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Abstract

We study the convergence properties of learning in social and economic networks. We
characterize the effect of network structure on the long-run convergent behavior and on the
time of convergence to steady state. Agents play a repeated game governed by two underly-
ing behavioral rules; they are myopic and boundedly rational. Under this setup, the long-run
limit of the adoptive process converges to a unique equilibrium. We treat the dynamic pro-
cess as a Markov chain and derive the bound for the convergence time of the chain in terms
of the stationary distribution of the initial and steady state population configurations, and
the spectrum of the transition matrix. We in turn differentiate between the two antagonistic
effects of the topology of the interaction structure on the convergence time; that through
the initial state and that through the asymptotic behavior. The effect through the initial
state favors local interactions and sparsely connected network structures, while that through
the asymptotic behavior favors densely and uniformly connected network structures. The
main result is that the most efficient network topologies for faster convergence or learning
are those where agents belong to subgroups in which the inter-subgroup interactions are
“weaker” relative to within subgroup interactions. We further show that the inter-subgroup
interactions or long-ties should not be “too weak” lest the convergence time be infinitely long
and hence slow learning.

Keywords: Learning, Local interactions, Coordination game, Strategic complementarity,
Convergence time, Convergence rate, Markov chain.
JEL Codes: C73, D83

1 Introduction

In a range of economic and social environments, individuals have to make decisions without
complete information about the rewards from the alternatives they have to choose from. In such
environments individuals rely on their past experience and the experience of others; colleagues,
∗This paper has benefited from comments and suggestions of François Lafond and the participants at the

Maastricht Lecture Series in Economics, specially Arkadi Predtetchinski. This research was supported by UNU-
MERIT. The usual disclaimer applies.
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friends, neighbors or relatives when taking a decision. The dynamic process thus involves feed-
back effects in which individuals generally form expectations based on their experience and in
turn make decisions based on their expectations. The various situations in which learning from
the experience of others matters range from simple pure coordination games to general decision
problems with complementarity to adoption as well as collective action problems.

The examples of pure coordination problems include social norms such as punctuality, the
side of the road to drive on, equity norms or legal contracts. Young [1996, 1998b] shows that
these social and cultural traits can be viewed as an equilibrium state resulting from evolutionary
processes of repeated interaction among individuals. The examples of strategic complementarity
include the decision problems where one has to take into account compatibility issues; adoption
of information technologies, for example when making a choice between mobile phone providers,
one has to consider the choice made by the persons whom he wishes to communicate with,
and the same applies to an individual deciding whether to adopt a fax machine. Economides
and Himmelberg [1995] empirically show that interaction effects are present in the adoption of
such technologies.1 Other examples of complementarity problems include adoption of consumer
products and durable goods with positive returns to adoption, which can range from simple
conformity effects [Arthur and Lane, 1993, Bernheim, 1994, Banerjee, 1992, Brock and Durlauf,
2001], to making choices based on the accessibility of post-purchase services, specially in the
case of durable goods [Katz and Shapiro, 1985]. Knowing the experience of others and hence
expectations of their choices or actions is also vital in the problems of collective political actions
such as protests and revolutions, and participation in crime [Chwe, 2000, Glaeser et al., 1995].

In all the above examples, since the experience of others matters in decision making, it natu-
rally follows that the structure of the interactions or the topology of the social network matters;
that is it should influence the equilibrium outcomes and the time and speed of convergence of
the dynamic process to the steady state(s).

In this paper, we study the convergent behavior and the convergence time of learning dynam-
ics in social and economic networks in general. We shall follow the traditional learning models in
the line of Kandori et al. [1993], Blume [1993], Anderlini and Ianni [1996], Young [1993], Ellison
[1993], in which individual interactions are modeled in a stochastic evolutionary manner.2 The
convergence results in these models have been established, and of particular interest is that of
Anderlini and Ianni [1996] who prove the existence of equilibrium distribution for learning in
generalized network topologies. The prediction from the evolutionary stochastic models is that
if the level of noise is kept as minimal as possible, then the emergent long-run population state
is that in which all agents take the same choice (conform), but this outcome depends on the
topology of the social network in that it is possible to find a situation in which the coexistence
of the choices within the population persists for very long periods of time. The later result has
been derived by considering specific types of topologies and a small tractable number of agents,
which leaves some questions about the effect of general topologies of the network structure on

1A related theoretical paper is by Oren and Smith [1981].
2There is also a large set of literature on Bayesian learning which aims to model environments with information

sharing problems. Unlike in these models where an agent’s payoff from an action depends only on the action chosen
by him, we shall mostly consider the case in which others’ actions have a direct impact on ones payoff. For more
on Bayesian learning, see Bala and Goyal [1998], Acemoglu et al. [2011] and the references therein.
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the convergent behavior of the learning process unanswered. The reason for this problem is that
one is always forced to make a trade-off between capturing the details of the learning process and
capturing the complexities involved in the structure of the networks of interactions. Here, we
point out some of the questions that remain largely open. The first concerns the identification of
the general features of the topologies of the social network that lead to conformism and the ones
that sustain diversity of strategies. The second question concerns the efficiency in terms of the
time and the speed of convergence to the steady state and/or transition between steady states in
the case of multiple steady states. The convergent behavior is normally derived for asymptotic
time scales, so it is necessary to determine if such time-scale is within the limits of economic in-
terest. The third and closely related question pertains to the possibility of learning as compared
to the speed of learning. In other words, do the same network structures that exhibit higher
probability of learning support faster convergence to steady state. In some economic situations
the relevant question would be, given the topology of the network, what level of initial adoption
leads to faster global cascade of adoption?

We aim to answer these questions in a generalized form by first placing a bound on the time
it takes the learning process to converge, in terms of the model and the network parameters,
and the initial state distribution. From the bounds on the convergence time and convergence
rates, we can then answer multiple questions by holding respective variables and parameters
constant. We shall address the above questions for general network topologies while at the same
time making sure that we do not compromise on the details of the learning process.

Our work builds on the previous literature both methodologically and in terms of results.
First, the literature on coordination games, and in particular the three papers we discuss below.
The first is by Ellison [1993], who explored the convergence rate of learning in coordination
games and compares two extremes of the topology of the interaction structure; the purely local
interactions around a circle, and the uniform or global interactions. Ellison [1993] shows that
starting from the worst possible population state, if the interaction structure is governed by local
interactions then learning dynamics ensures that a risk-dominant strategy gets spread or played
by the rest of the population. That is given a binary choice A and B, and that coordinating
on A is risk-dominant, if we start from an all B population state, then it requires only a few
mutations for strategy A to gain a minimum level of initial adoption above which the strategy
can spread to the rest of the population. For the case of global interactions on the other hand,
it takes longer for the minimum level of adoption to be attained and the learning process will
be stuck at the state where all agents prefer coordinating on B. In the same lines but with
a different learning rule, Young [1998a, 2011] shows that when the topology of the interaction
structure consists of subgroups that are close-knit, then learning is fast.3 That is given that we
start from an all B population state, the waiting time until A is adopted by a target fraction of
the population is bounded if the interaction structure is made up of close-knit subgroups. The
third paper is by Morris [2000], whose result is closely related to that of Young [1998a]. Morris
[2000] employs a deterministic analysis and identifies the network property of cohesiveness as a

3A close-knit subgroup is one in which the number of interactions between members of the subgroup is more
than that with members outside.
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key factor for a strategy to spread faster to the rest of the population.4 However, this result is
conditional on the assumption that a minimum level of initial adoption is met. Ellison [1993]
derives bounds for the waiting time but for the specific topologies considered and not in terms of
any particular general network parameters. Young [1998a, 2011] and Morris [2000] on the other
hand identify a particular network property but do not place a bounds on the waiting time in
terms of this property. The lack of a particular bound on the time and speed of convergence
leaves the questions we asked above unanswered.5

Secondly, our work and in particular the results we find, is also related to a broad range
of literature in sociology that studies the role of social networks as a medium of information
sharing or communication between individuals; and specifically the role played by “weak” and
“strong” ties in information diffusion. Granovetter [1973] made the distinction between weak
and strong ties, where strong ties are regarded as those connecting individuals within a subgroup
(friends, family members, colleagues or firms in the same product subspace). Through strong
links information diffuses fast within subgroup members. The weak ties on the other hand, create
“bridges” between subgroups and act as a means of information exchange between subgroups.
The implications of this categorization is that when connecting a large society, weak links are
more vital than the strong links [Granovetter, 1973, Montgomery, 1991].

The notion that weak ties are good for diffusion of information (“the strength of weak ties”)
has too often been generalized, but as Centola and Macy [2007] note, it is not always the case
especially when the diffusion process is complex and involves thresholds. Centola and Macy
[2007] show that if the adoption process is complex then the “strength of weak ties” can turn
out to be the “weakness of weak ties”. In the case of collective political action for example,
Chwe [2000] shows that weak links play a lesser role in inserting influence to participate. Our
result is consistent with Centola and Macy [2007] and Chwe [2000]. We find that networks with
topologies that are intermediate between purely local and purely global are the most efficient
for faster adoption of an action or diffusion of a behavior, but if the bridges connecting the
subgroups are “too narrow”, then it will take an infinitely long period of time for the population
to converge to full adoption or conformism.

The implication of this result extends to problems of complementarity with positive external-
ities or returns to adoption. For example the diffusion of technologies within national boarders
and across international boarders. Bassanini and Dosi [1998] show that the prevalence of mo-
nopolies in a single market even when the survival of more than one technology maybe socially
optimal, and the existence of different standards of technological products across international
levels, can be explained by rates of convergence of the market structure to a stable state.

The remainder of the paper is organized as follows. In section 2 we introduce the model of
4A cohesive subgroup according to Morris [2000] has the same meaning with close-knit subgroups according

to Young [1998a, 2011] with the difference of 0.5 rescaling factor.
5Bramoullé [2001] extends a similar approach as in Young [1998a, 2011] to complementarity games with negative

externalities, such as adoption of goods related to social distinctiveness for example fashions and fads, or pollution
problems of curbing levels of CO2 emissions at say regional and international levels. The other papers that explore
local interaction effects on coordination but for specifically regular network structures include Anderlini and Ianni
[1996], Blume [1995], Ellison [2000]
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learning under evolutionary setting, explicitly stating the behavioral rules, matching rule and
and the associated payoff functions for both pure coordination games and games with strategic
complementarity. We provide the convergence result and specifically for the case with reciprocal
interactions. Section 3 introduces a method of reducing and linearizing the detailed but complex
adoptive process to get rid of the high order correlations among agents’ states, but in turn we
get to work with a computationally less expensive, analytically tractable adoptive system. We
additionally prove the convergent behavior of this system. In section 4, we define and provide
results for the convergence time of the learning process in general networks. Extra measures
related to the convergence of the learning process are introduced, namely the convergence rate
and the waiting time. Both measures are explicitly defined, and the bounds provided. In section
5, we derive the conditions under which the interaction structure leads to diversity of strategies
across the population for long periods of time. We also revisit the findings of Young [1998a,
2011] and Morris [2000], and redefine their result in terms of the eigenstructure of the matrix of
the interaction structure. Section 6 is devoted to a model for non-observational learning, where
we provide the convergent results and explore the network effect and in particular individual
connectivity on the impact of evolutionary forces versus that due to historical factors. We give
concluding remarks and areas for future research in section 7.

2 The model

The number of agents is allowed to be very large and will be indexed by {1, · · · , i, · · · , n}. The
interactions are local with the interaction structure defined in a graph theoretic way; let g(n,E)

be a graph with n vertices, representing the number of agents and E edges linking different
pairs of agents such that a graph gij defines the connection between i and j. If gij = 1 then an
undirected link exist between i and j, and zero implies otherwise. We thus have an undirected
network g describing the relationship of any one agent with every other agent in the population.
The adjacency matrix G of an interaction structure with a network topology given by g is
basically an n × n matrix with entries being the elements of g (that is gij = 1 for all i and j).
The neighbors of agent i, Ni, is defined as Ni = {j ∈ n|gij = 1}, and gives the set of players to
which i is linked to. The cardinality #Ni = ki, the degree of i.

We consider a binary action set, and both pure coordination games and games of comple-
mentarity with positive externalities or increasing returns to adoption.

2.1 Payoff structure and matching rule

In the case of a pure coordination game, the payoff structure takes the form given in Table
1, where a > c, b > d; which implies that both (A,A) and (B,B) are Nash equilibria for an
encounter between any pair of agents i and j.

Our interest is in the case where coordinating on one of the actions is risk dominant, in the
context of Harsanyi and Selton [1988]; that is a 6= b, such that if a− d > b− c then (A,A) is risk
dominant.

Let x = {A,B}, such that xi,t ∈ xt is i’s action at period t, where xt ∈ X is the realized
population state or configuration at period t and X = {A,B}n. Denote by by xNi,t as the state
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player j
A B

i A a , a d , c

pl
ay
er

B c , d b , b

Table 1: Payoff structure for the pure coordination game between i and j

of i’s neighbors. Let vi(xi,t, xj,t) be the reward i gets after playing a coordination game with his
opponent j, then i’s payoff from playing a coordination game with each of his ki neighbors at
any period t becomes

Ui(xi,t, xNi,t) =
∑
j∈Ni

Jijvi(xi,t, xj,t), (1)

where Jij is the strength of interaction or influence agent j exerts on i, and it defines the matching
rule of the game. In particular, we shall consider the case of local random matching, in which
each player is uniformly matched with a fixed set of other players (the neighborhood). That is

Jij =

 1
ki

j ∈ Ni

0 otherwise

The second and more general representation of the payoff structure involves additively sepa-
rable intrinsic and social rewards or utilities. That is

Ui(xi,t, xNi,t) = ui(xi,t) + Si(xi,t, xNi,t), (2)

where ui(xi,t) is i’s intrinsic utility and we assume it to be linear in x; ui(xi,t) = hixi,t + c such
that hi is i’s valuation of the choice xi, and c is a constant. The social utility Si(xi,t, xNi,t),
depends on i’s action and the configuration of i’s neighborhood, and the form it assumes de-
pends on how the choices of i’s opponents directly influence his choice; for example positive
or negative externalities.6 This payoff structure is also suitable for modeling the situations in
which individuals do not observe the past actions of their neighbors and can only make decisions
based on their prior or subjective beliefs. Let Ei,t[xNi

] =
∑

j∈Ni
JijEi,t[xj ] be the prior beliefs or

the conditional probability measure that i places on the choices of his neighbors at the time of
making a decision. If we consider the case in which the expected social utility exhibits strategic
complementarity, then

E[Si(xi,t, xNi,t)] = Si(xi,t,Ei,t[xNi
]) = xi,t

∑
j∈Ni

JijEi,t[xj ] (3)

6This payoff structure has been considered before by Schelling [1971], Brock and Durlauf [2001], Manski [2000]
to model social interactions
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and the corresponding expected utility becomes

E[Ui(xi,t, xNi,t)] = ui(xi,t) + xi,t
∑
j∈Ni

JijEi,t[xj ]. (4)

Under the setup in (4), we would mainly be interested to study how the topology of the interaction
structure affects the evolution of individual beliefs.

2.2 Updating process

Given the interaction and payoff structures above, agents play a repeated game which is governed
by two main behavioral rules; they are myopic and boundedly rational. The myopia assumption
means that the agents update their states such that the state of the next period is attained by
choosing an action that optimizes the payoff given the state of ones neighbors in the current
period. Formally, xi,t+1 satisfies

xi,t+1 ∈ arg max
xi

Ui(xi, xNi,t). (5)

The assumption of bounded rationality implies that the optimization given by (5) is only true
to a given probability, that is i chooses the best response action with probability 1 − ε, and
with a “small” probability ε, i makes an error (mistake). This randomness accounts for the fact
that though i has knowledge of what his opponents played at the end of period t, he will not
be absolutely certain about what they will exactly play at period t + 1. We shall assume that
the agents follow a log-linear update rule employed by Blume [1995], rather than the uniform
error model in Ellison [1993], Young [1993] and Kandori et al. [1993]. The log-linear update rule
implies that the probability that i chooses action A at period t+ 1 given the population state at
the end of period t, and the interaction structure G is given by

P(xi,t+1 = A|xNi,t, G) =
exp(βUi(A, xNi,t))

exp(βUi(A, xNi,t)) + exp(βUi(B, xNi,t))
. (6)

The implication of (7) is that if the optimal choice defined by (5) is A, then i will choose action
B with probability proportional to the exponent of the difference between payoff of choosing A
and that of choosing7 B; ε∆Ui(xi,xNi,t

), where ∆Ui(xi, xNi,t) = Ui(A, xNi,t)− Ui(B, xNi,t).
Our choice to adopt the log-linear learning rule over the uniform error follows from the findings

of Bergin and Lipman [1996], where they show that convergence results of learning dynamics
depend on the specific assumptions made about the mutation or experimentation process. They
find that the uniform error model adopted by Young [1993] and Kandori et al. [1993], may not
always converge to a unique (risk-dominant) equilibrium. By endogenizing mistakes through
control costs, van Damme and Weibull [1999] show that the learning process converges to or

7That is
P(xi = B) =

exp[−β∆Ui(xi, xNi)]

1 + exp[−β∆Ui(xi, xNi)]
,

where for large β
P(xi = B) ∼= exp[−β∆Ui(xi, xNi)]
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selects the risk-dominant equilibrium. The log-linear learning rule in (7) is an alternative way
of endogenizing the mistakes procedurally by perturbing individual payoffs. To see this, notice
that (7) can be derived from

P(arg max
xi

Ui(xi, xNi,t) + εi(xi) = A), (7)

the probability that the optimal strategy is xi = A. The variable εi(xi) is the random payoff
term. Equation (7) can then be derived from (7) by assuming that the ε’s are independent and
identically distributed type I extreme-value distributed random variables. See McKelvey and
Palfrey [1995] and Chen et al. [1997] for more details concerning the relationship between (7)
and (7).

The implication of the relationship between (7) and (7) is that β is a parameter that measures
the rationality of an agent. The smaller β the more an agent experiments or the more prone an
agent is to mistakes.

To fully describe the dynamic properties of the population state, first notice that at each
period t, there are 2n possible realizations of xt; xt ∈ {A,B}n. The transition of the population
state from xt = x′ to xt+1 = x′′ is define by the joint probability pjk given by

pjk =
n∏
i=1

P(xi,t+1 = x′′i |xNi,t = x′Ni
) (8)

The evolution of the population state for a given interaction structure, can thus be treated as a
Markov chain defined on the finite set of states {A,B}n, with a fixed 2n × 2n transition matrix
Pβ whose elements are defined by (8). The rows of Pβ correspond to 1 ≤ j ≤ 2n and the columns
to 1 ≤ k ≤ 2n such that pjk is the probability of being in a state corresponding to column k at
t+ 1 given that the population state at t corresponds to that defined by row j. We note that Pβ
is a stochastic matrix.

Let st denote a column vector of length 2n with entries all zero except a one at a position
corresponding to the population state at t. The evolution of states can be expressed in a compact
form as follows

qTt+1 = sTt Pβ

st+1 = Realize(qt+1)

}
(9)

where qt is the joint probability mass function vector (PMF), from which the state of period
t + 1 is defined through Realize(qt+1), and the superscript T denotes the transpose. Since the
elements of st+1 are binary random variables, the elements of qTt+1 are thus expectations of each
of the corresponding elements of st+1; that is qt+1 = E(st+1). The implication is that if the
initial distribution of strategies is known, denote it by s0, then (9) can be written in expectation
form as follows

E(sTt |s0) = qT0 P
t
β (10)

where E(s0) ≡ q0. It should also be noted that from the definition in (9), each row of Pβ is
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a joint PMF describing the expected population state in the next period given the considered
state.

2.3 Equilibrium distribution

We consider G to be an undirected network such that gij = gji. If G is irreducible (connected),
then the resulting Pβ is also irreducible. The specification of the update process defined by (7)
implies that the induced Markov chain is reversible and aperiodic (since self-loops are allowed
through errors). The irreducibility of Pβ means that the Markov chain defined in (10) has
a unique invariant distribution νβ (defined below), for any irreducible undirected G. Before
explicitly specifying the structure of νβ , we first elaborate on the concept of stochastic stability
as defined by Foster and Young [1990] and Young [1993].

For a stochastic game defined by (10) in which agents occasionally make mistakes, we would
expect that the mistakes (or mutations) will lead to an evolution of the system (back and forth)
between steady states (or Nash Equilibria) depending on the size of the mutations allowed. A
stochastically stable equilibrium is the Nash Equilibrium of pure strategies that will be observed
with higher probability in a long-run.8 The corresponding distribution is the stochastically stable
distribution, which can also be obtained by taking limits on β, that is ν∞ = limβ→∞ νβ . The
stationary distribution of the log-linear learning rule dynamics assumes the same form as the
Gibbs distribution, a well documented concept in statistical mechanics [Gibbs, 1960].

Corollary 1 A stochastic game on a connected network graph G in which the learning dynamics
assumes a log-linear rule with a stochastic parameter β > 0, has a unique stationary distribution
νβ(x);

νβ(x) =
eβH̄(x)∑

y∈X e
βH̄(y)

(11)

where

H̄(x) =

{ ∑n
i=1

∑
j∈Ni

Jijvi(xi, xj) for a pure coordination game∑
i ui(xi) +

∑
i Si(xi,t, xNi,t) for complementarity games,

with H̄ being the potential associated with the configuration x.

Proof. See Appendix B.2

The equilibrium or the stochastically stable state is therefore the one that maximizes H̄.
Young [1998a, Corollary 6.1] exploits the potential function property of the stationary distri-
bution in relation to potential games (a concept due to Monderer and Shapley [1996]) to show
that in the case of 2× 2 pure coordination games, if the interaction structure is connected then
the stochastically stable states of the adoptive process governed by Pβ are those in which all
agents coordinate on a risk-dominant equilibrium. This argument also follows directly from the
expression of H̄ above, in that if A is the risk-dominant equilibrium for an encounter between
any two agents such that Ui(A,A) > Ui(B,B) for all i, then H̄ must be maximum when all

8In a literal sense, given two possible states to which a system of interacting agents can converge to, s and s′,
if the system has converged to one state s, a movement from state s to s′ will require a part of the agents to make
mistakes, and vise versa for s′ to s. A particular state s is said to be stochastically stable if it takes relatively
more mutations to evolve the system from s to s′ than from s′ to s.
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agents conform to strategy A. This argument generalizes to even complementarity problems
with positive externalities.

In the next section we introduce the reduced and linearized form of the adoptive process and
the motivation for its relevance.

3 Reduced Markov chain

The master Markov chain (Pβ) captures a lot of detail about the learning process but does not
give a direct insight on the role played by the topology of the interaction structure. We note that
some of the details contained in Pβ can be forgone if we are mainly interested in the convergent
behavior and the time or speed of convergence to the steady state. One particular of such detail
is the high order correlation of agents’ states. Here, we aim to linearize the master Markov chain
in such a way that we get rid of the high order correlations but in return we get to work with
a computationally less expensive, analytically tractable Markov chain, and gives direct insight
on the role of the interaction structure on the evolution of individual strategies specially the
convergence rates.

To linearize Pβ we introduce an operator, the event matrix and its inverse. Denote by Ψ the
linearizing operator and Ψ−1 as its inverse, then Pβ can be factorized in the form

Pβ = ΨΠβΨ−1 (12)

where Πβ is the linearized form of Pβ . The operator Ψ will be formally defined below but in a
literal sense, for a binary choice set it is a 2n × 2n matrix obtained by stacking all the possible
realizations of the population states into rows.

3.1 Event matrix

To define the event matrix, we first define an event vector for the state of an agent, as vector
with all zeros except one, which is a one at a position corresponding to the state/action of an
agent at a given time.

Definition 1 Given an action set x = {A,B}, let et be an event vector for any agent i ∈ n at
time t, then et = (1, 0) if i has chosen action A, and et = (0, 1) if i chooses B.

The structure of the event matrix results from stacking all possible event vectors of all n. For-
mally,

Definition 2 Asavathiratham [2001]. Given a binary action set, define a recursive matrix Ψi

from i = 1 to i = n as

Ψ1 = I2

Ψi = (Ψ(i−1) ⊗ 12|1µi−1 ⊗ I2) (13)

where µi = 2i, and ⊗ is the Kronecker product operation. The event matrix is Ψ = Ψn.

10



Example 1

Consider the case of n = 3 and the binary action set, then

Ψ =



1 0 1 0 1 0

1 0 1 0 0 1

1 0 0 1 1 0

1 0 0 1 0 1

0 1 1 0 1 0

0 1 1 0 0 1

0 1 0 1 1 0

0 1 0 1 0 1


(14)

Note that since Ψ is a singular matrix, its inverse Ψ−1 can only be approximated by its Moore-
Penrose pseudoinverse.

3.2 The reduced adoptive process

The reduced adoptive process is obtained by substituting (12) into (10) such that we have

qTt Ψ = (qT0 Ψ)Πt
β (15)

Let vt = qTt Ψ and v0 = qT0 Ψ. Each vt is the marginal PMF derived from the joint PMFs
qt of the master Markov chain. To see the validity of this statement, first notice that vt can
be partition into vt = (vt,1, · · · , vt,n), where for a binary action set each vt,i for all i is a two
dimensional vector of choice probabilities for agent i. That is, if the action set X = {A,B}, then
the first element of vt,i is the probability that i chooses A at time t and the second element is
the probability that i chooses B. Let vt,iX be the probability that i chooses action X at time t.

Now, note that each element of Pβ is the joint probability describing the status of every player
simultaneously. Let ΨiX denote the column of Ψ corresponding to the realization of the possible
number of times i chooses action X. Then each vt,iX = qtΨiX , which is basically the sum of the
joint probabilities of the population action realizations that include agent i choosing action X,
is a marginal probability of action X for agent i. So we have for each i, vt,i = (vt,iA , vt,iB ), and
consequently vt is a 2n-dimensional vector consisting of n different marginal PMFs governing
the state of each i ∈ n. The reduced and linearized form of the Markov chain describing the
evolution of the population state then becomes,

vTt = vT0 Πt
β (16)

where the matrix Πβ is of order 2n× 2n unlike Pβ which is of order 2n × 2n.
The direct implication of the above discussion is that the rows of the transition matrix Πβ

are made up of n-marginal PMFs governing the state of each i ∈ n. The indirect implication
is that Πβ can be expressed as the Kronecker product of the matrix of interaction influences
among agents (normalized adjacency matrix), and the matrix of individual transition or choice
probabilities (which we shall denote by Σ). We state this result more formally in Lemma 1 below

Lemma 1 Let Ω denote the weighted or normalized adjacency matrix of the topology of the
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interaction structure, the transition matrix of the reduced adoptive process Πβ can be factorized
into the Kronecker product of the ΩT and the matrix of individual choice probabilities Σ.

Πβ = ΩT ⊗ Σ (17)

where

Σ =

(
P(xi = A|xj = A) P(xi = A|xj = B)

P(xi = B|xj = A) P(xi = B|xj = B)

)
, (18)

and the quantities P(xi = A|xj) are the probabilities that i chooses xi ∈ {A,B} given the choice
of his opponent j in the previous period.

Proof. We demonstrate the validity of the lemma with an example in Appendix B.3

3.3 The eigenstructure of Πβ

Understanding the eigenstructure of Πβ will prove to be very useful in determining the conver-
gence rates as well as the convergent behavior of the learning process, so we shall elaborate on
some of the main properties next. We shall give the relationship between the eigenstructures of
Πβ and Pβ shortly, but first the following notations will be used:

Notations

(a) The dimension of the master Markov chain state vector is 2n and will be denoted η. The
dimension of the reduced Markov chain state vector is 2n and will be denoted by γ.

(b) The eigenvalue spectrum of Pβ and Πβ will be denoted by ρ(Pβ) = µ1, · · · , µη and ρ(Πβ) =

λ1, · · · , λγ respectively, ordered such that µ1 > µ2 ≥ · · · ≥ µη and λ1 > λ2 ≥ · · · ≥ λγ .

(c) The right and left eigenvectors corresponding to the eigenvalues λi will be denoted by ri

and zi respectively. Similarly for µi let the right and left eigenvectors be denoted by r̃i and
z̃i respectively

The following corollary gives the relationship between Pβ and Πβ .

Corollary 2 (a) If µ1 and λ1 are the unique largest eigenvalues of Pβ and Πβ respectively,
then µ1 = λ1 = 1.

(b) For any λ ∈ ρ(Πβ) and µ ∈ ρ(Pβ), if λ = µ and r is the right eigenvector of λ, then
r̃i = Ψri. Similarly, if z̃ is the left eigenvector corresponding to µ, then zTi = z̃Ti Ψ.

Proof. See Appendix B.4

The second vital property of the eigenstructure of Πβ concerns its relation to the eigenstruc-
ture of the adjacency matrix and the individual transition matrix Σ. Denote the eigenvalue
spectra of Ω and Σ by ρ(Ω) = (θ1, · · · , θn) and ρ(Σ) = (ϑ1, ϑ2) respectively. The following
lemma holds.

12



Lemma 2 If Πβ is factorisable according to (17), then ρ(Πβ) = θiϑj ∀θi ∈ ρ(Ω), ϑj ∈ ρ(Σ)

Proof. The proof is provided in Horn and Johnson [1990, page 245, Theorem 4.2.12]

The third useful relation that will be useful in the analysis that follow, is between the eigen-
vectors of Πβ and that of the interaction structure Ω. Formally,

Lemma 3 Given the relation between Πβ and Ω in Proposition 1, if w is the left eigenvector
corresponding to the eigenvalue θ, then w ⊗ 12 is the right eigenvector of Πβ with the same
eigenvalue.

Proof. An exact proof can be found in Asavathiratham [2001].

It follows from Lemma 2 that if Ω is nearly decomposable then so is Πβ , but the reverse may
not be true. The eigendecomposition of a nearly decomposable matrix in section A equation
(A.3), together with Lemma 2 gives the following corollary.

Corollary 3 Let the learning process be governed by the transition matrix Πβ, if the topology of
the interaction structure is nearly decomposable, then given the set of model parameters β and h,
the transition matrix is also nearly decomposable. That is

Πt
β =

2∑
k=1

θtkr11kz
T
11k +

2∑
k=1

L∑
l=2

(θ1lϑk)
tr1lkz

T
1lk

+
2∑

k=1

L∑
l=1

nl∑
j=2

(θjlϑk)
trjlkz

T
jlk
. (19)

where λ1 ≡ λ111 = θ11ϑ1,· · · , λγ ≡ λnL2 = θnLϑ2. The eigenvectors rjlk and zjlk correspond to
the partitioning of the eigenvalues λjlk = θjlϑk

The following proposition states the nature of the convergent behavior of the learning process
under the reduced Markov chain.

Proposition 1 For an adoptive process with a transition matrix Πβ, if the underlying interaction
structure is strongly connected, then the process converges and there exists a unique distribution
associated with the first eigenvector of Πβ. That is limt→∞ v0Πt

β exists for all vectors v0 ∈ Γ =

{A,B}γ, and that
lim
t→∞

v0Πt
β = z1 (20)

where z1 is the unique left eigenvector of Πβ corresponding to the first eigenvalue.

Proof. See Appendix B.5

4 Convergence

In this section we derive bounds on the convergence time of the learning process in terms of the
model and interaction structure parameters. Knowing the bounds for the convergence time will
on one hand tell us if the learning process converges, and if it does so in the time limits of economic
interest. On the other hand, from the convergence time we can determine the topologies of the
interaction structure that are most efficient in attaining full conformism, or lead to persistent
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coexistence of strategies over long periods of time. We shall define the convergence time following
the standard convergence measures for Markov chains, and in particular in relation to our interest
is the hitting time and the mixing time. Hitting time is the time it takes the Markov chain to
transit from one state (the initial state) to another (target or final state), while the mixing time
is the time for the Markov chain to converge close to its stationary distribution given that the
process starts from the worst possible state.

We shall first give a generalized definition for the convergence time, then in Theorem 1 we
provide its bound for the case of general learning dynamics (the master Markov chain Pβ). From
Theorem 1 we derive insights on the nature of the learning dynamics, from which we develop
a motivation to introduce another (and more intuitive) related measure for convergence, the
waiting time.

4.1 Convergence time

The main objective of our analysis is to determine if a new behavior or strategy (say A) can
spread to a large fraction if not to the rest of the population through learning, given that there
exists a dominant behavior (say B) that everyone conforms to initially. If this strategy diffuses,
how long will it take to do so given the initial state, the learning rule and topology of the
interaction structure. Recall the expression for stationary distribution of the master Markov
chain, ν(x) given by Corollary 1. Recall also that the stochastically stable population state or
configuration is that which maximizes the stationary distribution. Let it be the all A state. We
are interested in the time for the learning dynamics to converge to an all A state given that we
start from the worst possible case, the all B state.

Let st0 be the initial state of the adoptive process Pβ , which corresponds to the initial
population state or configuration xt0 . We shall sometimes write s(xt0) to imply the state of Pβ
corresponding to configuration xt0 , or generally s(x) for any x ∈ X. We first define a measure
that is used in defining the convergence time and the rest of the convergence measures that will
follow, namely the total variation distance.

Definition 3 The total variation distance between any two probability distributions v and v′ as
defined on the state space X is

∣∣∣∣vt − v′t
∣∣∣∣ = max

x∈X
|v(x)− v′(x)| = 1

2

∑
x∈X
|v(x)− v′(x)| (21)

The convergence time will be defined as the time starting from st0 till the adoptive process
approaches its stationary distribution ν.

Definition 4 The convergence time of the adoptive process Pβ, denoted by Tc is defined as

Tc(G, β, n) = min
{
t|
∣∣∣∣∣∣st0P t′β − ν∣∣∣∣∣∣ ≤ $;∀t′ > t

}
, (22)

The following theorem places an upper bound on the convergence time.

Theorem 1 Let the stationary distribution of the adoptive process Pβ be ν. If the learning
process starts from the configuration xt0, the convergence time Tc to a configuration x∗, for
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xt0 ,x∗ ∈ X has an upper bound given by

Tc(G, β, n) ≤
ln
(
$ν(xt0 )

ν(x∗)

)
ln |µ2|

≈
ln
(

ν(x∗)
$ν(xt0 )

)
1− |µ2|

, (23)

where the approximation is valid for large values of µ2.

Proof. See Appendix B.6

The upper bound for the convergence time consists of two components, which will be the
focus of a large part of the discussions that follow.

The first component is the numerator; the ratio of the stationary distributions of the target
or final configuration to that of the initial configuration ν(x∗)

ν(xt0 ) . We shall elaborate on the prop-
erties of this ratio (and its implications on the dynamics of the learning process in general) by
considering a special case of the coordination game with payoff structure in Table 1 for which
a = 1 + h, b = 1 and c = d = 0.9 Let ~A and ~B denote an all A and an all B population states
respectively. Consider the case of h > 0 such that ~A is the stochastically stable configuration.
Denote by τ the fraction ν( ~A)

ν(xt0 ) , where τ is a function of h, the parameter of randomness β and
the stationary distribution of initial state, that is τ := τ(β, h, ν(xt0)). We first note that β must
be large enough (but finite) if the process has to converge to one (stochastically stable) config-
uration in a long-run. Too see this, notice that as β → 0, τ → 1, and this leads to a situation
in which the convergence time and hence the learning process in general is independent of the
initial and target configurations; that is every configuration is equally likely and the process
never settles at a particular state.

Let n(A) denote the number of agents choosing A in a given configuration x such that
n(A) = 0 for ~B, the following corollary holds.

Corollary 4 For the adoptive process Pβ, given the values of h and β, there exists an initial
configuration xt0 for which n(A) > 0 such that τ is maximum.

Proof. See Appendix B.7

We denote the maximum τ by τmax, and the corresponding configuration by xt0,max and the
n(A) by nmax(A). The direct implication of Corollary 4 is that if ~A is the target configuration,
and given the model and network parameters, the convergence time is maximum when the initial
configuration is xt0,max. Consequently for any xt0 for which n(A) < nmax(A) or n(A) > nmax(A),
the convergence time is less than that for nmax(A). This also implies that if at any time the
adoptive process is in a configuration xt for which the number of agents playing A is less than
nmax(A), then it will converge to an all B state. Similarly, if the configuration is such that
n(A) > nmax(A) then the adoptive process converges to an all A . We can therefore interpret
nmax(A) as a threshold level of initial adoption formally defined as follows.

Definition 5 Given that we start from the all B population state, the threshold level of initial
9We consider this special case just for illustrative reasons but the implications derived are valid for general

coordination and complementarity games.
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adoption is the number of agents required to initially adopt strategy A, after which the population
converges to full adoption of A.

The threshold level of initial adoption is an inherent characteristic of all complex adoption
problems, be it in pure coordination games or in general complementarity games. This concept
is also seen to play a great role in sociological problems of collective behavior. It was originally
formalized by Granovetter [1978] and Schelling [1971], in which they define it as the number or
proportion of other actors who must make a decision before a given actor does.

The main question in relation to the effect of the initial state on the convergence time there-
fore remains to determine how the model parameters, and in particular h, and the interaction
structure affects the threshold level of initial adoption. For the parameter h it generally depends
on the structure of the payoff but for the example of the coordination game considered above, and
for complementarity problems with positive externality, the threshold level of initial adoption
decreases with h (given that h is positive). To fully characterize the effect of the topology of the
interaction structure on the threshold level of initial adoption, we shall employ a more intuitive
measure, the waiting time. That is starting from an all B state we compute the waiting time till
at least nmax(A) of the individuals simultaneously choose A.

Before embarking on the concept of waiting time, we shall first highlight on the implications
of the second component of the convergence time; the denominator 1− µ2. This quantity is the
spectral gap of the transition matrix Pβ , which can be shown to correspond to the asymptotic
convergence rate. By asymptotic convergence rate we mean the long-run dynamics (or simply
the dynamics close to the steady state) of the adoptive process, which also means that it is
independent of the initial state. Formally,

Proposition 2 Given any initial state st0 of adoptive process Pβ, define the asymptotic conver-
gence rate as

r = lim sup
t→∞

∣∣∣∣st0P tβ − ν∣∣∣∣ 1t , (24)

then
1− r = 1− µ2 (25)

Proof. See Appendix B.8

Proposition 2 directly implies that the asymptotic convergence rate is high for µ2 small. Note
that µ2 is a function of the model parameters and the parameter of the interaction structure
θ2, that is µ2 := µ2(h, β, θ2). The proportionality of µ2 with β is linear, in that when β → ∞,
µ2 → 1. What may not be directly intuitive is the proportionality with θ2 and h. For this
reason, let us consider the reduced adoptive process with transition matrix Πβ , which enables us
to obtain direct insight on the role of θ2. The following proposition provides an equivalent result
for the asymptotic convergence rate for adoptive process Πβ .

Proposition 3 Given any initial state vt0 for Πβ, define the asymptotic convergence rate as

rπ = lim sup
t→∞

∣∣∣∣vt0Πt − π
∣∣∣∣ 1t , (26)
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where π is the stationary distribution of Πβ, then

1− rπ ≥
1

2
[(1− θ2) + (1− ϑ2)]. (27)

Proof. See Appendix B.9.

The convergence rate is therefore directly proportional to the spectral gaps of the interaction
structure and the individual transition matrix Σ, that is (1− θ2) and (1−ϑ2) respectively. From
the composition of Σ it is easy to see that ϑ2 := f(β, h), where f is monotonically increasing
in its arguments. For the case of (1 − θ2), there are two conditions for which the spectral gap
of the interaction structure is small, conversely for which θ2 is large; when the structure is
sparsely connected and when it is made up of non-disjoint subgroups that are weakly connected
to each other. In the case of sparsely connected networks, it follows straightforwardly from the
principle of interlacing eigenvalues, while in the case of non-disjoint subgroups it follows from
near decomposability principle, both of which are elaborated on in the section of preliminary
concepts. In the following example, we give the spectral gap for selected network topologies.

Example 2

The bounds for the spectral gap of a graph (or network) G can be derived from the Cheeger
inequality and in particular the Cheeger constant φ(G), where 1−θ2 ≤ 2φ(G). We shall hereafter
denote θ2(G) for the second largest eigenvalue of normalized adjacency matrix of the graph G.
For more details about the Cheeger constant and proofs for the following network types see
Appendix B.10.

(i) Complete network (Gcom): It is a network structure in which every vertex is connected to
every other vertex. The corresponding spectral gap is bounded above by unity,
1− θ2(Gcom) ≤ 1.

(ii) 1−D cyclic network (Gcyc): It is a network in which vertices are arranged in a circle and
every vertex is connected to two other neighboring vertices. The spectral gap for such
network structures is given by 1− θ2(Gcyc) ≤ 4

n

(iii) 2D n × n lattice network (G2D): If the lattice is constructed with periodic boundary
conditions then it will be a 4-regular network (each agent is connected to 4 neighbors). For
this network arrangement, the spectral gap is approximately of order 4

n , that is
1− θ2(G2D) ≤ 4

n .

(iv) Random d-regular network (Gd−r): Is a network structure in which each of the n vertices
is connected to d other vertices chosen at random. In such networks, the spectral gap is
independent of the size of the network n, that is 1− θ2(Gd−r) ≤ 1.

(v) Newman’s small world network (Gnsw): Is a network structure in which the mean shortest-
path between nodes increases sufficiently slowly (logarithmically) as a function of the num-
ber of nodes in the network. For more detail about Newman’s small world network see
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Newman [2003]. The spectral gap of such network structures is approximated to be
1− θ2(Gnsw) = O( c

lnn), where c is a constant.

The implication is that given the model parameters β and h, the asymptotic convergence rate
is higher for densely and/or randomly connected than for local and/or clustered network struc-
tures. Since the convergence time has an inverse relation with the spectral gap, it follows that
the effect of the interaction structure on convergence time through the asymptotic dynamics is
such that the convergence time is shorter for densely connected networks.

4.2 Expected waiting time

The expected waiting time will be defined as the special case of the convergence time in Definition
22. For the case of the binary action set we have considered, if A is the risk-dominant alternative,
then we would like to determine the expected waiting time for which at least a fraction of agents
α simultaneously play strategy A given that they start from an all B state. Let n(At) denote
the number of agents playing A at time t, we can thus define the expected waiting time as (a
similar concept is employed by Ellison [1993])

Tw(G, β, α, n) = E
[
min{t|n(At) ≥ αn;v0 = ~B}

]
, (28)

Let P(n(At0+T ) ≥ αn) denote the probability that at least αn of the agents simultaneously
play A after T time steps starting from t0. Then the expected waiting time will be equivalent
to,

Tw(G, β, α, n) =
T

P(n(At0+T ) ≥ αn)
(29)

To see the validity of relation (29) note that if the denominator is unity, then Tw = T , moreover if
the probability that at least αn agents simultaneously playing A tends to zero then the expected
waiting time will become infinitely long. The following theorem holds.

Theorem 2 Let the definition of expected waiting time be as in (29), then for 0 < p ≤ α < 1

Tw(G, β, α, n) ≥ e2n(α−p)2 (30)

where p = 1
n

∑n
i=1 pi, pi = P(xi = A|xNi

= ~BNi
) and ~BNi

implies the all B configuration of i’s
neighborhood.

Proof. See Appendix B.11

The waiting time depends on the size of the population one is sampling from, n, the target
fraction of the population α of which we are mainly interested in the threshold fraction αmax

corresponding to nmax(A), and the transition probabilities pi for all i (the probability that i plays
A given that all his neighbors play B). In the case of adoptive process Pβ , pi is given by (7) and
for Πβ it will be equivalent to

∑
j∈Ni

1
ki
P(A|B). It is easy to check that under both adoptive

processes, pi = P(A|B) and hence p = P(A|B), a quantity that is very small for large values of
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β. Since p is constant for a given β and h, our interest is then to analyze how α = αmax depends
on the topology of interaction structure. Let ∆ denote the maximum degree in the network.
We shall approximate the upper bound for the threshold level nmax(A) by αmax∆. That is the
minimum number of agents required to initially or simultaneously adopt A within the population
(subgroup) after which the population (subgroup) can converge to full adoption of A, is bounded
above by the number of agents required to simultaneously adopt A in the neighborhood of the
most connected player.10

In the case of the coordination game with payoff structure in Table 1, it can be shown using
best response argument that an agent will play A if at least

αmax,i =
b− d

(a− c) + (b− d)

of his neighbors play A. For example if a = 2, b = 1 and c = d = 0, then any of the agents will
play A if at least 1/3 of his neighbors play A.

Consider two extreme topologies of the network structure; the cyclic or ring (each agent has
only two neighbors) and the complete interactions. In the case of complete interactions, if n
is the population size then k1 = · · · = kn = n − 1. If each agent requires at least one third
of his neighbors to play A for him to also play A, then the threshold will be 1

3(n − 1) and the
corresponding threshold fraction αmax = (n−1)

3n ≈ 1
3 for large n. In the case of cyclic interactions

on the other hand where k1 = · · · = kn = 2, we have that αmax = 1
n . For a large but finite

population size n, we have ( 1
n − p) < (1

3 − p). Implying that the waiting time until the threshold
level of adoption is reached is shorter for local interactions than for complete interactions. This
also implies that for the complete interactions, if the population size is infinitely large then so
will be the expected waiting time.

The expected waiting time also has implications in relation to the close-knit and cohesive
subgroups results of Young [1998a] and Morris [2000]. Young [1998a] shows that if the topology
of the network structure governing agents’ interactions is made up of r-close-knit subgroups,
then learning is fast. That is given that the initial state is ~B, the waiting time for the adoption
of A is bounded (though a specific bound on the waiting time is not specified as we have done
above). A formal definition of a r-close-knit subgroup will be given in the next section, but
in a literal sense, a subgroup l ⊂ n is close-knit or cohesive if at least half of its interactions
(links) are between members of the subgroup than with those outside. The main characteristic
of a cohesive subgroup is that once its members converge to adoption of the (risk-dominant)
strategy, this strategy gains a stronghold within the subgroup and will be resistant to external
mutations, at least for a considerably long period of time. The computation of the expected
waiting time will therefore be at subgroup level. That is the threshold level of initial adoption
for each subgroup will be determined by the largest degree within the subgroup. If the subgroup
size and hence the maximum degree is bounded, then the expected waiting time for the subgroup

10It is possible that nmax(A) is less than αmax∆. For example in the case of a star network (in which each
agent is connected to only one, and the same player at the center), if the central player changes his strategy to
A then all the peripheral players will do so, but on the other hand the central player may have less incentive to
change until at least αmax of his neighbors do so.
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is also bounded. More over if we assume that the agents update their strategies synchronously,
then the waiting time will be bounded for even an infinitely large population size.

The argument by Young [1998a] holds if we assume that the probability of mutations is not so
small. In general we consider that β is very large such that the possibility of attaining nmax(A)

simultaneous mutations within the subgroup or population is very small and the only way to
attain the threshold levels is through a combination of mutations and diffusion (influence from
other agents or subgroups that already play A). Under this setup it is not obvious that existence
of subgroups ensures that learning is fast. For example if β is very large and the topology of the
network is such that diffusion is not efficient, then we might end up with a situation in which the
convergence time is infinitely large and hence learning is slow. In the next section we elaborate
on this aspect, specially the conditions under which the network structure leads to slow learning
leading to a situation in which the strategies coexists in the population in the long-run.

Following from the implications of the first and the second components of the convergence
time, we can therefore categorically differentiate between the two roles played by the topology
of the interaction structure on the learning process. The two effects counteract each other; the
effect through the initial configuration favors local interactions while that through the asymp-
totic convergence rate favors global or complete and random interactions. To get a systematic
understanding of how the two effects operate, we can think of the learning process as the local
adjustment process consisting of local and global minima. In the case of the binary coordina-
tion game we have considered above, one immediate local minimum would be the all B state
and the all A state is the global minimum.11 The main characteristic of the dynamic system
with local and global minima is that if we start from a local minimum, there exists a threshold
level, the tipping point, which corresponds to the threshold level of initial adoption in this case.
Below the threshold, the adjustment process stays trapped within or will always tend towards
the local minimum and above the threshold the process will converge to the global minimum.
The first component of the convergence time implies that it will take longer for the adjustment
process to get out of the local minima in the case of densely and randomly connected than for
locally connected network structure. The second component on the other hand says that once
the adjustment process has reached the tipping point, then the speed at which it will converge
to the global minimum is higher in the case of densely connected than locally connected social
networks.

We conclude that interaction structure with the topology which is intermediate between
purely local and purely global leads to a faster convergence and hence efficient diffusion of a
behavior. It should consist of (cohesive) subgroups within which the connectivity is high enough
to ensure faster asymptotic convergence, but these subgroups should also be small enough that
the maximum degree is bounded and small enough to ensure that the waiting time is short. This
characteristic of the network structure is consistent with that of the small world networks intro-
duced by Granovetter [1973] and formalized by Watts and Strogatz [1998]. Granovetter [1973]
referred to the interaction within subgroups as strong ties and interactions between subgroups
as weak or long-range ties. The role of the small-world networks and particularly the weak

11Depending on the interaction structure, there will of course be other state configurations that will be local
minima, but the main two are the all B and all A configurations.
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ties in the diffusion of behavior has been documented in both economic and social literature,
to mention but a few Granovetter [1973], Watts and Strogatz [1998] for the diffusion of social
behavior and information, Cowan and Jonard [2004] for the diffusion of knowledge, Centola and
Macy [2007] for a generalized view on the environments in which small-world concept actually
works.12 Though weak ties may be “good” for simple diffusion, the question that remains is if
it is generally true even for the case of complex diffusion problems that involve thresholds. In
other words, to what extent can weak ties facilitate the diffusion of behavior or influence across
subgroups? Put in another way, how cohesive or weakly connected should the subgroups be for
intergroup diffusion to occur? We explore this concept in the next section.

5 Cohesiveness and coexistence of strategies

In this section we explore two aspects of subgroup cohesiveness. The first concerns conditions
under which cohesiveness fails to ensure fast convergence to conformism leading to persistence
of diversity of strategies across the population in a long-run. This analysis is also motivated
by observational evidence across social and economic environments with network externalities.
For example the existence of two competing technologies regionally or nationwide even if one
technology is superior to the other. This extends to coexistence of social norms regionally
for example in Europe where some countries drive in the left while others drive on the right,
or the case of punctuality. The second aspect concerns the relation between the measure of
cohesiveness and the general network parameters and in particular the eigenvalues. We revisit the
definition of cohesiveness according to Young [1998a] and Morris [2000], and establish its relation
to the eigenvalue spectrum of the network. Defining cohesiveness in terms of the eigenvalues is
advantageous in that the latter are generally well defined and computationally “cheap” measures,
such that irrespective of the morphology and size of the network, it will still be possible to
“roughly” determine if subgroups do exists and if they do how interconnected they are, hence
deductions if learning will be fast or slow.

5.1 Coexistence of strategies

We explore this problem by employing the eigendecomposition technique. As noted in section
3 Corollary 3, if the topology of the social network is nearly decomposable, then so should be
the linearized transition matrix Πβ . The weak inter-subgroup interactions or narrow bridges
will correspond to the situation in which the topology of the social network is near-completely
decomposable (in which the first eigenvalues θ1l ’s are very close to unity), while wide bridges
would correspond to the weak case of near decomposability. Recall that the local adjustment
process can be expressed in the eigendecomposition form, and in particular consider the case in
which the topology of the social network is nearly decomposable into L non-disjoint subgroups
as in (19), that is

12There is also a related literature on social capital for example Burt [2004] and the references therein. Also
check Ruef [2002] for the extension of small-world concept to organizational innovation.
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vt =

2∑
k=1

Z11kθ
t
kr11k +

2∑
k=1

L∑
l=2

Z1lk(θ1lϑk)tr1lk +

2∑
k=1

L∑
l=1

nl∑
j=2

Zjlk(θjlϑk)trjlk. (31)

where Zjlk = zTjlkv0 are scalars for each j, l and k. Note that rjlk is the right eigenvector of
the eigenvalue of Π corresponding to λjlk = θjlϑk. Now consider the state of a single agent i
belonging to subgroup l, and we shall write rjlk(i) to imply the ith element of vector rjlk, and
also il for an agent i in group l, (31) becomes

vt(il) =

2∑
k=1

Z11kθ
t
kr11k(i) +

2∑
k=1

Z1lk(θ1lϑk)tr1lk(i) +

2∑
k=1

∑
l′ 6=l′

Z1l′k(θ1l′ϑk)tr1l′k(i)

+

2∑
k=1

nl∑
j=2

Zjlk(θjlϑk)trjlk(i) +

2∑
k=1

∑
l′ 6=l

nl′∑
j=2

Zjl′k(θjl′ϑk)trjl′k(i). (32)

Equation (32) is the evolution of the state of each i ∈ n. The long-run population state is
determined by the state of each i for t→∞, which corresponds to v∞(i)→ Z111r111(i).

Corollary 5 Assuming that the social network is near-completely decomposable into non-disjoint
subgroups, there exists an arbitrary integer τ1 such that for t < τ1,

rjlk(i)� rjl′k(i) for jl,jl′ ≥ 2 (33)

where the relation is weak for weak near decomposability (when θ1l ’s are greater than 0.5 but not
very much close to unity).

Proof. The proof follows from Proposition 6.

The first implication that can be drawn from (32) and Corollary 5 is that in a short-run t < τ1,
the fourth term of (32) dominates the dynamics since the first and the third terms remain fairly
unchanged in that θ1l ’s are close to unity; unless of course if β is small and less than unity in
which case ϑ2 will be very small, and the level of stochasticity is high. Nevertheless, our interest
is in the behavior of the system for low levels of randomness. Since the fourth term correspond
to the lth partitioning of the interaction structure, it implies that in a short-run, the dynamics
of the learning process is limited within the subgroups. That is for all l ∈ L, as t → τ1, the
subgroup dynamics converges to the behavior dictated by the first three terms and the rate of
convergence within subgroup l is determined by the fourth term and particularly θ2l and ϑ2.
Comparing this to Proposition 3, it implies that if the subgroup is densely connected then the
convergence rate is high, and the reverse is true for the waiting time.

The second implication is that there exists an arbitrary integer τ2 such that for τ1 < t < τ2,
we have the long-run dynamics that is governed by the second and third terms. The third term is
the contribution of other groups to the dynamics of group l, where for every l′ 6= l, the quantity
Zjl′k is determined by the level of interaction between the subgroup l′ and l, and particularly
the interaction between the peripheral players of the two connected subgroups. This measure
of inter-subgroup interaction is what Centola and Macy [2007] referred to as the width of the
bridge. It would be interesting to explore this idea in detail to quantify the role of peripheral
players in the diffusion of strategies across bridges but it is beyond the scope of this paper to do
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so. What we can note though, is that since the rate of convergence of the entire population to
a steady state is determined by the second and third terms for all i ∈ n, if θ1l ’s are very much
close to unity, then it will take extremely long period of time for the system to converge to its
prescribed long-run behavior; where all agents play the risk-dominant strategy. The implication
is that if the topology of the social network is made up of weakly connected subgroups, it is
possible to sustain coexistence of strategies or behavior for a considerably long period of time.

5.2 Cohesive and close-knit subgroups

What we have considered above is an extreme case of near decomposability. We can still have a
weaker form of near decomposability where subgroups exist but are strongly interconnected, such
that θ1l for all l are not necessarily close to unity. We shall adopt the definitions of Young [1998a]
and Morris [2000], and show that the topology of the social network can be divided into at least
two subgroups if the partitioning through eigendecomposition gives at least two eigenvalues of
the normalized adjacency matrix that are greater than 0.5. A close-knit subgroup according to
Young [1998a] is defined as follows.

Definition 6 A subgroup l ⊆ n is said to be r-close-knit if

∀l′ ⊆ l ⊆ n, d(l′, l)

d(l′)
≥ r, 0 < r <

1

2
(34)

where d(l) =
∑

i∈l ki, and d(l′, l) is the number of edges from l′ to l.

A subgroup l ∈ L is thus r-close-knit if at least r of its links are within members of the subgroup.
Note that since r-close-knit means 2r-cohesive, the above statement is equivalent to saying that
not more than 1 − 2r of l’s interactions should be with members outside of l. That is, for a
subgroup l ∈ L, let d(l, n− l) denote the number of interactions between the members of l and
its complement n− l, then r-close-knit or 2r-cohesive implies that

d(l, n− l)
d(l)

≤ 1− 2r, 0 < r <
1

2
(35)

The following proposition holds.

Proposition 4 Let Ω denote the normalized adjacency matrix the social network, if the second
largest eigenvalue of Ω, θ2 ∈ ρ(Ω) is such that 1

2 < θ2 < 1, then the social network consists of
two non-disjoint cohesive subgroups.

Proof. See Appendix B.12

Though Proposition 4 is true for binary subgroups partitioning through eigenvalues spectrum,
the result can be extended to higher order partitioning through multilevel partitions.13

Putting the results together, the conclusion is that there exists a limit to which cohesiveness
can lead to fast learning and convergence time, specially when the width of the bridges between

13A useful piece of work on higher-order eigenvalue partitioning is Miclo [2008].
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subgroups is too narrow. A combination of cohesiveness and intermediate level of inter-subgroup
interactions is necessary for fast learning and diffusion of a behavior through the social network.

6 Non-observational learning

In this section we consider the general case of strategic complementarity between agents’ choices
but more specifically we shall focus on case in which agents do not directly observe the past
actions of their opponents. They make decision based on their prior subjective beliefs about their
opponents. The action set will still be a binary choice but this time we consider X = {−1, 1}. In
the previous sections we focused on the network properties in general but in this section we shall
adopt a much simplified framework that will enable us examine the contributions of individual
players contingent on their level of connectivity or simply the degree. The framework below will
also give a different way of viewing the learning dynamics problem, and in particular the impact
of evolutionary forces versus historical factors in shaping the dynamics of learning. By historical
factors we mean the initial population configuration or strategy profile, since this is assumed to
be determined by some arbitrary historical factors. Except for these specifications, the rules of
the game are as stated in section 2.

The payoff structure in expectation terms becomes

E
[
Ui(xi,t,xNi,t)

]
= hixi,t + xi,t

∑
j∈Ni

JijEi,t[xj ], (36)

where hi is i’s valuation of or preference for xi, and in what follows we shall consider hi = h for all
i (note that h is also used in section 4 but in that case it refers to the extent to which the payoff
of coordinating on action A is better than that of coordinating on B). As before we shall take
Jij = 1/ki, but its sign will depend on whether the game is of positive or negative externalities,
and we shall consider positive externalities below. Following from (7), the probability that i takes
action 1 at period t + 1 given his subjective beliefs at the end of period t, and the interaction
structure G is given by

P(xi,t+1 = 1|G) =
exp(β(h+ 1

ki

∑
j∈Ni

Ei,t[xj ]))
exp(β(h+ 1

ki

∑
j∈Ni

Ei,t[xj ])) + exp(β(−h− 1
ki

∑
j∈Ni

Ei,t[xj ]))
(37)

The corresponding conditional objective expectation of i’s choice at t+ 1 is given by

E[xi,t+1|G] = (−1)P(xi,t+1 = −1) + (1)P(xi,t+1 = 1)

= tanh

β
h+

1

ki

∑
j∈Ni

Ei,t[xj ]

 (38)

We make an assumption of consistency of beliefs; the agents are rational such that the ob-
jective expectations coincide with their subjective expectations at equilibrium, that is E[xi|G] =

Ej [xi] = mi for all j ∈ Ni. Let k denote the row vector with its elements as the degree of
each agent ki’s for all i, and let k−1 be the row vector with 1/ki’s as its elements. Recall that
Ω ≡ k−1G, where G is the adjacency matrix. The entire learning process can then be character-
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ized by a set of n-equations describing the non-linear relations between expectations of agents,
that is

mi,t+1 = tanh (βh+ βΩimt) i = 1, · · · , n, (39)

where m denote the n-dimensional column vector ( n × 1 matrix) with its elements being the
expected actions for all agents, and Ωi is the ith element of Ω, that is Ωi = k−1

i Gi.

Definition 7 We define a self-consistent equilibrium of the non-observation game for a given
network structure with topology G, as a set of values of mi, denoted by m∗ = (m∗1, · · · ,m∗n) for
which m∗i for all i is a limiting solution to mi,t+1 described by (39). It follows m∗ = (m∗1, · · · ,m∗n)

must be a solution to
m∗i = tanh (βh+ βΩim

∗) i = 1, · · · , n, (40)

Proposition 5 For a game of non-observational learning for which the network of interactions
is strongly connected, there exists at least one set of values of m∗ that solves equation (40) and
is the self-consistent equilibrium of the adoptive process.

Proof. Appendix B.13

As predicted by stochastic stability, the self-consistent equilibrium for a strongly connected
network structure is that in which all players conform, and hence posses identical beliefs about
each other.

6.1 Equilibrium features

We shall consider two extreme cases; the uniform interaction case in which k1 = · · · = kn = n

and m1 = · · · = mn and the local interaction on a cyclic network where each agent has only two
neighbors. In the uniform interaction, it follows Ω1m = · · · = Ωnm = m. Substituting into and
taking the average of (40), we have

m =
1

n

n∑
i=1

mi = tanh (βh+ βm) (41)

Equation (41) is the mean field model of Brock and Durlauf [2001], and has the following
properties:

(i) When h = 0, and β < 0, a unique root exist, m∗0 = 0; a symmetric equilibrium.

(ii) For h = 0 and β > 0, three roots exist; one symmetric equilibrium and the two asymmetric
equilibria that take on equal magnitude but opposite sign, m∗− and m∗+.

(iii) For h 6= 0 and β > 0, there exists a threshold on βh, hc such that; when |βh| < hc,
multiple equilibria exist all of which are asymmetric, m∗−, m∗m, m∗+, and when |βh| > hc

the equilibrium is unique and takes on the sign of h.

In the case of cyclic interactions we have that each ki = 2 for all i ∈ n, such that

mi = tanh

(
βh+ β

1

2
(mi−1 +mi+1)

)
i = 1, · · · , n (42)
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with the boundary conditions mn+1 = m1 and m1−1 = mn. The existence of the anisotropic
equilibria for this system is detailed in Ioannides [2006, Proposition 3].

6.2 Local adjustment of beliefs

To get a better understanding of how individual beliefs evolve under stochastic dynamics or
perturbation, and the role of network structure, we linearize the system about an arbitrary
initial population configuration of beliefs.

Denote by mt0 = (m1,t0 , · · · ,mn,t0) as an arbitrary initial belief configuration at t0. The
perturbation around mi,t0 is defined as ∆mi,t = mi,t0 − mi,t. By linearizing about mt0 , we
obtain a system of n equations of perturbations around mt0 .

∆mi,t+1 = sech2 (βh+ βΩimt0)βΩi∆mt i = 1, · · · , n (43)

Let ζi = sech2 (βh+ βΩimt0), and ζ be a vector of ζi’s. Then (43) can be written in a compact
form as

∆mt+1 = βζΩ∆mt. (44)

If we let ∆mt0 denote the vector of initial levels of perturbations for all i, then (44) can be
generally expressed in the following form.

∆mt = (βζ)tΩt∆mt0 (45)

By expressing Ω in its eigendecomposition form as described in section A, we shall have

∆mt = (βζ)t

[
y1w

T
1 ∆mt0 +

n∑
i=2

yiθ
t
iw

T
i ∆mt0

]
(46)

The second summation term in the square bracket of (46) tends to zero in a long-run, if we
assume that the level of mutations (the value of β) is such that βζiθ2 < 1 for all i ∈ n, then in a
long-run the only vital component of (46) is (βζi)

ty1w
T
1 ∆mt0 for all i ∈ n. We shall denote this

component by ∆mi, and the corresponding vector by ∆mi. What matters for the adjustment
process in particular is whether βζi is less or greater than unity. If for any agent i, βζi < 1 then
the initial state of that agent is stable, otherwise it is unstable and the perturbation quantity
∆mi grows over time until i adjusts to a stable state. If i’s initial state is unstable, then the
compositions of the vectorw1, the left hand eigenvector of Ω corresponding to the first eigenvalue,
will determine the state that i will adjust to. The vector w1 gives the degree of influence by
each player within the network, such that the ith element w1,i corresponds to influence of player
i and also gives an indication of the level of connectedness of i. The more connected i the higher
the value of w1,i, moreover it is even higher if i is connected to players that are themselves well
connected.

To illustrate these points further we shall consider an example of a topology with both well
connected and less connected players. This will also enable us to demonstrate the impact of
evolutionary forces as opposed to historical factors in shaping the dynamics of the learning
process at individual level.
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Example 3

Consider an interaction structure with the topology in Figure 1

1 2

3

4

5

6

Figure 1: Star-like structure with an extra link

The central player which is also the most connected is labeled by 1, followed by 2 and 3,
and the rest have the minimum possible connectivity. The normalized adjacency matrix of this
network is

Ω =



0 0.2 0.2 0.2 0.2 0.2

0.5 0 0.5 0 0 0

0.5 0.5 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0


The eigenvalue spectrum of Ω is

ρ(Ω) = (1,−8.5× 10−1,−5.0× 10−1, 3.5× 10−1, 4.9× 10−33, 5.8× 10−51),

and the respective right and left eigenvectors corresponding to the first eigenvalue are

y1 = (−0.4082,−0.4082,−0.4082,−0.4082,−0.4082,−0.4082)

and
w1 = (0.8333, 0.3333, 0.3333, 0.1667, 0.1667, 0.1667).

It can be seen from the composition of w1 that the most influential player is the central player,
followed by second and third. As noted above, the terms in (46) containing θi for i ≥ 2 (if
|βζiθ2| < 1) will tend to zero in a long run, such that the only vital component for large values
of t can be expressed as follows.

∆m1

∆m2

∆m3

∆m4

∆m5

∆m6

 =


βζ1

βζ2

βζ3

βζ4

βζ5

βζ6



t
−0.3402 −0.1361 −0.1361 −0.068 −0.068 −0.068

−0.3402 −0.1361 −0.1361 −0.068 −0.068 −0.068

−0.3402 −0.1361 −0.1361 −0.068 −0.068 −0.068

−0.3402 −0.1361 −0.1361 −0.068 −0.068 −0.068

−0.3402 −0.1361 −0.1361 −0.068 −0.068 −0.068

−0.3402 −0.1361 −0.1361 −0.068 −0.068 −0.068




∆m1,t0

∆m2,t0

∆m3,t0

∆m4,t0

∆m5,t0

∆m6,t0


(47)

The direct implication of the product of the last two matrices on the right hand side of (47) is
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that given the initial perturbations ∆mt0 , each player’s choice of adjustment is influenced most
by the most connected player in the network.

Consider an initial state of beliefs in which for some arbitrary historical factors, player 3 is
in belief state m3 = 1 while the rest of the players are in state −1. We would like to determine
the level of mutations (value of β) required to destabilize the state of players such that βζ > 1,
in which case the player regards his current state undesirable. Consider the case for h = 0.2,
the players 4, 5 and 6 will have the same value of ζ such that βζ = β sech2(−0.8β) for the three
players. In this case there does not exist a value of β for which βζ > 1, implying that the state
of players 4, 5 and 6 are stable and will remain so until player 1 adjusts his state.

In the case of player 2, βζ2 = β sech2(0.2β), which is greater than unity for 1.05 ≤ β ≤ 8.7.
This implies that the minimum level of mutations required to destabilize the current stat of player
2 is that corresponding to β = 8.7. Player 1 on the other hand will have βζ1 = β sech2(−0.4β),
which is greater than unity for 1.3 ≤ β ≤ 2.7. Implying that the minimum level of randomness
corresponds to β = 2.7.

Comparing player 1 and 2, though they both have one player in common in state 1 while
they both are in state −1, the level of randomness required to destabilize the state of each
contingent on their connectivity implies that evolutionary forces tend to act more efficiently on
less connected players as compared to those with high connectivity. This observation may not
be true for all values of h, especially for large values which imply that the difference in level of
valuation that agents attach to the two actions is very high such that the network externality
effect has little contribution compared to private tastes. For values of h small enough, the above
observation is consistent, and as pointed out before just like densely connected subgroups, highly
connected players can be a hindrance to learning since their long-run behavioral outcomes are
largely determined by historical factors and less by evolutionary forces.

7 Conclusion

We have discussed the dynamic process of learning in social and economic networks for a class
of pure coordination games and games with strategic complementarity. We adopted an evo-
lutionary approach as in Kandori et al. [1993], Young [1993], Ellison [1993], Blume [1993], in
which agents are assumed to be myopic and boundedly rational. We also provide an alternative
dynamic framework in which we linearize the general adoptive process to a form that gives di-
rect insight on the role of the interaction structure. The general adoptive process maintains the
high order correlation among players’ states and therefore captures more informational detail.
In the case of the linearized adoptive process, such information is not readily captured but in
return we get to work with a more simplified form from which we can derive more intuitive results.

The convergence results are provided for both general and linearized adoptive processes and
for both observation and non-observational learning. We prove the existence of a unique equi-
librium in both cases conditional on the network of interactions being strongly connected.

We have discussed some of the questions concerning learning dynamics in networks that are
left largely open in the existing literature. The first question we focus on relates to the time and
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speed of convergence of the learning process and how the topology of the network of interactions
influences both. A related question concerns the probability of learning as compared to the
speed of learning; which can be interpreted as the impact of evolutionary forces versus that of
historical factors. We derive the bound for the convergence time showing that it depends on
the initial state (historical factors) and the asymptotic behavior of the learning process. The
asymptotic property of learning is independent of the initial state configuration, and the effect
of the interaction structure through the asymptotic behavior is antagonistic to that through the
initial state configuration.

We further derive a bound for the waiting time until a prescribed fraction of players simulta-
neously choose a “new” strategy, a result that helps elaborate on the impact of evolutionary forces
versus historical factors. The concept of waiting time has been used before by Ellison [1993] and
Young [1998a] but unlike in these works, we place a specific bound for general network structures
and model parameters. We have been able to show that evolutionary forces are more efficient and
hence the probability of learning is higher in sparsely and locally connected network structure
than in densely or uniformly connected networks. In the same light we also show that highly
connected players and densely connected subgroups can be a hindrance to learning, but in cir-
cumstances where evolutionary forces are strong enough to ensure that learning occurs, then it
happens more rapidly than in less connected networks or networks that do not contain highly
connected player.

The second question we have tackled in this paper concerns the identification of the general
features of the network of interactions that lead to conformism and those that sustain diversity
of strategies over long period of time. We employ the eigendecomposition technique to show that
though the equilibrium of learning dynamics predicts full conformism for connected networks,
diversity of strategies across the population can prevail over long periods if the network is made
up of densely connected subgroups but with “weak” inter-subgroup interactions. In such struc-
tures the inter-subgroup interactions are too weak to act as a means of diffusion of strategies
across subgroups, such that the only way of learning to occur is through evolutionary forces.
But since evolutionary forces are not efficient in densely connected groups or subgroups then we
expect that learning in such interaction structures will be slow and it will be possible to sustain
diversity over long periods of time.

The framework and findings in this paper can be extended in several ways. The first includes
considering endogenous network formation. We have considered in the whole of the above analysis
that the network is exogenously given, but in the light of Baccara and Yariv [2010] our framework
can be extended to incorporate endogenous formation of links between players.

Secondly, we have focused on learning problems in which the payoff of an individual directly
depends on the actions of his opponents. Though we find similarities in some of our findings
with that of the models of network externalities in information sharing problems, (that is where
the network of interactions is simply a medium of communication and information sharing) it
would be interesting to establish the generality of our findings particularly with models like Bala
and Goyal [1998] and Acemoglu et al. [2011]. The work by Bala and Goyal [1998] and Acemoglu
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et al. [2011] provide a framework for this kind of learning problems but their models focus on
the details of learning at the expense of capturing the complexities of the interaction structure.
Golub and Jackson [2010] and Demarzo et al. [2003] on the other hand employ a framework
that focuses on the details of the role played by the interaction structure at the expense of the
details of the learning process. The framework we provide in section 3 can be developed into an
intermediate model between the more detailed model of Bala and Goyal [1998] and Acemoglu
et al. [2011], and the much simplified model of Golub and Jackson [2010] and Demarzo et al.
[2003].

The reduced Markov chain frame we provide in section 3 can also be applied to model various
environments with diffusion or cascades, such as the global cascade of idiosyncratic shocks in
say within or across industrial sectors, in which case the nodes would represent firms or different
industries.

The final aspect for future research concerns the procedure in which players update their
strategies. We have considered the case in which updating is done simultaneously, but it is not
straight forward that similar findings can be obtained if players update asynchronously. There
exists a well documented literature in probability theory and statistical mechanics that provides
computational algorithms for sequential Markov chain dynamics that not only can give more
insights in relation to asynchronous learning dynamics, but could also be useful for computational
advancement of models of learning in networks. A good survey on these models can be found in
Levin et al. [2009] and the references therein.

Appendix

A Preliminary concepts

For a given adjacency matrix G, we denote the corresponding normalized adjacency matrix by
Ω. It follows that Ω is a stochastic matrix; its rows sum up to unity. Following from the
eigendecomposition theorem, Ω can be expressed as,

Ω = θ1y1w
T
1 +

n∑
i=2

θiyiw
T
i (A.1)

where θi are the eigenvalues of Ω, and yi and wi are the corresponding right and left eigenvectors
respectively. Note that θ1 = 1 for stochastic matrices

In what will follow, we shall consider the case in which G and Ω are irreducible or not
completely decomposable. We introduce the concept of nearly decomposable matrices (according
to Simon and Ando [1961] and hence network structures that will be useful in later analysis.
First define a completely decomposable network with adjacency matrix G∗ as follows.

Definition 8 The matrix G∗ is completely decomposable if after an appropriate permutation of
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rows and columns, it can be expressed in the form

G∗ =


G∗1

. . .

G∗l
. . .

G∗L


where G∗l ’s are square block matrices or submatrices, and L < n. The rest of the undisplayed
elements are zeros.

In the context of interaction topology, it would imply that the agents belong to disjoint sub-
groups; which could actually be studied separately. For a completely decomposable G∗, the cor-
responding Ω∗ is also completely decomposable. Let θ∗il denote the ith eigenvalue in block l of Ω∗,
such that

(
θ∗11 , θ

∗
12
, · · · , θ∗1L

)
are the largest eigenvalues in blocks 1 to L, and

(
θ∗21 , θ

∗
22
, · · · , θ∗2L

)
are the second largest eigenvalues for the L blocks. Index by nl as the maximum number of
columns in block l. We can therefore categorize the spectrum of G∗ denoted by ρ(Ω∗), in the
form

ρ(Ω∗) =
(
θ∗11 , θ

∗
21 , · · · , θ

∗
n11

, · · · , θ∗12 · · · , θ
∗
1l , · · · , θ

∗
nll
, · · · , θ∗1L , · · · , θ

∗
nLL

)
.

The eigendecomposition of Ω∗ will thus be

Ω∗ =

L∑
l=1

y∗1lw
∗T
1l

+

L∑
l=1

nl∑
j=2

θ∗jly
∗
jl
w∗Tjl . (A.2)

where y∗i and w∗i are the right and left eigenvectors respectively. Note that since Ω∗ is a stochas-
tic matrix, we have that θ∗11 = · · · = θ∗1L = 1.

Consider the situation in which the network is irreducible, but can be categorized into non-
disjoint subgroups l = 1, · · · , L, such a network referred to as nearly decomposable network with
the following definition.

Definition 9 The matrix G is nearly decomposable if it can be expressed as G = G∗ + εG′.
Where G∗ is a completely decomposable matrix, ε is a very small real number, and G′ is an
arbitrary n× n matrix.

Following the similar categorization of ρ(Ω) as that for ρ(Ω∗), the eigendecomposition of the
corresponding Ω will be

Ω = y11w
T
11 +

L∑
l=2

θ1ly1lw
T
1l

+

L∑
l=1

nl∑
j=2

θjlyjlw
T
jl

(A.3)

for θ11 > θ1l > θjl for all j and l.
The relationship between the eigenvalues and eigenvectors of Ω∗ and Ω is through the pa-

rameter ε. Define δi(ε) = |θi(ε)− θ∗i |, a small positive real number such that limε→0 δi(ε)→ 0. If
θ∗1l = 1 is the leading eigenvalue for block submatrix Ω∗l , then it must be that

θ1l(ε) = 1− δ1l(ε). (A.4)

The following proposition will be useful in the later analysis.
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Proposition 6 Let Ω be nearly decomposable as in (A.3), let yijl denote ith element of the
eigenvector corresponding to eigenvalue θjl for all jl, and l. There exists a value of ε, say ε′ and
an arbitrary real positive number ξ, such that for ε < ε′,

max
i
|yijl − y

∗
ijl
| < ξ (A.5)

for jl = 2, · · · , nl and l = 1, · · · , L.

Proof. See Appendix B.1

The following lemma concerns the second largest eigenvalue of a network graph; the property
of interlacing eigenvalues

Lemma 4 Let G and G′ be two networks graphs with the same set of vertices, and that θ2 and
θ′2 are the second largest eigenvalues of G and G′ respectively:

1. If G′ ⊆ G then
θ′2 ≤ θ2 (A.6)

2. Let G,G′ be edge-disjoint, if we denote by θu2 as the second largest eigenvalue of G ∪ G′,
then

θ2 + θ′2 ≤ θu2 (A.7)

Proof. The proof follows from Fiedler [1973].

Definition 10 [Monderer and Shapley [1996]] A non-cooperative game G with utility function
U : X 7→ R is a potential game if there exists a real valued function H(x) : X 7→ R, the potential
function, such that for any deviations by any i ∈ n, the change in the payoffs equals the change
in potential, with a rescaling in utility functions when it applies. That is, let ui(x) be the utility
function of i when i chooses xi and the opponents choose x−i, and let ui(x′) be the utility function
of i when i chooses x′i and the opponents choose x−i, then

ui(x)− ui(x′) = H(x)−H(x′) (A.8)

B Proofs

B.1 Proof of Proposition 6

The following proof is adopted from Simon and Ando [1961]. Let Ωt
ij and Ω∗tij denote the ith row

and jth column elements of the tth power of the matrices Ω and Ω∗ respectively. Each Ωt
ij is the

probability of ending up in Ωij after t steps starting from any of the ith elements of Ω. Implying
that all Ωt

ijs in Ωt are continuous functions of the Ωijs in Ω.
Recall that for Ω nearly decomposable, then Ω = Ω∗+ εΩ′. This implies that for any positive

real number ξ′, there exist an ε1 and a T1 such that for ε < ε2 and t < T1

max
i,j
|Ωt
ij − Ω∗tij | < ξ′ (B.1)
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Recall the structure of the eigendecomposition of Ω,

Ωt = y11w
T
11 +

L∑
l=2

θt1ly1lw
T
1l

+
L∑
l=1

nl∑
j=2

θtjlyjlw
T
jl

(B.2)

Let us denote yjlw
T
jl
by B(jl), such that the Bik(jl) are the ith row and kth column elements of

B(jl). We can therefore write the elements of Ω as follows

Ωt
ik = Bik(11) +

L∑
l=2

θt1lBik(1l) +
L∑
l=1

nl∑
j=2

θtjlBik(jl) (B.3)

Substituting into (B.1) gives

max
i,k
|Ωt

ik−Ω∗tik| =
∣∣∣∣Bik(11)+

L∑
l=2

θt1lBik(1l)−
L∑

l=1

θ∗t1lB
∗
ik(1l)+

L∑
l=1

nl∑
j=2

θtjlBik(jl)−
L∑

l=1

nl∑
j=2

θ∗tjlB
∗
ik(jl)

∣∣∣∣ (B.4)

Denote the sum of the first three terms on the right hand side of (B.4) by Q, that is

Qik(t) = Bik(11) +

L∑
l=2

θt1lBik(1l)−
L∑
l=1

θ∗t1l
B∗ik(1l) (B.5)

The quantity Qik(t) is nearly independent of t for θils large, that is for t < T2, θtil → 1 for all l.
Applying algebraic manipulations yields

max
i,k
|Ωt

ik − Ω∗tik| =
∣∣∣∣Qik(t) +

L∑
l=1

nl∑
j=2

(θtjl − θ
∗t
jl

)Bik(jl) +

L∑
l=1

nl∑
j=2

θ∗tjl (Bik(jl)−B∗ik(jl))

∣∣∣∣ (B.6)

Note that for ε sufficiently small, θjl − θ∗jl is also small, such that θtjl − θ
∗t
jl
→ 0

max
i,k
|Ωt
ik − Ω∗tik| =

∣∣∣∣Qik(t) +
L∑
l=1

nl∑
j=2

θ∗tjl (Bik(jl)−B
∗
ik(jl))

∣∣∣∣ < ξ′ (B.7)

Since Qik(t) is independent of t for θils close to unity, and that θ∗jl for all jl ≥ 2 and for all l are
distinct, it follows (B.8) is only true if there exists a positive real number ξ and an ε2 such that
for ε < ε2 and t < T1

max
ik
|Bik(jl)−B∗ik(jl)| < ξ (B.8)

This completes the proof, where Bik(jl) = yijlwkjl .

B.2 Proof of Corollary 1

To prove that a distribution is the stationary distribution of the Markov chain, it suffices to show
that it satisfies the detailed balance condition. That is if ν(x) is the stationary distribution then

ν(x)P (x,y) = ν(y)P (y,x) for x,y ∈ X (B.9)
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where ∑
x∈X

ν(x)P (x,y) =
∑
x∈X

ν(y)P (y,x) = ν(y)
∑
x∈X

P (y,x) = ν(y) (B.10)

So we basically need to show that

νβ(x) =
exp[βH̄(x)]∑

x′∈X exp[βH̄(x′)]
(B.11)

satisfies (B.9). Note that H̄ is a potential function and is derived from the sum of individual
payoffs

H̄(x) =

n∑
i=1

Ui(xi, x−i), (B.12)

which can be expressed in alternative ways depending on the kind of interactions one is interested
in. For example, for

Ui(xi, x−i) =
∑
j∈n

Jijvi(xi, xj), (B.13)

if Jij = Jji, given the payoff structure for the coordination game in Table 1, H̄(x) will be
equivalent to

H̄(x) = (a− d)JAA + (b− c)JBB (B.14)

where JAA and JBB are the sum of the weights on all edges {i, j} such that xi = xj = A and
xi = xj = B respectively. This is the case considered by Young [1998a].

In general we can rewrite H̄(x) as

H̄(xi, x−i) = Ui(xi, xNi
) +

n∑
j 6=i

Uj(xi, x−i), (B.15)

and it directly follows that

Ui(xi, xNi
)− Ui(yi, xNi

) = H̄(xi, x−i)− H̄(yi, x−i). (B.16)

Since the change in one agent’s choice results in an equivalent (but possibly rescaled) change in
the potential, we can thus consider an asynchronous adoptive process in which an agent updates
at a time. If i is randomly chosen with a uniform probability 1/n, then

ν(x)P (x,y) =
1

n

exp[βH̄(x)]∑
x′∈X

exp[βH̄(x′)]

exp[βUi(yi, xNi
)]∑

y′i∈{A,B}
exp[βUi(y′i, xNi

)]
. (B.17)

Denote by Z the normalizing factor

Z =
1

n
∑

x′∈X
exp[βH̄(x′)]

∑
y′i∈{A,B}

exp [βUi(y′i, xNi
)]

(B.18)
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Applying (B.16) to (B.18) gives

ν(x)P (x,y) = Z exp[βH̄(x) + Ui(yi, xNi
)]

= Z exp[β
(
H̄(xi, x−i) + Ui(xi, xNi

)− H̄(xi, x−i) + H̄(yi, x−i)
)
]

= Z exp[β
(
Ui(xi, xNi

) + H̄(yi, x−i)
)
], (B.19)

where for x−i = y−i, the R.H.S of (B.19) will be equivalent to ν(y)P (y,x); which completes the
proof.

B.3 Proof of Lemma 1

We prove proposition 1 by consider an example of the 3-agent interaction network in Figure 2,
with the adjacency matrix

G =

0 1 1

1 0 1

1 1 0


The master Markov chain transition matrix for the coordination game with payoff structure in

1

2

3

Figure 2: A complete 3-agent network

Table 1 where a = 1.5, b = 1, and c = d = 0, and β the parameter of randomness, is given

Pβ =



0.9983 0.0006 0.0006 3.1× 10−7 0.0006 3.1× 10−7 3.1× 10−7 1.7× 10−10

0.6039 0.0003 1.73 9.6× 10−5 1.73 9.6× 10−5 0.0496 2.7× 10−5

0.6039 0.173 0.0003 9.6× 10−5 0.173 0.0496 9.6× 10−5 2.7× 10−5

0.0040 0.0012 0.0012 0.0003 0.6002 0.1719 0.1719 0.0493

0.6039 0.173 0.173 0.0496 0.0003 9.6× 10−5 9.6× 10−5 2.7× 10−5

0.0040 0.0012 0.6002 0.1719 0.0012 0.0003 0.1719 0.0493

0.0040 0.6002 0.0012 0.1719 0.0012 0.1719 0.0003 0.0493

2.0× 10−7 4.4× 10−5 4.4× 10−5 0.0066 4.4× 10−5 0.0066 0.0066 9.801


Applying the operator Ψ on the Pβ gives Πβ = Ψ−1PβΨ as

Πβ =



0.2134 0.1199 0.4616 −0.1283 0.4616 −0.1283

0.2134 0.1199 −0.0348 0.3681 −0.0348 0.3681

0.4616 −0.1283 0.2134 0.1199 0.4616 −0.1283

−0.0348 0.3681 0.2134 0.1199 −0.0348 0.3681

0.4616 −0.1283 0.4616 −0.1283 0.2134 0.1199

−0.0348 0.3681 −0.0348 0.3681 0.2134 0.1199
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Notice that Πβ consists of square block submatrices which are identical and can be identified
with the topology of the interaction structure. The rows of Πβ can be rescaled without loss of
generality to a new transition matrix say Π′β , which plays the same role as Πβ .

Π′β =



0 0 0.5683 −0.0683 0.5683 −0.0683

0 0 0.0719 0.4281 0.0719 0.4281

0.5683 −0.0683 0 0 0.5683 −0.0683

0.0719 0.4281 0 0 0.0719 0.4281

0.5683 −0.0683 0.5683 −0.0683 0 0

0.0719 0.4281 0.0719 0.4281 0 0


The transition matrix Π′β , can be factorized into

Π′β = ΩT ⊗ Σ (B.20)

where

Ω =

 0 0.5 0.5

0.5 0 0.5

0.5 0.5 0


and

Σ =

(
0.9994 0.0006

0.0067 0.9933

)
.

B.4 Proof of Corollary 2

From (12), we have PβΨ = ΨΠβ . Multiplying by ri, PβΨr1 = ΨΠβr1. Since Pβ is a stochastic
matrix, µ1 = 1, and it follows that PβΨr = Ψr1, which is true if and only if Πβr1 = r1; that is
λ1 = µ1 = 1. It also follows that if λi = µi and Ψri 6= 0, then r̃i = Ψri.

Similarly, multiplying PβΨ = ΨΠβ by the transpose of z̃i such that z̃Ti PβΨ = z̃Ti ΨΠβ , then

z̃Ti PβΨ = µiz̃
T
i Ψ = z̃Ti ΨΠβ (B.21)

Implying that if λi = µi and z̃Ti Ψ 6= 0 then it is also true that zTi = z̃Ti Ψ

B.5 Proof of Proposition 1

If the interaction structure is strongly connected, and additionally that β > 0, then the adoptive
process with the transition matrix Πβ is finite, irreducible, and aperiodic. This also implies that
no multiple eigenvalues of Πβ exists. From the eigendecomposition of Πβ ,

v0Πt = v0r1z
T
1 +

γ∑
i=2

λtiv0riz
T
i (B.22)

where we treat v0 as a row vector, the right eigenvectors (ri) of Πβ are column vectors. As
t→∞, only the first term on the right hand side of (B.23) remains such that

v0Πt = v0r1z
T
1 (B.23)
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Let the eigenvectors of Πβ be normalized so that zTi ri = 1, and recall from Lemma 3 that
r1 = w1 ⊗ 12, where w1 is the left eigenvector of Ω. Denote the ith element of v0 by v0(i). It
follows that

v0r1 = v0(w1 ⊗ 12)

= [v0(1), · · · , v0(γ)][w1(1)⊗ 12, · · · , w1(n)⊗ 12]T

= w1 + · · ·+ w1

= 1 (B.24)

where the third equality follows from the fact that v0 comprises of event vectors (ei for all i ∈ n)
of size m, such that v0 = [e1, · · · , en] and that for each i ∈ n, ei(wi ⊗ 12) = wi. It therefore
follows that the steady state or stationary distribution of the adoptive process with transition
matrix Πβ and initial state v0 is

lim
t→∞

v0Πt
β = v0r1z

T
1 = zT1 (B.25)

B.6 Proof of Theorem 1

We derive insights for the following proof from the general proof for the mixing time of Markov
chains in Levin et al. [2009]. Most importantly we make adaptations and extensions to derive
results for our analytical objectives. Recall that the eigenvalue spectrum of Pβ is ρ(Pβ) =

(µ1, · · · , µη). To avoid notational clutter we shall write P instead of Pβ , s0 for st0 , x0 for xt0

and s(x0) for s(xt0).
We first take note of the following lemma.

Lemma 5 Let P (x,y) imply the transition from configuration x to y, the total variation distance
has the following equivalence.

∣∣∣∣s0P
t − ν

∣∣∣∣ = ‖P t(x0,y)− ν(y)‖ (B.26)

for x0,y ∈ X.

Proof. Recall the definition of the total variation distance,

∣∣∣∣s0P
t − ν

∣∣∣∣ =
1

2

∑
y∈X
|s0P

t(y)− ν(y)| (B.27)

where s0P
t = P t(x0, .), hence

∣∣∣∣s0P
t − ν

∣∣∣∣ =
1

2

∑
y∈X
|P t(x0,y)− ν(y)|

= ‖P t(x0,y)− ν(y)‖ (B.28)

From the definition of convergence time, what is required is to place a bound on the left
hand side of (5), which reduces to obtaining the bound for the right hand side of (5). Note that
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if we are interested in the convergence time from the known initial configuration say x0 to the
stochastically stable configuration x∗, then we simply need to obtain the bound for the quantity
‖P t(x0,x∗)−ν(x∗)‖. The worst possible initial state (configuration) in the binary choice case we
consider is the all B configuration ~B, and the all A, ~A is the stochastically stable configuration,
such that

∣∣∣∣s0P
t − ν

∣∣∣∣ = ‖P t( ~B, ~A)− ν( ~A)‖ = max
x∈X
‖P t(x,y)− ν(y)‖ (B.29)

To keep the proof as general as possible, we shall carry on working with P t(x,y) rather than
P t(x0,y) then simply deduce the results for the latter towards the end of the proof. Recall that
P is reversible. That is given the stationary distribution ν,

ν(x)P (x,y) = ν(y)P (y,x) ∀x,y ∈ X (B.30)

We can define an equivalent symmetric matrix S such that

S(x,y) =

√
ν(x)

ν(y)
P (x,y) (B.31)

The reason for introducing S is to be able to exploit the properties of symmetric matrices,
particularly the spectral theorem stating that, for symmetric matrices, there exists a set of
orthonormal basis {ui}|X|i=1, such that ui is an eigenfunction corresponding to the real eigenvalue
µi.

Now, let us denote the diagonal matrix with elements ν(x) by D, then we have

S = D
1
2PD−

1
2 (B.32)

Let fi = D−
1
2ui, (where ui’s are eigenfunctions of S) it follows that fi is an eigenfunction of P

corresponding to eigenvalue µi, and that fi’s are orthonormal with respect to ν. That is

Pfi = PD−
1
2ui = D−

1
2

(
D

1
2PD−

1
2

)
ui = D−

1
2Sui = D−

1
2µiui = µifi. (B.33)

To prove orthonormality of the functions fi’s with respect to ν, its useful to take note of the
following definition of the inner product.

Let 〈., .〉 denote the inner product on RX, that is

〈f, g〉 =
∑
x∈X

f(x)g(x), (B.34)

then we can define the inner product with respect to the distribution ν as

〈f, g〉ν =
∑
x∈X

f(x)g(x)ν(x). (B.35)
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Let δi,j denote the Dirac delta function (that is δi,j = 1 if and only if i = j), then

δi,j = 〈ui,uj〉 =
〈
D

1
2 fi, D

1
2 fj

〉
=
∑
x∈X

ν(x)
1
2 f(x)ν(x)

1
2 g(x) =

∑
x∈X

f(x)ν(x)g(x) = 〈f, g〉ν .

Note that P t(x,y) is the x,y element of P t, implying that P t(x,y) = (P tδy)(x); where
δy(x) is a Dirac function assuming the value of unity for x = y and zero otherwise. Notice also
that δy belongs to the inner product space V = (RX, 〈., .〉ν), and since the set {f1, · · · , f|X|} is
an orthonormal basis of V, then δy can be written via basis decomposition as

δy =

η∑
i=1

〈δy, fi〉ν fi =

η∑
i=1

fi(y)ν(y)fi (B.36)

Substituting (B.36) and P tfi = µtifi gives P
t(x,y) as

P t(x,y) =

η∑
i=1

fi(y)ν(y)µtifi(x) = ν(y) +

η∑
i=2

fi(y)ν(y)µtifi(x) (B.37)

Taking the absolute values of (B.37) yields

∣∣P t(x,y)− ν(y)
∣∣ =

η∑
i=2

∣∣fi(y)ν(y)fi(x)µti| ≤
η∑
i=2

∣∣fi(y)ν(y)fi(x)||µ2|t

≤ ν(y)

[
η∑
i=2

f2
i (y)

η∑
i=2

f2
i (x)

] 1
2

|µ2|t (B.38)

(B.39)

where the last inequality follows from Cauchy-Schwarz inequality. Following from the defini-
tion of inner product together with that of δy(x) in (B.36), and relying on the orthonormality
of the set fi, we have

ν(y) = 〈δy, δy〉 =

〈
η∑
i=1

fi(y)ν(y)fi,

η∑
i=1

fi(y)ν(y)fi

〉
= ν(y)2

η∑
i=1

fi(y)2 (B.40)

The implication is that
∑η

i=2 fi(y)2 ≤ 1
ν(y) , and consequently

∣∣P t(x,y)− ν(y)
∣∣ ≤ ν(y)√

ν(x)ν(y)
|µ2|t (B.41)

If ν(xt0) and ν(x∗) are the stationary distribution for the initial and final configuration, then it
follows from Lemma 5 and the above discussion that

∣∣∣∣s0P
t − ν

∣∣∣∣ =
1

2

∑
y∈X
|P t(xt0 ,y)− ν(y)| ≤ 1

2

∑
y∈X

ν(y)√
ν(xt0)ν(y)

|µ2|t ≤
ν(x∗)

ν(xt0)
|µ2|t

where the last inequality follows from the fact that if we start from the worst possible case then
ν(xt0) ≤ ν(x∗).
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For
∣∣∣∣s0P

t − ν
∣∣∣∣ ≤ $, then ν(x∗)

ν(xt0 ) |µ2|t ≤ $. Consequently, the convergence time is

Tc(G, β, n) ≤
ln
(
$ν(

xt0 )

ν(x∗)

)
ln |µ2|

(B.42)

Note that if |µ2| is large and positive, then ln |µ2| ≈ 1− µ2. Substituting into (B.42) yields

Tc(G, β, n) ≤
ln
(

ν(x∗)
$ν(xt0 )

)
1− µ2

(B.43)

And for the binary action set we have considered,

Tc(G, β, n) ≤
ln
(

ν( ~A)

$ν( ~B)

)
1− µ2

(B.44)

B.7 Proof of Corollary 4

First note that for n(A) = 0 corresponding to xt0 = ~B, we have that τ(β, h, ν( ~B)) = ν( ~A)/ν( ~B) >

1.
Now consider the values of n(A) in the neighborhood of zero, say some positive integer ε.

Denote the xt0 for which n(A) = ε by xt0(ε). It is easy to see from eqrefeq:distn that the quantity
ν(xt0(ε)) < ν( ~B), hence τ(β, h, ν(xt0(ε))) > τ(β, h, ν( ~B)).

Since τ(β, h, ν( ~A)) = 1 < τ(β, h, ν( ~B)) < τ(β, h, ν(xt0(ε))), there must exists a configuration
xt0 for which n(A) > 0 such that τ is maximum.

B.8 Proof of Proposition 2

For any initial state s0 = s(x0) and following from the proof of 1, we have that

∣∣∣∣s0P
t − ν

∣∣∣∣ = ‖P t(x0, .)− ν(.)‖ =
1

2

∑
y∈X
|P t(x0,y)− ν(y)|

=

γ∑
i=2

∣∣fi(y)ν(y)fi(x0)µti| (B.45)

Taking the lim sup and 1/t-th power gives

lim sup
t→∞

∣∣∣∣s0P
t − ν

∣∣∣∣1/t = lim sup
t→∞

[
γ∑
i=2

∣∣fi(y)ν(y)fi(x0)µti|

]1/t

= |µ2| lim sup
t→∞

[
|f2(y)ν(y)f2(x0)|+ 1

|µ2|t
γ∑
i=3

∣∣fi(y)ν(y)fi(x0)µti|

]1/t

= |µ2| (B.46)

where the result is valid for any y ∈ X and for x 6= y; hence

1− r = 1− |µ2| (B.47)
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B.9 Proof of Proposition 3

Let π denote the stationary distribution of Πβ or Π in short form. We showed in Proposition 1
that π = v0r1z

T
1 = z1, where z1 is the unique left eigenvector of Π. This implies that,

v0Πt − π =

γ∑
i=2

λtiv0riz
T
i (B.48)

such that

|v0Πt − π| =
γ∑
i=2

|λtiv0riz
T
i |

= |λt2v0r2z
T
2 |+ |λt3v0r3z

T
3 |+

γ∑
i=4

|λtiv0riz
T
i |

≤
(
|λ2|t + |λ3|t

)
|v0r2z

T
2 |+

γ∑
i=4

|λtiv0riz
T
i | (B.49)

The triangular inequality for higher powers is as follows: ∀x1, · · · , xγ ∈ Rγ ; and for γ ∈ N,

∣∣∣∣ γ∑
i=1

xi

∣∣∣∣p ≤ γp−1
γ∑
i=1

|xi|p (B.50)

The triangular inequality can be extended to scalars , such that for two scalars λ2 and λ3, we
have

|λ2|t + |λ3|t ≥
1

2t−1
(|λ2|+ |λ3|)t (B.51)

Note that if λ2 = λ3 then the inequality in (B.51) becomes an equality, and if λ2 and λ3 are
comparable or both close to unity then the inequality becomes an approximation. Since we shall
mostly be interested in the properties of the learning process for which β is large (λ3 = ϑ2 is close
to unity), and for G with local interactions we shall assume that λ2 and λ3 are fairly comparable.
That is

|λ2|t + |λ3|t ≈ 2

[
1

2
(|λ2|+ |λ3|)

]t
(B.52)

substituting into (B.49) yields

|v0Πt − π| ≤ 2

[
1

2
(|λ2|+ |λ3|)

]t
|v0r2z

T
2 |+

γ∑
i=4

|λtiv0riz
T
i |

=

[
1

2
(|λ2|+ |λ3|)

]t [
2|v0r2z

T
2 |+

1[
1
2(|λ2|+ |λ3|)

]t γ∑
i=4

|λtiv0riz
T
i |
]

(B.53)

Consequently the lim sup of the total variation distance becomes
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lim sup
t→∞

∣∣∣∣v0Πt − π
∣∣∣∣ 1t ≤ 1

2
(|λ2|+ |λ3|) lim sup

t→∞

[
2|v0r2z

T
2 |+

1[
1
2(|λ2|+ |λ3|)

]t γ∑
i=4

|λtiv0riz
T
i |
] 1
t

=
1

2
(|λ2|+ |λ3|) (B.54)

Substituting for λ2 = θ2 and λ3 = ϑ2 we get

1− r ≥ 1

2
[(1− |θ2|) + (1− |ϑ2|)] (B.55)

B.10 Proofs for Example 2

Let G = (n,E) be a graph or network of n vertices. Denote by S a subset of n and by e(S, n−S)

as the number of interactions or edges between S and its complement n−S. Also let d(S) denote
the total degree of subset S. For regular network graphs (in which all vertices posses the same
degree size), it is shown by [Alon and Milman, 1985] that

φ(G) = min
S,#S≤n

2

e(S, n− S)

d(S)
≥ 1− θ2(G)

2
(B.56)

where #S denotes the size of the set S.

For a complete graph, since every vertex is connected to every other vertex, we have that
every vertex in S is connected to all other vertices in n − S. This implies that e(S, n − S) =

#S ×#(n− S) = #S × (n−#S), and d(S) = n×#S such that

1− θ2(Gcom)

2
≤ min

S,#S≤n
2

#S × (n−#S)

n×#S
≤ 1

2
, (B.57)

where the last inequality follows from the fact that #S ≤ n
2 . We thus have that

1− θ2(Gcom) ≤ 1 (B.58)

In the case of a 1−D cyclic network, e(S, n− S) = 2, and d(S) = 2×#S such that

1− θ2(Gcyc) ≤ 2 min
S,#S≤n

2

2

2×#S
≤ 4

n
. (B.59)

2D network: Let the composition of S be chosen in such a way that the peripheral vertices
(vertices at the perimeter or boundary of S) contain approximately one edge each connecting
it to the set n − S. Since it is a 2-dimensional structure there should be approximately

√
#S

vertices forming such a boundary. This implies that e(S, n − S) ≈
√

#S, and d(S) = 4 × #S

such that

1− θ2(G2D) ≤ 2 min
S,#S≤n2

2

√
#S

4×#S
≤ 4

n
. (B.60)

where the last inequality follows from the fact that
√

#S ≤
√

n2

2 ≤
√

1
2n

2.
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Random d-regular network: Since for each vertex the vertices to which it ic connected to are
chosen at random, and that the maximum size of S is n

2 , then a typical vertex in S is connected
to approximately d×#(n−S)

n other vertices in n−S such that e(S, n−S) ≈ d×#S#(n−S)
n . We thus

have

1− θ2(Gd−r) ≤ 2 min
S,#S≤n

2

d×#S#(n−S)
n

d×#S
≤ 1. (B.61)

For Newman’s small world networks see Durrett [2006].

B.11 Proof of Theorem 2

We aim to derive a bound on P(n(At0+T ) ≥ αn), the probability that at least αn of the agents
simultaneously play A after T time steps starting from t0, and given n and β. We proceed with
the derivation by performing a random walk on the network of agents connections.

We shall let pi denote the probability that an agent i will choose A given the choice of his
neighbors in the current period. Specifically, since we are interested in the case of an all B initial
configuration such that xt0 = ~B, and if we let ~BNi

denote the all B configuration of Ni then
xNi,t0 = ~BNi

. We shall therefore let

pi = P(xi,t0+T = A|xNi,t0 = ~BNi
)

. Recall that the expected waiting time is given by,

Tw(G, β, α, n) =
T

P(n(At0+T ) ≥ αn)
(B.62)

We shall consider the case of T = 1, such that we simply compute the bound for P(n(At0+1) ≥
αn). Under this consideration, pi = P(xi,t0+1 = A|xNi,t0 = ~BNi

) for all i; the probability that i
plays A in the next period given that all his neighbors currently play B.

Define a parameter w ∈ [0, 1] such that if pi ≥ w agent i chooses A or else he chooses B. This
leads to a random variable denoted by Ii, which is equal to one if i chooses A and zero otherwise.
Let I = (I1, · · · , In) be the realization of Ii for all i ∈ n. We then rephrase our problem as the
case of bounding P(

∑n
i=1 Ii ≥ αn).

Now define a binomial sampling over the vector I, Bin(n, b), such that with probability b, Ii
is picked and with 1 − b it is not. Denote the n-dimensional vector generated by Bin(n, b) by
u = (u1, · · · , un), where P(ui = 1) = b and P(ui = 0) = 1−b. Let S be a subset generated by the
binomial sampling such that S ⊆ u containing all ones. This enables us to define an event that
∀i∈SIi = 1; that is all members of S choose A, and consequently P(∀i∈SIi = 1) is the probability
that all i ∈ S choose A.
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We can thus define the following conditional relation,

P

(
n∑
i=1

Ii ≥ αn

)
=

E
[
∀i∈SIi = 1

]
E
[
∀i∈SIi = 1|

∑n
i=1 Ii ≥ αn

] , (B.63)

where the expectations are taken over the vector u.
Since the elements of u are a result of independent sampling, we have

E[∀i∈SIi = 1] = E∀ui∈u
[ n∏
i=1

(pi|ui)
]
, (B.64)

where (pi|ui) is the probability that Ii = 1 given the vector u. Equation (B.64) can be simplified
as follows

E
[
∀i∈SIi = 1

]
=

n∏
i=1

Eui
[
pi|ui

]
=

n∏
i=1

(
bpi + 1− b

)
(B.65)

If we define p = 1
n

∑n
i=1 pi to be the average of the probability of choosing A in population

of size n, then convexity dictates that

n∏
i=1

(
bpi + 1− b

)
≤
(
bp+ 1− b

)n (B.66)

Note that if G is a regular network graph (in which each node has the same number of neighbors),
then it is easy to see from the properties of Πβ that p1 = p2 = · · · = pn = p, such that

n∏
i=1

(
bpi + 1− b

)
=
(
bp+ 1− b

)n (B.67)

To obtain the bound for E
[
∀i∈SIi = 1|

∑n
i=1 Ii ≥ αn

]
, recall that 1− b is the probability that

ui = 0. We also note that if at least αn of the elements of u are ones, then there are at most
n− αn zeros, that is at most n− αn agents are not in set S. It follows that

E
[
∀i∈SIi = 1|

n∑
i=1

Ii ≥ αn
]
≥ (1− b)(1−α)n (B.68)

Equations (B.67) together with (B.68) when substituted into (B.63) yield,

P

(
n∑
i=1

Ii ≥ αn

)
≤

((
bp+ 1− b

)
(1− b)(1−α)

)n
, (B.69)

If we choose b that optimizes the quantity g =

(
bp+1−b

)
(1−b)(1−α) (by equating the derivative to zero and

solving for b) and substituting back gives

P

(
n∑
i=1

Ii ≥ αn

)
≤

(( p
α

)α( 1− p
1− α

)1−α
)n

(B.70)
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By re-expressing (B.69) in exponential form and recalling that
P(n(At0+1) ≥ αn) = P (

∑n
i=1 Ii ≥ αn), we have

P(n(At0+1) ≥ αn) ≤ e−n(α(lnα−ln p)+(1−α)(ln(1−α)−ln(1−p))) (B.71)

By approximating the ln of p, α, 1− p and 1− α to the second order gives

n(α(lnα− ln p) + (1− α)(ln(1− α)− ln(1− p))) ≥ n
(

7α2

2
− α− 4αp+ p+

p2

2

)
≥ 2n(α− p)2 (B.72)

where the last inequality is true for 0 ≤ p ≤ α. Substituting into (B.71) yields

P(n(At0+1) ≥ αn) ≤ e−2n(α−p)2 (B.73)

From (B.62) with T = 1, we therefore have that

T (G, β, α, n) ≥ e2n(α−p)2 (B.74)

B.12 Proof of Proposition 4

The proof follows from the edge expansion property of the graph corresponding to the social
network. Given a symmetric adjacency matrix G of the topology of the social network, the edge
boundary of a subset l of n, l ⊂ n is defined as d(l, n− l); the number of interactions originating
from l to its complement n− l. Note that since G is symmetric, that is the network is undirected,
then d(l, n− l) will be the number of interactions between l and n− l.

The edge expansion ratio of l, φ(l) is defined as The edge expansion Ratio of l, denoted φ(l),
is defined as:

φ(l) =
d(l, n− l)

min{d(l), d(n− l)}
. (B.75)

where d(l) =
∑

i∈l ki, sum of degrees of all members of subgroup l. If G is a k regular graph
then d(l) = k|l|.

The edge expansion Ratio of G, denoted φ(G), is defined as the minimum of φ(l), that is

φ(G) = min
l,d(l)⊂d(n)

d(l, n− l)
min{d(l), d(n− l)}

(B.76)

where φ(G) is also sometimes referred to as the isoperimetric constant [Cheeger, 1970, Alon and
Milman, 1985, Buser, 1982]. Note that if we are partitioning G into two subgroups d and n− l,
then either d(l) or d(n− l) is less than half of d(n), such that if d(l) ≤ d(n)

2 then (B.76) becomes

φ(G) = min
l,d(l)≤ d(n)

2

d(l, n− l)
d(l)

(B.77)
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The upper bound for φ(G) is given by Cheeger’s inequality [Sinclair, 1992]

min
l,d(l)≤ d(n)

2

d(l, n− l)
d(l)

≤
√

2(1− θ2) (B.78)

Recall that a a subgroup l ⊂ n is cohesive if

d(l, n− l)
d(l)

≤ 1− 2r 0 < r <
1

2
(B.79)

If we assume that the partitioning of n into the subgroups l and n − l is performed by cutting
through the minimum inter-subgroup connectivity as in (B.78), then we have that

r =
1

2

(
1−

√
2(1− θ2)

)
. (B.80)

Finally, note that when r = 0, θ2 = 0.5 and when r = 0.5, θ2 = 1. Implying that G consists of
two cohesive subgroup if the second largest eigenvalue of the corresponding normalized adjacency
matrix θ2 is such that 0.5 < θ2 < 1.

B.13 Proof of Proposition 5

First note that the system of equations (40) for all i = 1, · · · , n defines a mapping

M : Rn → (−1, 1)× · · · × (−1, 1)︸ ︷︷ ︸
n

.

It follows from Banach fixed-point theorem that at least one fixed point m∗ exists, which can be
obtained by successive iterations of the mapping of a sequence derived fromM.
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