existing [AMs, on the
ground that many other features of these highly stylized models also warrant further
elaboration, and greater policy relevance calls for a spatially disaggregated approach
that would take account of geographical and ecological variations affecting both the
global economy and the climate system. Indeed, there already have been many efforts
along just such lines, impelled by a policy interest in assessing the differential regional
and national incidence of the costs of curtailing global GHG emissions. Others might
argue for the importance of recognizing the endogeneity of changes in the size, age
structure and spatial distribution of global population, and more sophisticated welfare
framework to account for demographic as well as economic changes in the transition to
a viable stabilized climate.
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Even were the latter qualification to be waved away, there should be room to consider
that arriving at domestic and international agreements to impose future increasing
prices for fossil fuels would be politically less arduous when there are good prospects
for significant mitigation of such commitments’ adverse impacts on future real profit
rates and consumption levels. Just that context would be created by a prior
commitment on the part of the already developed and scientifically and technically
advanced countries to major coordinated technological programs -- such as those
aimed at significantly increasing the efficiency of energy distribution and use, and at
lowering the real unit costs of non-fossil fuel sources of energy.

Rising prices for carbon-based energy would encourage any form of cost-saving
innovation activities and, by that token, it would raise the perceived marginal social
payoff from expanding public support for science and technology research - if only to
create a knowledge infrastructure that would lower the costs of directed innovation in
the affected sectors and lines of business. Nevertheless, the augmented public R&D
funding would have to be forthcoming, and additional, differential subsidy measures
would need to be introduced to direct private R&D (and subsequently deploy the
results) toward lowering the unit costs of carbon-based and alternative energy sources.
Alternatively, a well thought out supply-side climate policy that started with the goal of
expanding a variety of applications-oriented R&D programs would tend to create
credible expectations of substantial future resource savings with carbon-free
production facilities, and a concomitantly smaller sacrifice of material welfare entailed
in restricting GHG emissions. That could contribute to weakening economically
motivated resistance to a schedule of gradually rising carbon taxes and therefore impart
wider and stronger commitments to national and international agreements on
coordinated and verifiable actions that would curtail GHG emissions. Bundling
proposed commitments from lower income developing economies with reciprocal loan
subsidies and cost concessions in the transfer to new “greener” and carbon-free
technologies would constitute a credible package for negotiations that would grow in its
attractiveness as the R&D programs matured.
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