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Abstract

The distribution of citations received by scientific publications can be approximated by a power

law, a finding that has been explained by “cumulative advantage”. This paper argues that socially

embedded learning is a plausible mechanism behind this cumulative advantage. A model assuming

that scientists face a time trade-off between learning and writing papers, that they learn the papers

known by their peers, and that they cite papers they know, generates a power law distribution of

popularity, and a shifted power law for the distribution of citations received. The two distributions

flatten if there is relatively more learning. The predicted exponent for the distribution of citations

is independent of the average in-(or out-) degree, contrary to an untested prediction of the reference

model (Price, 1976). Using publicly available citation networks, an estimate of the share of time

devoted to learning (against producing) is given around two thirds.

Keywords: shifted power law, scale free networks, two-mode networks, cumulative advantage, poly-

nomial attachment kernel, innovation, diffusion.

JEL codes: D83, D85, O31, O33

1 Introduction

In a paradigmatic model of the evolution of science, Price (1976) assumed that new papers tend to cite

preferentially the papers already well cited. But do scientists cite the most cited papers or do they

read the most well known? This article argues that the former is an artefact of the latter. In other

words, the so-called preferential attachment of new papers to well-cited existing papers comes from

a preferential learning mechanism by which scientists learn preferentially the popular papers and cite

uniformly at random among the papers they know. While the literature proposes that the mechanism

generating preferential citing is that scientists cite papers found in the bibliography of other papers, It

is suggested here that the mechanism behind preferential learning is that scientists learn papers known

by their peers. It is found that these assumptions predict a distribution of citations received similar
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to that of Price’s model with generalized initial attractiveness (Dorogovtsev et al., 2000), but with a

different effect of the main parameter (average bibliography size).

Since the prominent study of Price (1965), a large literature has repeatedly found that the number

of citations received by scientific papers is approximately distributed according to a power law1, that

is, the share of scientific papers having received k citations is p(k) = Ck−γ , where C is a normalizing

constant and with the power law exponent γ generally lying between 2 and 5. This finding has been

explained by a mechanism that was originally pointed out to explain another well known power law

in scientometrics called Lotka’s law of scientific productivity, which states that the number of authors

having published k papers follows again a power law. Simon (1955) proposed a model to derive Lotka’s

law as follows. He assumed that at each period one new paper appears, and it has a new author

with probability v, otherwise this new paper is authored by an author who is chosen from the pool

of existing authors with probability (called attachment kernel) proportional to his publication record,

thus creating a “rich get richer” effect. These two principles (growth and positive feedback) are enough

to give rise to Lotka’s law. Price (1976), however, was interested in the citation network. Arguing

for the existence of what he dubbed “cumulative advantage”, Price derived a power law distribution of

citations received from the following assumption: a paper receives citations at a rate proportional to the

number of citations that it already has, that is, there is a process of preferential citing by which papers

cite preferentially the papers that have been already well cited. The purpose of the present article is

to show that a power law-like distribution can emerge if we assume that scientists cite uniformly at

random, but learn preferentially the papers which are already well known. A formal model is built

using a growing two-mode2 (author-paper) network in which there is a link between an author and a

paper if the author has produced or has learned the paper. Thus, the focus shifts from the dynamics

of the epistemic network (the citation network alone) towards the co-evolution of the socio-epistemic

network (the social network of authors, the citation network, and the author-paper network). The key

feature of the model is that the number of citations received by a paper is correlated to its popularity,

defined as the number of people knowing the paper. This departs from the literature, which typically

assumes that increasing returns are generated by people finding new papers by reading the papers in

the bibliography of other papers. In the model, the source of cumulative advantage comes from the

“social” side: agents learn papers known by their peers. The argument is that scientists like to know

what fellow scientists already know, and ask one another relevant literature or pick it up on various

occasions, such as seminars, workshops and conferences. This is not exactly the same as saying that

they like to cite what peer scientists have cited nor that they like to know what peer scientists have

cited. Clearly, the argument captures only partly the truth, but such a social aspect behind citation

networks has been understudied, and the present paper is aimed at filling this gap.

To see how socially embedded learning can create a cumulative advantage, observe that if an agent

chooses uniformly at random a paper known by another agent, then papers are chosen with probability

proportional to their popularity. By reference to the landmark model of scale-free networks (Barabási

1Or a relatively similar law (to be discussed below). In all cases, the distribution is very (right) skewed, indicating a

high level of inequality, where very few papers receive a very high number of citations, while the large majority of them

receive none or a few.
2Two-mode networks are networks with two types of nodes, and links only between nodes of different types. By

definition, they are bipartite.
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and Albert, 1999), one may call “preferential learning” this “preferential attachment” (of people to

papers). The mechanism which generates preferential learning is a two-mode version of what has been

proposed for one-mode networks, a form of copying or referral (an early reference is Kleinberg et al.

(1999), but see also Vázquez (2003) and Jackson and Rogers, 2007). Based on different analytical meth-

ods and simulations, the results indicate that preferential learning generates a power law distribution

of paper’s popularity and a shifted power law (Mandelbrot) distribution of citations received, the latter

being in agreement with latest empirical evidence (Eom and Fortunato, 2011). In both cases, the power

law exponent is related to the trade-off between learning and producing papers. However, a surprising

outcome is that the exponent of the (shifted) power law for citations received does not depend on

the average bibliography size (which, in the model, is both the mean in- and out-degree). This seems

more in line with empirical evidence than Price’s (1976) model which predicts a negative relationship,

although evidence is scant.

The paper is structured as follows. Section 2 describes the fundamental assumptions of the model.

Section 3 reviews related branches of literature. Section 4 describes the model and gives preliminary

results. Sections 5 and 6 contain the results, i.e. the explicit formulas describing the evolution of

popularity and citations received by individual papers, as well as the distributions, for the cases of an

infinite and finite population respectively. Section 7 estimates the parameters of the model from publicly

available data on citations among high energy physics papers posted on arXiv.org, and compares the

model with the Price-Newman model. Finally, section 8 elaborates on some limitations of the model and

possible extensions. The last section concludes. Analytical results that have been found using a master

equation method are in the appendix, together with an extension of the model where productivity is

parametrized, a brief discussion of the absence of Lotka’s law in the model, and some robustness checks

where sparse rather than full social networks are assumed.

2 A minimalist model of an author-paper system with learning

The beauty of Price’s model is simplicity. It captures the essence of the phenomenon, and constitutes

a framework that can be modified to accommodate more realistic features, for instance papers’ aging

(obsolescence), papers’ quality, or accelerating growth. The learning-based model proposed here also

aims at being as simple, general and flexible as possible. To this end, one needs to start by stating

clearly what is taken to be the set of fundamental assumptions for modeling an author-paper network.

First of all, we will need to have a clear concept of “knowing”:

Assumption 1 (Knowledge). Papers are either known or unknown by any particular agent.

In particular, the model will not distinguish between knowing a paper because one has learned it or

because one has actually written it. This assumption brings in lots of analytical power, since it implies

that we can construct a two-mode network where a link between i and j exists if and only if agent i

“knows” paper j.

Second, direct empirical observation unequivocally shows that

Assumption 2 (Growth). The total number of papers increases.
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Assumption 2 does not appear controversial, but it will also be assumed that growth takes place at

a constant rate, which is against empirical evidence, but is a useful first approximation.

So far, we have a two-mode network with one of its two sets of nodes growing. A mechanism

producing the well known “Matthew effect” can now be introduced:

Assumption 3 (Embeddedness). Learning is socially embedded in the sense that agents learn what

their peers know.

Clearly, science is a collective endeavor shaped and constrained by social processes, and often sci-

entists learn from others, in seminars, conferences, and interactions with colleagues. For instance, it is

common in the literature to assume that since a large part of knowledge is tacit, it flows through face-

to-face interactions (Cowan, 2005). In the model, papers are pieces of codified knowledge which exist

independently of the people who know them, and flows of tacit knowledge are not explicitly modeled.

It is simply assumed that the choice of which paper to learn is socially embedded in the sense that

agents randomly choose a paper known by a randomly chosen friend. In what follows, it will not be

possible to account for all the details of the ways in which the structure of the social network influences

learning. For simplicity (and mathematical tractability), a full network, i.e. where everybody is friend

with everyone else, will be assumed3. The point of focus here is that if agents learn what is well known,

there are increasing returns in the dynamics of papers’ popularity. In other words, assumption 3 leads

to a “rich get richer” effect:

Lemma 1 (Cumulative advantage). Past accumulation of success increases the probability of success.

The original insight of Simon’s model is that assumption 2 and lemma 1 (which is an assumption

in his case) generate a power law. Simon showed that growth of the number of papers and cumulative

advantage of authors regarding new authorship generates Lotka’s law. Price (1976) showed that growth

of the number of papers and cumulative advantage of papers regarding new citations generates scale-free

citations networks4. Ramasco et al. (2004) showed that growth of the number of authors and papers

and the cumulative advantage of authors regarding authorship generates Lotka’s law and a scale-free

co-authorship network. I will show that growth of the number of papers and cumulative advantage of

papers regarding new diffusion generates a scale-free distribution of papers popularity, which, associated

with a random citing mechanism, produces a citation network characterized by a shifted power law in-

degree distribution.

Note that, as compared to Simon’s model, the two sets (authors and papers) are inverted. In

Simon’s model, a new authorship relationship arrives and with some probability the author is new. In

our context, a new “knowing” relationship appears and with some probability the paper is new. To

justify putting Simon’s model upside down, observe the following premises:

Assumption 4 (Knowledge creation). Knowledge is created by the actors, using effort and their own

knowledge.

3In appendix G, it is argued that the full network assumption is enough to capture the essence of embeddedness for

the purpose of this paper. When the social network structure is a circle the shape of the distributions changes a bit, but

it is very similar when the social network is a Erdős-Renyi random graph.
4“Scale-free” is used loosely here and in the literature in general. In fact Price’s model features a shifted power law

degree distribution, which is not scale-free except for (very) large degrees.
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One common way to deal with assumption 4 is to consider the dynamics of knowledge accumulation

alone: knowledge builds out of itself. However, this would leave aside an important feature of the real

world, which is that agents need to know what others know. In other words,

Assumption 5 (Learning). Agents are learning5.

Assumption 1, 2, 4 and 5 together imply that

Lemma 2 (Learning/Creating trade-off). Agents divide their time between learning existing papers and

creating new ones.

This is equivalent to saying that it is impossible to read a paper while writing one’s own paper.

Since time is limited, the two options are traded-off (it does not imply that they are not complementary

activities). The easiest then is to assume that this trade-off is solved by an exogenous, fixed probability. 6

Finally, assumptions 1, 2 and 5 imply two lemmas

Lemma 3. An agent does not learn the same paper twice.

Lemma 4. Creating a paper or learning a paper produce an equivalent result: the actor knows the

paper.

Note that lemma 4 is not too unrealistic; after all, reproducing the work of others can lead to a

quite equivalent “understanding”.

In summary, the view expressed here is that to understand the evolution of science, it is absolutely

necessary to incorporate actors, and the facts that they are learning, that they rely on their peers for

awareness of relevant knowledge items to be learned, and that they are trading-off learning and produc-

ing.7 This is a necessary consequence of the view that humans are social beings, and that knowledge

is created by humans using their existing knowledge, subject to a time constraint. Furthermore, these

elements do not add much complication. Thanks to these assumptions, the system can be summarized

in a simple growing matrix with binary entries called the incidence matrix of the two-mode network.

Before presenting the detailed description of the model, let us see how it relates to several strands

of literature.

3 Related Literature

The model is related to a long tradition of modeling science, and in particular citation networks (section

3.1). The availability of very large datasets has revived a debate regarding the best functional form for

empirical citation distribution (section 3.2). Meanwhile, many have argued that two-mode networks are

5Throughout the paper, “learning” is used to refer to the act of increasing one’s knowledge by learning a piece of

already existing knowledge, that is, already known by somebody else. Learning thus characterizes knowledge “diffusion”

or “imitation”. By contrast, increasing one’s knowledge with original, new-to-the-world knowledge will be referred to as

“innovation”.
6Alternatively, one can explicitly model choice, e.g. by maximizing a certain utility function which weighs the benefits

of learning v.s. producing. This ‘microfoundation’ of the model is not necessary for the main argument presented here.
7In the model, it is implicitly assumed that the productivity of learning is equal to the productivity of innovating, and

it is equal to one new paper (invented or learned) per period in which an agent is selected. Parametrizing productivity

leads to qualitatively similar results, see appendix F.
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an insightful way of representing science (section 3.3), a modelling standpoint which is easily backed up

by social theories of knowledge such as actor-network theory (section 3.4). A more general background

discussion of the importance of social networks in economics is omitted and can be found in Goyal

(2007), Vega-Redondo (2007), and Jackson (2008).

3.1 Models of citation networks

The literature on citation networks has become prominent following the seminal contribution of Price

(1965) who explicitly conceived scientific publications and their bibliographies as a citation network,

and explored the power law nature of the citation distribution. Power laws are ubiquitous in natural

and artificial systems, and in the 1950’s they had already been found for city sizes by Zipf (1949) and

for biological genera sizes by Yule (1925), which motivated the paper by Simon (1955). Simon’s model

is in fact a growing two-mode network, but Price (1976) showed that it could be used to analyse a

growing citation network. He assumed that new papers constantly arrive and cite previous papers with

probability proportional to their already accumulated stock of citations.

One problem with this heuristic is that since papers start their life with zero citations, they have

no chance to receive their first citation. In his original article, Price simply counts publication as the

first citation, such that everything happens as if papers were arriving with an in-degree equal to one.

Dorogovtsev et al. (2000) have generalized Price’s (1976) model8 to allow for an initial attractiveness

(call it a), and showed that the exponent of the (shifted) power law is given by 2 + a/h. Hence, in this

theory, the slope of the shifted power law depends on two parameters: the average bibliography size

(h) and the initial attractiveness (a).

The scale-free network model (Barabási and Albert, 1999) has triggered a huge amount of research

on growing networks, providing important new inputs for the understanding of citation networks. For

instance, super linear preferential attachment, the assumption that existing nodes receive new links

at a rate more than proportional to their degree (Krapivsky et al., 2000), and initial attractiveness

(Dorogovtsev et al., 2000) have been used to explain the in-degree distribution of the patent citation

network by Sanditov (2005). Super linear preferential attachment and aging (Dorogovtsev and Mendes,

2000) have been used in the same context by Csárdi et al. (2007) and Valverde et al. (2007).

Another strand of literature has focused on the idea that authors typically cite recent literature,

and then cite papers cited by this first article. An ingenious empirical study partly justifying this

assumption is that of Simkin and Roychowdhury (2011), who have shown that misprints in citations

tend to repeat (in fact, the number of misprint repetitions follows a power law). They propose a

model which allows them to estimate that 70 to 90% percent of the citations are copy/pasted from

other papers9. Another recent paper, by Peterson et al. (2010), explicitly distinguishes between two

8Newman (2010) proposed to simplify the in-degree distribution of Dorogovtsev and Mendes’s (2000) model as a ratio

of Beta functions (by multiplying Dorogovtsev and Mendes’s (2000) equation (9) by 1 = Γ(2 + a)/[(1 + a)Γ(1 + a)]).

Golosovsky and Solomon (2012) recently called it a Waring distribution (this can be checked from its generating function

defined in Irwin (1963), appendix II p.29). Throughout the paper I will refer to “Price’s model”, but credit is due to

many authors for extending and clarifying Price’s original contribution.
9According to them, copying a misprinted citation constitutes evidence that the faulty author has not read the paper.

One may dispute this interpretation, but their data at least suggests that sometimes authors know, among their references,

which one cites another, and use this information to save time in preparing their reference list. From this, it is tempting

to infer that an author became aware of a certain paper by seeing it referenced in another paper. Nevertheless, this
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mechanisms underlying citations. In the direct mechanism, which happens with probability (1 − c), a

paper simply gets to be known and cited (the new paper cites every old paper with equal probability).

In the indirect mechanism, which happens with complementary probability c, the paper cited is taken

from the bibliography of the known paper (thus the new paper cites every old paper with probability

proportional to the in-degree of the old paper). They find a power law exponent equal to 1 + 1
c .

The difference between the two mechanisms above is related to Jackson and Rogers’s (2007) model for

social networks, where newborn agents choose to link to random existing agents (“random meetings”),

and to random neighbors of these first chosen agents (“search”)10. Atalay (2011) argued that this

simple model cannot account for differences in citations received by papers of similar age. He modified

the model by introducing a fitness function, as in Bianconi and Barabási (2001), to account for the

differentiated quality of the papers.

In the context of patents, Ghiglino and Kuschy (2011) have proposed that the origin of the in-degree

distribution is to be found in the heterogeneous nature of patent’s applicability. They assume that there

is a fixed number of patent classes, each of which sees new patents arriving following a Poisson process.

Each patent i has a type μi and a broadness ai which determines its support Fi = [μi ± ai]. When a

new patent arrives, it cites the youngest patents which are in the support of technologically related but

non already existing patents. As a result, the probability of patent i being cited is proportional to its

broadness, ai, so the distribution of citations received also depends on the distribution of the ai’s.

Bramoullé et al. (2012) also propose a model to explain the pattern of citations, though their main

focus is on “long-run integration”, which occurs when the distribution of types of a node’s friends is the

same as in the whole population. Again based on Jackson and Rogers’s (2007) idea of an initial random

choice followed by neighbor-picking, Bramoullé et al. (2012) also add paper’s type, and a homophilous

process: the initial random choice of papers is biased towards same type (same subfield) papers. Their

key insight is that, as time passes, the search process becomes more prevalent than the random meetings.

Since in-degree is correlated with time, if the search process is unbiased we should observe a form of

integration, which they confirm empirically on the American Institute of Physics dataset (1985-2003,

207,912 papers): as in-degree increases, the share of citations from same-type papers decreases.

This literature recognizes that authors must know the existence of a paper before they cite it, but

does not explicitly keep track of who knows what. To my knowledge, the only model that studies

citation networks and (partly) does so is the TARL (Topic, Aging and Recursive Linking) model of

Börner et al. (2004). They proposed that authors and papers co-evolve, but additional features of

their model (papers’ topics and aging) prevent them from finding closed-form expressions for the degree

distributions. Notwithstanding details, the main difference with the model presented here is that they

assume that authors, at each period, choose a number of items to read among all existing papers, and

obviously does not constitute a proof, because one can for instance know of a paper, see it subsequently cited by another

paper, and copy the citation from this last paper.
10In fact Peterson et al.’s (2010) model is identical to Jackson and Rogers’s (2007), but they obtain the Waring

distribution from the master equation (as Atalay, 2011) instead of the shifted power law from the mean-field approximation.

As a result the exponent of the Peterson et al.’s (2010) model can be rewritten γ = 2+(1−c)/c to be compared to Jackson

and Rogers’s (2007) γ = 2 + mr/mn. In both cases γ − 2 is equal to ratio of “random” over “preferential” meetings.

In the learning-based model presented here, the exact same citation distribution is obtained, but the models’ primitives

are different. The exponent reflect the fact that learning is “preferential” (because agents learn random ideas of random

friends) but innovating is not (a written paper always arrive with a one author). See infra.
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then scan the bibliographies of these papers to find additional literature, as in Bramoullé et al. (2012)

and Peterson et al. (2010). By contrast, in the learning-based model below, authors do not find new

references by looking in the reference list of existing papers; they find new papers to learn by choosing

at random a paper known by a friend. Another important difference is that the TARL formulation does

not explicitly model the trade-off between learning existing papers and producing new ones, whereas

this distinction is central in the learning-based model where it allows to study the consequences of the

allocation of attention between knowledge consumption and production.

3.2 Degree distribution of citation networks

The statistical analysis of power laws is a rather technical and controversial topic (Perline, 2005; Stumpf

and Porter, 2012) nicely summarized in Clauset et al. (2009) and Gabaix (2009). Regarding citations

data, the early contribution of Price (1965) and Seglen (1992) have been followed since the turn of

the century by a number of studies on large datasets, following the influential note of Redner (1998),

who estimated that the tail of the distribution for the two datasets he studied could roughly be fitted

by a power law with an exponent around 3. Arguing that a stretched exponential function (Laherrere

and Sornette, 1998) is helpful in fitting the left side (papers with few citations) but fails in the tail,

Tsallis and De Albuquerque (2000) introduced a form, which can fit the whole distribution, namely

p(k) ∝ [1+ (g− 1)λk]
−g

g−1 , where g and λ are parameters. It can be rewritten p(k) ∝ (k + 1
(g−1)λ )

−g
g−1 to

show that it is a particular case of the shifted power law, or Mandelbrot’s (1953) law (or Pareto type

II or Lomax distribution) p(k) ∝ (k + r)−γ , with a particular correlation of its parameters.

Several recent papers have used massive datasets to discriminate between the three major candidates:

power law, shifted power law, and log-normal. Stringer et al. (2010), looking at the ultimate number of

citations received (i.e considering only papers which are not cited anymore), found that the distribution

is a discrete version of the log-normal. Albarrán and Ruiz-Castillo (2011), with a huge dataset and

considering citations received after 5 years, found that in most fields it is not possible to reject the

hypothesis of a power law for the tails. Eom and Fortunato (2011), using a citation network constructed

from papers published in American Physical Society journals, compared the fits given by the power law,

the log-normal, and the shifted power law, finding that the last one is the best. The details of those

studies shall be considered in section 7 where an empirical discussion of the implications of the model

is provided.

3.3 Two mode networks

Sociologists have long been using two-mode networks to analyze social phenomena (Freeman, 2003). For

instance, the classical paper of Breiger (1974) studies the dual relationship between individual people

and groups using a two-mode network where one mode is the actors, and the other is the groups to

which they belong or the events that they attend. The intuition here is that actors are linked through

their common affiliations or participation in certain activities. Indeed, although many classical concepts

for one-mode networks have been extended to two-mode networks (Faust, 1997; Latapy et al., 2008),

two-mode networks are often projected into one-mode networks, in which two actors are linked if they

have a common affiliation. However, many have argued that in most applications it is better to stick

with two-mode networks, which allow, among other things, to study the co-evolution of the two sets of
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nodes. For instance, Roth and Cointet (2010) studied empirically a scientific collaboration network and

the concepts used in the associated articles, effectively characterizing socio-semantic co-evolutionary

dynamics.

The model below is close to this literature in that it adapts Price’s (1976) and Barabási and Albert’s

(1999) models to a two-mode network framework, following the pioneering work of Ramasco et al. (2004)

which was focused on co-authorship networks. Ramasco et al. (2004) consider both the set of actors and

the set of papers, but only the production of papers. They propose that at each time step a new paper

arrives, this paper having na authors. The authors are partly new, and partly taken from the existing

set of authors proportionately to their existing number of authored papers, as in Simon’s original model.

Thus, a difference with the model proposed below is that actors create new papers but they never learn

existing ones. Another difference is that Ramasco et al. (2004) are interested in the distribution of the

number of papers per author (whereas the interest here is in the number of agents knowing a given

paper, which is the other side of the two-mode network), and on the projection of the two-mode network

into its “co-authorship” one-mode projection (whereas projections are not considered here).

Ramasco et al.’s (2004) model is an extension of Simon’s (1955) original model. These two models

are growing two-mode networks where the two sides are growing. However, many situations involve

that one set of nodes is fixed (below, the number of authors is kept constant, and population size is

shown to have important implications). Peruani et al. (2007) have provided detailed results regarding

the degree distribution of one set of nodes of a two-mode network when the other set grows, but to the

best of my knowledge, nobody has analyzed the degree distribution of a set of nodes of a two-mode

network when this set grows and the other one is fixed.

Finally, there is a larger, rapidly expanding literature on self-organizing multi-mode networks which

is impossible to review here. A few recent contributions can be mentioned, starting with the network

rewiring model of Evans and Plato (2008). Their model is a two-mode network with both sets of

nodes fixed, and only a rewiring process. Actors are linked to one and only one artefact, and the

distribution of artefacts’ popularity is studied. In an extension of the model, actors imitate the artefact

of their friends, which generates a preferential attachment of actors to artefacts. Their model applies

in particular in anthropology where one is interested in the transmission of cultural artefacts. The

model proposed below also applies to this context, but assumes that new artefacts appear over time,

and that actors accumulate artefacts over time. There is also an upsurge of interest in two-mode or

multi-mode networks in which all sets of nodes are growing. For instance, Beguerisse-Diaz et al. (2010)

studied a system where users rate videos. Liu et al. (2011) study a social tagging system, which can be

seen as a three-mode network (users, resources tagged, and tags). Zeng et al. (2012) show that certain

recommender systems produce more unequal popularity distribution than others. The model proposed

below contributes to this literature by providing a detailed analysis of the artefact degree distribution

under the assumption of a non-growing population of actors, and by using the two-mode network in

conjunction with the two associated one-mode networks.
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3.4 Science in the making: some arguments for actor-paper systems with

learning

Perhaps one of the most general, least controversial statement about scientists is that they are learning.

But what do they learn? Once we assume that they learn knowledge items nicely encoded into “papers”,

the question becomes: what is the structure of this actor-paper network?11 The point made here is that

the social embeddedness of learning creates a bias towards popular items which greatly determines the

shape of this network. It is proposed to model the self-organization of science as a morphogenesis of the

actor-paper system driven by heuristics: agents learn ideas of their friends, and, when they write a paper,

they cite what they have learned before. This approach, which significantly complicates the one-mode

approach to citation networks, is justified by a large literature in science studies where it was highlighted

that many “social” processes affect the self-organization of science (Merton, 1968; Latour and Woolgar,

1979). Furthermore, not only there are arguments to introduce humans in citation network models,

but there are also arguments to introduce non-humans in social network models of science. Proponents

of actor-network theory (Latour, 2005) contend that artefacts – material or not, but “non-humans” –

indeed populate the net in which human agency takes place. One may argue that the most important

such objects in science are the publications. Hence, one can choose as a fundamental unit for the

description of science the relationship between an actor and a piece of knowledge. The dynamics of the

system follows from the constitution of this relation (the learning event), because it is not independent

of the rest of the network: it is this feedback loop which leads to self-organization. A proposal of formal

modelling of these ideas appears in the next section.

4 The model

4.1 Description

Consider a two mode network with n agents and w papers. Papers are either known or unknown by any

given agent, which is represented by the presence or absence of a link between an agent and a paper.

The number of agents is kept fixed, but the number of papers grows. Time is discrete and indexed by t,

and, because there is exactly one event (learning or creating) per period, it does not measure clock time,

but rather system time. Denote by Et the total number of actor-papers relationships, i.e. the number

of edges of the two-mode network. At the beginning , there is one paper known by one randomly chosen

(r.c.12) agent (w0 = 1 and E0 = 1). Then at each time period, the following algorithm13 is applied:

I/ pick an agent i at random.

II/ with probability b, the agent i creates a new paper (a new node is added to the set of papers, and

11Throughout the paper, I use the words agent, author and actor interchangeably, but notice that as compared to the

literature considering only authorship, the agency of actors is extended by the fact that they can learn. Although this is

modeled in a minimal way (a constant probability), it captures a crucial behavioral aspect, and can be refined to include

more subtle rules or, if need be, strategic considerations.
12Throughout the paper, “random” refers to a uniform distribution
13The model is firstly a computer model, because this allows one to get results that are not possible to find analytically,

and it forces one to specify every single detail of the procedure. The mathematical analysis presented below is always a

“model of the model”, with different degrees of approximation giving different degrees of accuracy.
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an edge is added to the two-mode network, between i and the new node). If so, pick h papers

at random in i’s portfolio, and add directed links between the new paper and these h existing

papers.14

III/ otherwise (i.e. if the r.c. agent does not create a new paper), pick another agent i′ at random.15

Then pick at random a paper s among those papers known by i′ and unknown by i. Then i learns

s (an edge is added to the two-mode network, between i and s)

Each step of the algorithm is commented successively. The first step (I) ensures symmetry among

agents, which prevents the emergence of Lotka’s law (see appendix E), but will greatly facilitates the

derivations because we will need to know some agent-level properties, in particular the average number

of degrees of the ideas known by i (see the discussion on the normalization factor of the attachment

kernel, or “partition factor”, infra).

The second step (II) states that with some probability b, a new node will be added to the set of

papers. This new paper is linked to its inventor/writer, i. The parameter b is assumed constant. b

can be interpreted as the share of attentional time devoted to the creation of a paper, as compared

to learning existing papers.16 An interesting feature of the model is that diffusion and creation are

integrated. To be sure, this is simply because the time unit of the model is the appearance of a new

paper, pre-existing elsewhere or not, in the portfolio of an agent. Thus b is an important parameter,

and we will see that it determines, for instance, the steepness of the power law tail of the distribution

of papers’ popularity and of papers’ number of citations received.

Moreover, the citation network is also modelled. That is, this new paper will make some citations

to other (pre-existing) papers. However, the new paper can cite only papers that are known by its

writer.17 It is assumed that, among this set of papers known by i, the h papers that will eventually be

cited are chosen uniformly at random.

14 One might address to this description a critique similar to the one addressed by Bollobás et al. (2001) to Barabási

and Albert’s (1999) model regarding the specification of initial conditions: At the start of the algorithm, the agent does

not know h papers. In the computer code, it is assumed that the agent cites all the papers that she knows (this can

be none). In the mathematical model, one can rely on a classic argument from the growing networks literature that the

frequency of this problematic event goes to zero as t goes to infinity (and, in this case, as h tends to 0).

Another boundary condition issue is that if both b and n are small, there are not enough new papers to satisfy the number

of required learning events. This problematic configuration always happen with non negative probability, and to ensure

that the model always run, the computer code is as follows: when a r.c. agent is supposed to learn but there is no papers

that she does not already know, she creates a new one. To get a glimpse of how important is this boundary condition issue,

and for which values of the pair (b, n) it becomes negligible, a corner-of-the-table computation may be done as follows:

For any given agent, we need that when she has to learn (an event which happens with probability (1 − b)(1/n), enough

other agents have created new papers (events which happen with probability b(1−1/n). Solving (1−b)(1/n) < b(1−1/n)

gives the condition b > (1/n).

Finally, also note that the upper bound on b is 1, but it is uninteresting: in this case each paper is known one time.
15The assumption is that a friend of i is chosen, but for simplicity the social network is assumed to be a full graph.

This assumption is relaxed in appendix G.
16Alternatively, one can think of b as the result of the following requirement: agents need to learn z papers before they

can create a new one. As a result, they innovate every z + 1 periods, or on average b = 1
z+1

.
17This sounds rather obvious in scientific research: an author has to know (at least the existence of) a paper before she

cites it when writing her own paper. But it is not valid for patents, which have at least part of their reference list added

by the patent assignee.
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1 2 3 4 5

With probability (1−b), the
new link is to an existing paper

r.c. actor

(Diffusion)

actors

papers 1 2 3 4 5

With probability b, the
new link is to a new paper

r.c. actor

(Innovation)

Figure 1: Schematic description of the model. At each time step, one and only one of the two events represented

above happens. In both cases, a link is added (the thick grey one). Note that since the grey link is the ninth (of the two-

mode network), we are looking at what happens during period t = 8. There are three different degree distributions. The

main focus here is on the distribution of (undirected) degrees of the top nodes (papers’ popularity), p(k). The distribution

of degrees of the bottom nodes (actors’ knowledge), pa(ka) is discussed in appendix E. The directed arrows and the top

nodes constitute the citation network, used to compute the distribution of citations received (in-degree distribution)

pC(kC). On the left panel, the r.c. agent is learning. In this case, a r.c. neighbor has been chosen and turns out to be the

leftmost (in white). There are only two papers unknown by the r.c. actor and known by the r.c. neighbor (1 and 2). She

chooses one of them at random – in the example above she turned out to choose the second paper. On the right panel,

the r.c. agent has created a new paper. The dashed grey edges represent the papers that she knew previously. A number

of them (here h = 1), are chosen (uniformly at random) to receive a citation from the new paper (dark grey, 5). Papers

3 (grey) and 4 (grey) had equal chance to be cited; eventually only paper 4 is cited. The social network between bottom

nodes, not depicted here, is assumed to be full throughout the paper except in appendix G where robustness checks are

presented.

The third step (III) leads to preferential learning. The simplest argument to justify step III is

“referrals”: scientists suggest one another references. Although common and intuitive, one may think

of other arguments leading to preferential learning. For instance, this is a fairly legitimate assumption

if one considers the theory of attention. In this literature (e.g. Styles, 2006), it is emphasized that the

main driver of attention is saliency (defined from context). In the model, what makes a paper salient

is the number of people who know it. For instance, in a perhaps more interactionist view, one can say

that the more it is known, the more it is discussed, so the higher the chance that it is heard by or come

to the attention of the agent.18

18In the two justifications above, and in the way the model is described and computed, the agent does not know how

popular a paper is. However, one may think that agents actively choose to learn what is well known, perhaps because

they see popularity as an indicator of quality, or because in general agents need to have some common knowledge if

they want to communicate (a “coordination” argument). In this case, papers have a role of focal points in the sense

that people learn them because they expect others to know them and think they are expected to know them. In a

more sociological parlance, they would be called “boundary objects” (Star and Griesemer, 1989): of course they may be

understood slightly differently by different learners, yet they are understood homogenously enough that people can refer

to them when building collective understanding. It should be stressed that to a large extent, the results on the degree

distributions do not depend on the origin of the attachment kernel, but simply on its final form. In other words, for the

degree distributions, it does not matter if agents learn preferentially because they like popular items or because they are
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The formulation of step III has very important consequences for the resulting network. Since agents

learn what their friends know, they have higher chances to learn what is already well-known. More

precisely (but not exactly), the chance of a paper to be learned is proportional to how many times it is

already known. In the complex networks literature, the rates (probabilities) at which nodes having a

certain degree receive additional links is called attachment kernel. The famous “preferential attachment”

case is the one in which a node receives new links with probability proportional to how many links it

already has, and is also called linear attachment.19 A classical explanation for linear attachment in

one-mode networks is “copying”. For instance, in social networks (Jackson and Rogers, 2007), choosing

friends of a node means choosing nodes with probability proportional to their degree. In citation

networks (Peterson et al., 2010), choosing a paper cited by another paper means choosing a paper with

probability proportional to its (in)degree. The model specified above uses the same intuition, but in

a two-mode fashion: choosing a paper known by an agent means choosing a paper with probability

proportional to its degree (popularity, or number of other agents who know it).

The model does not have, however, a linear attachment kernel, but a polynomial one, a case which

does not seem to have been studied before. The reason is that agents do not learn twice the same paper.

It implies that the number of times that a paper is known is bounded by the total number of agents.

It also implies that a paper can be learned only by agents who do not already know it, so the larger

the number of agents who know it, the less the chances that the r.c. agent does not know it, so the less

the chances of that paper being learned. This effect creates a factor in the attachment kernel which is

similar to the carrying capacity in population growth models. The resulting attachment kernel is thus

a polynomial with a negative coefficient for the second order term, as will be discussed in more details

below.

The following section clarifies the setup of the model by deriving key mathematical relationships

implied by the algorithm (I-III).

4.2 Preliminary results

To understand the model, let us consider its matrix representation. Consider a matrix Q which has a

fixed number of rows, a number of columns wt that depends on time, and entries Qij equal to one if

agent i knows paper j, and zero otherwise. Start with a column vector filled with a one and (n−1) zeros.

At each period, with probability b, a column is added (a new paper is created). Then, with probability

1, one entry of Q is changed from zero to one (if a new column has been added, this modified entry

must be in that new column). Letting Et be the total number of ones in Q, we have, for large t,

E(t) = t + 1 ≈ t, and w(t) = b(t + 1) ≈ bt . Then, it is direct to see that the density of the system,

denoted D, is stable because b is stable:

D(t) = D =
Et

nwt
=

t

nbt
=

1
nb

embedded in a (full) social network and learn the papers known by their friends. For more detailed topological quantities,

such as clustering or path length, and for convergence properties, this would make a difference.
19The term linear has been introduced to distinguish this case from the cases in which nodes gain links with probability

proportional to a certain power of their degree. Those cases are called sub-linear (super-linear) if the exponent is less

(more) than 1.
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Hence the density of the two-mode network is constant (independent of system time t). We see that

an increased rate of innovation b will make the system sparser (since more papers have to be learned),

whereas a high rate of learning (1 − b) will make it denser. In this model, growth (assumption 2) cor-

responds to the increment of a structural dimension (a column). The learning component (assumption

5) ensures that the density of the system stays stable.

The main objective is to derive pt(k), the probability that a r.c. paper in t is known k times (i.e.

has degree k). To this end, for reasons to be clarified below, we need to know the rate at which papers

are learned (i.e. become more popular). Consider the degree of paper j, denoted kj . How does kj

increase? That is, under which conditions paper j will be learned at time t? First, the r.c. agent i must

be learning, which happens with probability (1 − b). Second, paper j must be unknown to i. Since j

is known kj times by definition, the probability that i knows j is kj/n, and thus the probability that

the paper j is unknown to i is (1 − kj/n). Third, the paper j must be chosen, and because of the

preferential learning mechanism described above, this happens with a probability proportional to kj .

Putting these together, the evolution of paper j’s popularity is

dkj(t)
dt

= (1 − b)At(kj) (1)

where, since one and only one idea must be selected, the attachment kernel At(kj) has been defined

such that it is equal to unity if summed up over j.

At(kj) =
kj∑

l/∈N(i) kl

(

1 −
kj

n

)

=
kj(n − kj)

μnt
→

n→∞

kj

t
(2)

where N(i) denotes the set of papers known by i. By definition, one degree is added at each period so
∑wt

j=1 kj = E(t) ≈ t. Thus we see that the restricted sum in the denominator must be a fraction of t

- let us call this share μ.20 It is the fraction of actor-papers relationships that do not involve a paper

known by an average r.c. agent (i), and it tends to 1 as n → ∞, because if the population is infinite,

a r.c. agent has been previously chosen a number of times which tends to 0, so the number of papers

that she knows (and the sum of their degrees) tends to 0. Note that if all ideas were to have a chance

of being learned by the r.c. agent of the current period, the normalization factor would just be the

total number of degrees, t. But it would be assuming that agents can learn twice (or more) the same

paper, a scenario that was explicitly excluded in step III of the algorithm (see lemma 3). In fact, the

correct normalization factor μt is the total number of degrees of the papers unknown by the r.c. agent

(
∑

l/∈N(i) kl), or equivalently the total number of degrees of all papers (t), minus the total number of

degrees of the papers known by the r.c. agent. One can obtain the total number of degrees of the

papers known by i by summing up for all papers their degree times the probability that i knows them.

20In fact, μ should be indexed by i and by t, and ideally one should be studying the evolution of the properties of the

distribution of the μi. In this paper, I will only claim that the distribution of papers’ popularity can be found assuming

that μit = μ. A detailed analysis is certainly informative of the learning trajectory of individual agents, but it is not

necessary for deriving the key results of the paper. I couldn’t find a closed-form expression for μ in terms of b and n.

Using equation 3 and the fact that that if p(k) is uniform (implying the minimum possible 〈k2〉), 〈k2〉 = 1/b2, one finds

that μ is bounded above by 1 − 1/(bn) = 1 − D. So the upper bound of μ increases with b and with n. To find a lower

bound, assume that all the mass goes to the least number of papers (so we find the maximum possible 〈k2〉). Assume

that t is a multiple of n for simplicity (t = cn), so the first c papers are known n times, giving 〈k2〉 = n/b, and so a lower

bound on μ is simply zero. Simulations show that the actual value of μ increases with b and n.
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Since the probability that a r.c. agent knows idea j is simply kj/n, we can write

μt = t −
wt∑

l=1

kl
kl

n
= t −

1
n

wt∑

l=1

k2
l

or, dividing both sides by t

μ = 1 −
wt

nt

1
wt

wt∑

l=1

k2
l = 1 −

b

n
〈k2〉 (3)

where 〈k2〉 is the mean square degree. To be sure, notice that by definition of the attachment kernel,

to ensure that exactly one paper will be learned if the current period event is “learning”, the following

must hold

wt∑

j=1

At(kj) = 1 (4)

As a consistency check, one can put equation 2 into equation 4, use the fact that the sum of all

degrees is t, and solve for μ, which gives equation 3. Equation 3 shows a non trivial relationship

between degree heterogeneity (or the variance of papers’ popularity) and the normalization factor of

the attachment kernel. This can be summarized in the following proposition.

Proposition 4.1. The more the papers are heterogenous in terms of popularity, the larger the share of

the total popularity of the papers that are known by a r.c. agent.

Another way to understand proposition 4.1 is to ask: how many times can we find an agent who

knows a paper that i knows? Proposition 4.1 tells us that this number increases if the variance of the

popularity distribution increases.

It can be seen from equation 2 that when we consider a finite population, the attachment kernel is

non linear. In fact, it is a polynomial. To the best of my knowledge, this case has not appeared in the

literature, and finding exact analytical solutions is cumbersome. On the other hand, mean-field contin-

uous approximations are relatively straightforward, and provide a good intuition. In addition, assuming

a infinite population, we can get rid of the factor μ, and obtain particularly simple expressions. Thus,

I start below with the simplest case (mean field continuous approximation of the infinite population

case) and then I turn to the case of a finite population. More detailed analytical results, obtained by

master equation methods, are mentioned when available and their derivation appears in the appendix;

a summary of which results have been obtained and which ones are missing can be found in table 1.

All cases are compared with simulations.

5 Infinite population: Simon’s model

To get an expression for the distribution of papers’ popularity and citations received, I used the method

from Barabási and Albert (1999). It consists in writing a differential equation21 for the evolution of

a paper’s popularity, and then using the fact that in expected terms there is a monotonic relationship

between paper’s index (its order of arrival) and paper’s popularity. Regarding the distribution of

21This is only a crude approximation, because this assumes continuous time, and because it is deterministic.
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n → ∞ n = n0

Proposition Equation Proposition Equation

Popularity Continuous 5.2 A 8 Power law 6.2 A 15

Discrete 5.2 B 9 Yule-Simon 6.2 B 16

Citations Continuous 5.4 A 12 Shifted power law

Discrete 5.4 B (13) Waring

Table 1: Summary of the results. The table displays the number and name (if there is one) of the equation of the

corresponding result. The number of the corresponding proposition is also reported. These equations are plotted in figure

2 against simulations. Equation 13 is put in parenthesis because it is not formally proven (see appendix D). Equation 13

is the distribution of citations which is used to test the model empirically (section 7).

citations received, it is possible to exploit the fact that we know the expected popularity of each paper

at each point in time to derive the probability that a given paper is known, and thus cited, by a r.c.

agent.

5.1 Distribution of popularity

Let us consider that there is a large number of agents (n → ∞). In this limit, we can get rid of the

non-linearity of equation 2, because one finds from equation 3 that μ → 1. In this case, the following

proposition describes the evolution of the popularity of paper j born at time tj

Proposition 5.1. When n → ∞, the continuous approximation of the popularity of paper j is given by

kj(t) =

(
t

tj

)1−b

(5)

In discrete time, it is given by

kj(t) =
B(1 − b, tj)
B(1 − b, t)

(6)

where B() is the Beta function22.

Proof. In the continuous approximation, from equations 1 and 2 we have

dkj(t)
dt

= (1 − b)
kj(t)

t
(7)

Solving this differential equation, with the initial condition that the paper j is born at time tj with

degree one (kj(tj) = 1) gives 5. Equation 6 is found by solving the discrete version of 7, see appendix

A

Clearly, the popularity of each paper is non decreasing with time. Thus popularity is unbounded.

Remarkably - this is a key insight from Simon’s paper-, this does not prevent the system to self-organize

such that the distribution of paper’s popularity is stable, and has a scale-free tail. Introducing b̂ = 1
1−b ,

we have23

22The Beta function is defined in terms of the Gamma function: B(x, y) =
Γ(x)Γ(y)
Γ(x+y)

. The Gamma function generalizes

the factorial function for non integer values, such that when x is an integer Γ(x + 1) = xΓ(x) = x! , but x can also take

non-integer values. The Beta and Gamma functions admit integral representations due to L. Euler.
23b̂ can be interpreted in the same way as b since it varies in the same direction, but takes values on [1,∞) instead of

[0, 1]. It is interesting to notice that b̂ is related to b by the formula b̂ =
∑∞

n=0 bn, which is the simple geometric series.
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Proposition 5.2. A) When n → ∞, the continuous approximation of the distribution of papers’

popularity is a power law

p(k) = b̂k−(1+b̂) (8)

B) Using a master equation method, the distribution of papers’ popularity is the Yule-Simon distribution

p(k) = b̂B(1 + b̂, k) (9)

Proof. When n → ∞ the calculations are the same as Simon’s model. Equation 9 is the Yule-Simon

distribution and is derived in appendix B. The continuous distribution is computed thus (using equation

5)

p(kj ≤ k) = p

((
t

tj

)1−b

≤ k

)

= 1 − p

(

tj ≤
t

k
1

1−b

)

Since the tj ’s are uniformly distributed24 their probability mass function is prob(tj = Y ) = 1/t for Y

from 1 to t, so prob(tj ≤ Y ) =
∑Y

1
1
t = Y

t . This leads to p(kj ≤ k) = 1−k
−1
1−b . Applying p(k) = dp(kj≤k)

dk

leads to the probability distribution of papers popularity, equation 8. It is easy to check that this is a

proper distribution function,
∫∞
1

p(k)dk = 1

Equations 8 and 9 show how the innovation/diffusion trade-off determines the shape of the popularity

distribution: the more innovation (i.e. the less diffusion), the more papers known only a few times (the

less papers known many times). Equation 8 is plotted against simulation results in the left panel of

figure 2, showing only limited agreement. Whereas the error for low degrees is due to the continuous

approximation (this can be checked by comparison with the master equation solution, equation 9), the

misfit of the tail comes from the assumption of an infinite population, which will be relaxed in section

6. But for the time being, let us turn to the derivation of the main result: the distribution of citations

received.

5.2 Distribution of citations received

Denote by pC
t (kC) the probability that a r.c. paper has already received kC citations (has in-degree

kC) at time t. To derive this probability, let us start by expressing the in-degree of each paper j. What

is the probability that paper j gets one new citation at time t? It is h times the probability that it gets

a particular citation, and it gets a particular citation when several events are simultaneously realized.

First, the r.c. agent is producing (probability b); Second, j is known by the r.c. agent ; Third, j is

chosen. The joint probability that j is known and chosen is the probability that j is chosen conditional

on being known, times the probability that it is known. At time t, the r.c. agent knows on average t/n

24Contrary to one mode scale free network models, this is not exactly true, since there is not one new paper per period,

but only one at each period with probability b. The uniform distribution is, nevertheless, an appropriate approximation

since the tjs of many independent realizations of the stochastic process are uniformly distributed over [1 , t]. To see this,

consider the original scale free network model (Barabási and Albert, 1999). There the tjs are simply the natural numbers,

1, 2, 3, ...t, so they are obviously uniformly distributed on [1, t]. In the learning based model, however, there are some

periods for which no paper is created. Assume for simplicity that b = 0.5, and the first simulation gives the following

sequence of birth dates (omitting the first one, and until t = 10): 3, 5, 7, 10. Another simulation may give 2, 4, 6, 8, 9. This

is a simple, “lucky” example to show that indeed each integer appears in a simulation with equal probability, 1/t.
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Figure 2: Comparison of different approximations. The simulation setup is b = 0.2, h = 5. The equations for finite

n (i.e. n = 20) are plotted using the recorded value μ = 0.45. 100 simulations runs are averaged out (only 60 for the

case n = 1000, t = 200000), and only some points are shown to increase readability. The discrepancy between the points

for large n (i.e. n = 1000) and the theoretical curves for infinite n can be reduced by increasing n and/or by running the

process for longer times (for n = 1000, the process does not reach a steady state after only 50000 periods).

papers, so if she knows j, for each citation to be made j will be picked with probability 1/(t/n). The

probability that j is known by the r.c. agent is easily found by its definition: since j is known kj times

by n agents, it is known by a r.c. agent with probability kj/n. This leaves us with25

dkC
j (t)

dt
= bh

1
t/n

kj(t)
n

= bh
kj(t)

t
(10)

In fact, choosing randomly a paper among those known by an agent amounts to choosing each

paper with a probability proportional to its popularity (recall that agents are similar, so on average

they have the same papers’ portfolio. So it is like sampling uniformly at random one link of the two-

mode network). Since kj(t) is given by equation 5, we can substitute it into equation 10 and solve the

differential equation with the initial condition that kC
j (tj) = 0 to obtain

Proposition 5.3. When n → ∞, the continuous approximation of the number of citations received by

paper j is given by

kC
j (t) = b̂bh

((
t

tj

)1−b

− 1

)

(11)

Equation 11 and the same method than for proposition 5.2A leads to:

Proposition 5.4. A) When n → ∞, the continuous approximation of the number of citations received

25As is usual in the literature, I do not explicitly take into account that a paper is never cited more than once by a

newly arriving paper (a draw without replacement is approximated by one with replacement). This is reasonable because

the probability that a paper would be chosen twice in a row tends to zero as the number of papers in the network tends

to infinity. As a footnote, one may notice that in reality some papers do cite other papers several times- just as this paper

cites Simon (1955) many times - but they appear only once in the reference list.
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is a shifted power law

pC(kC) = b̂(b̂bh)b̂
(
kC + b̂bh

)−(1+b̂)

(12)

B) A discrete version of (12) is

pC(kC) =
B(kC + b̂bh, 1 + b̂)

B(b̂bh, b̂)
(13)

The proof of equation 12 is similar to that of equation 8 and is omitted. Equation 13 is derived

in appendix D by comparing equation 12 with the mean-field continuous approximation of a model for

which the exact solution is known (Price’s model). Again, it holds for equation 12 that
∫∞
0

pC(kC)dkC =

1. Equation 12 deserves two remarks.

First, note that kC does not appear alone with its exponent, but together with a constant (denoted

r = b̂bh). This form has been called a shifted power law (or Zipf-Mandelbrot’s law) in the literature, and

its discrete equivalent equation 13 is sometimes called the Waring distribution (Irwin (1963) and e.g.

Golosovsky and Solomon, 2012). This constant creates a “shoulder” on the left of the distribution, but

does not change the tails much since it converges to the classical power law for large k (i.e. for k � r).

Interestingly, some recent publications have convincingly fit this form to appropriately constructed

datasets (Newman, 2009; Eom and Fortunato, 2011; Golosovsky and Solomon, 2012).

Second, the exponent is the same as that of the distribution of papers’ popularity (equation 8),

and is independent of h (the mean in- or out-degree). This last fact is crucial, because Price’s model,

which also predicts a shifted power law (appendix D), features a negative relationship between h and

the power law exponent. I shall come back to this when discussing empirical matters. Before that, let

me present more rigorous results on the distribution of popularity.

6 Distribution of popularity in finite population

To facilitate the derivations above, I have assumed that n → ∞. When the population is infinite,

the probability that an agent is r.c tends to zero, and we arrive at the mathematically useful but

somewhat empty result that, at a given time step, agents tend to have learned a number of papers

that tends to zero. This avoided a mathematically annoying but theoretically fundamental feature: if

agents cannot learn twice the same paper, the paper that they choose to learn at any given period

depends on its popularity relative to the papers that the agent does not already know. In other words,

the normalization factor μt in equation 1 cannot be reduced to t (recall that μt is the total number

of degrees of the papers unknown by a r.c. agent). Inserting the quadratic attachment kernel in (1),

the dynamics of individual paper’s popularity is now given by a non autonomous logistic differential

equation. Its solution gives the following proposition

Proposition 6.1. When the size of the population is finite, the continuous approximation of the pop-

ularity of paper j is given by

kj(t) = n

[

1 + (n − 1)

(
tj
t

) 1−b
μ

]−1

(14)
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We can easily see that for n → ∞ (also implying μ → 1), we recover equation 5. As in the infinite

population case, we can use the expected value of the popularity of paper j (14) to find the continuous

approximation of the popularity distribution:

Proposition 6.2. A) If n is finite, the continuous approximation of the distribution of papers popularity

is given by

p(k) = b̂nμ(n − 1)−b̂μ (n − k)−1+b̂μ k−1−b̂μ (15)

B) Using the master equation method, the distribution of papers popularity is given by

p(k) = p(1)
(1)k−1(1 − n)k−1

(−r1)k−1(−r2)k−1
(16)

where

{r1, r2} =
n − 4 ±

√
n(n + 4b̂μ)

2

and

p(1) =
nμ

b + n − bn + nμ − 1
(17)

Equation 16 is proven in appendix C and (x)y is the Pochhammer symbol.26 The usual check for

equation 15 is that
∫ n

1
p(k)dk = 1, and by taking the limit for n → ∞ and setting μ = 1 we recover

equation 8.

Equation 15 is plotted against simulations in the left panel of figure 2, showing good agreement,

although the last value (k = n) cannot be plotted. Equation 16 shows excellent agreement. The most

striking feature of these equations is that, contrary to all other power-law like distributions encountered

here, it is not monotonically decreasing. Towards the end of the distribution, it goes up. This means that

the number of papers known n times is higher than the number of papers known n−1 times. This effect

might be relevant in all contexts where one set of nodes of a two-mode network growing by preferential

attachment is fixed or small as compared to the other set (that is, growing much more slowly).27 The

finiteness of n implies that papers cannot diffuse infinitely, so the bins of the histogram for high k keep

getting papers from the lower bins without having so many papers leaving them towards higher bins.

Remarkably, this phenomenon does not prevent the distribution from featuring a steady-state.

I couldn’t find analytically the effect of population finiteness on the distribution of citations received.

Simulations reveal that small populations create a cut-off on the citation distribution, because the most

26Sometimes called the rising factorial, it is defined as

(x)y = x(x + 1)(x + 2) . . . (x + y − 1) =
Γ(x + y)

Γ(x)
(18)

27Interestingly, a similar phenomenon was found by Peruani et al. (2007) on the degree distribution of the fixed set

of nodes, in a growing two-mode network with mixed (random and preferential) attachment, and a high value of the

parameter tuning the relative amount of preferential versus random attachment. In their case, the distribution is a beta

distribution. The model of Evans and Plato (2008), which is a fixed two-mode network with rewiring, produces a U-shaped

distribution too, when the relative amount of preferential v.s. random attachment is high.
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popular papers are not as popular as they would be in a large population, and thus are less cited than

they would be in a larger population (see the right panel of figure 2)28

In what follows, it will be assumed that the difference between the citation distributions of finite

and infinite population is not too important, such that equation 13 is approximately valid for a context

such as those generally encountered in empirical work, where n ∈ [102; 105] and t ∈ [103; 107].

7 A quick look at the data

In this section, the parameters of the learning-based and of Price’s model are estimated for two citation

networks of high energy physics papers, and related empirical work is discussed.

7.1 Comparing Price’s and the learning-based model
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Figure 3: Effect of h on the shape of citation distribution. The figure shows theoretical predictions according to

Price’s (P) and to the Learning Based (LB) models. The curves are calculated using the values in the legend. The base

case, in black, shows a Waring distribution with γ = 2.5 and r = 7.5, which, assuming h = 15, corresponds both to the

LB model with b = 1/3 and the P model with a = 7.5. The other curves depict what the two models would predict under

a change of h, ceteris paribus, that is, with a constant in the P model and with b constant in the LB model. The slope

of the tail is invariant with h in the LB model, whereas it is not in the P model.

28This cut-off does not seem to be in agreement with recent empirical evidence. Golosovsky and Solomon (2012) found

that in very large datasets, the tail of the citation distribution is “superheavy”, exhibiting a “runaway”: the most cited

papers are even more cited than what linear preferential attachment would predict.
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Both models predict that the citation distribution is a Waring distribution (which could also be

called discrete shifted power law)

p(k) =
B(k + r, γ)
B(r, γ − 1)

(19)

where the superscript C used previously to distinguish popularity and citation distributions is omitted

from now on. By assuming that the data is distributed according to this law, it is possible to obtain

the empirical values of the parameters, r and γ, by maximum likelihood.29

To see what are the similarities and differences between the learning-based and Price’s model, let

us start by noting that from equation 19 we find that the first moment of the distribution is 〈k〉 =
∑∞

k=0 k B(k+r,γ)
B(r,γ−1) = r

γ−2 , which is also valid with the continuous form, i.e.
∫∞
0

k(γ − 1)r(γ−1)(k + r)−γ =

r/(γ − 2). In both the learning-based and Price’s model, by definition, we add h edges each time that

we add a node, so the mean in- or out-degree is h, hence

〈k〉 = h =
r

(γ − 2)
(20)

Now suppose that h increases. This can be compensated on the RHS of (20) by either an increase of r

or a decrease of γ, or a mix of both. Remarkably, the learning based model predicts that an increase

of h leads to an increase of r but keeps γ constant, whereas Price’s model predicts that an increase of

h leads to a decrease of γ, but keeps r constant. This can be seen by comparing the general form (19)

with the equation from the model for n → ∞ (13). We have

γ = 2 +
b

1 − b
(21)

which is independent of h and

r =
b

1 − b
h (22)

which depends linearly on h. In Price’s model (see appendix D) the in-degree distribution is equation

D.1, so we have

γ = 2 +
a

h
(23)

which decreases and converges to 2 when h → ∞ and, the shoulder parameter is just equal to initial

attractiveness:

r = a (24)

29Other approaches are possible. One can estimate the shifted power law equation 12, but it is not a discrete law, and

we would have either to discretize it, by finding the normalization factor that makes it summing up (not integrate) to one

(this would be the inverse of a Hurwitz zeta function), or to accept that we fit a continuous law to discrete data. One

could estimate the distribution assuming that it is valid only after a certain value kmin, but that would not qualify as a fit

of the model, which predicts that all values are drawn from a Waring. Yet another approach is that of Jackson and Rogers

(2007), who also fit a shifted power law, and who input the mean in-degree as the true value of h, and derive their second

parameter by iterated least squares. The approach followed here predicts a value of h from the estimated parameters of

the distribution (see table 2). When fitting the distributions of the networks used to construct the right panel of figure

2, disappointing results are obtained in the case n = 20, t = 50000 where the Maximum Likelihood Estimation (MLE)

gives b = 0.13 6= 0.2 and h = 12 6= 5. Much more encouraging results are found in the case n = 1000, t = 200000, with

b = 0.21 ≈ 0.2 and h = 6 ≈ 5. This is quite good taking into account that n = 1000 is not that large, and so the

distribution is actually not a Waring but a Waring with a cut-off. I conclude that the MLE is indeed reliable. Clearly,

the research needed on these estimation issues is out of the scope of this paper.
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The difference between the two models in terms of the predicted change of the distribution when h

changes can be seen in figure 3. In the learning-based model, h is increasing the shoulder (the flat part

on the left is flat until a higher value of k) but does not impact the exponent (the slope of the curve on

the rightmost part does not change), whereas the reverse is true for Price’s model.30.

Once we have estimated γ and r, equations 21 and 22 form a system of two equations with two

unknowns, b (the learning/writing trade-off) and h. In the case of Price’s model, the system (23)-(24)

has two unknowns, a (the initial attractiveness) and h. The first empirical exercise is thus to estimate

these parameters. Second, since we know that h differs across fields, and that within fields h has

increased, it is possible to discriminate between the two models using both cross-section and time-series

evidence. This task will be only superficially attempted here, because of the lack of appropriate freely

available data. Nevertheless, it is possible to discuss the differences between the two models using

the estimates provided below on two citation networks from arXiv, and using heuristic arguments to

interpret figures published in the literature that do not correspond to an exact test of the models but

may be close to it.

7.2 The data

Two publicly available datasets31 are analysed below. Both are citation networks of a subset of

arXiv publications: High Energy Physics Theory (HepTh) and High Energy Physics Phenomenol-

ogy (HepPh)32. They cover almost completely the history of these subsets of arXiv, until 2003. In both

cases, a citation network is constructed for each year, where year T network includes all the papers

published on arXiv before December 31st of year T .33 Descriptive statistics can be found in the leading

columns of table 2.

7.3 Results

The objective of this section is to obtain values for the parameters r and γ, which can be done by

maximum likelihood. In practice, a Nelder-Mead algorithm was used to maximize the logarithm of the

30The distribution predicted by the learning-based model is exactly the same as that predicted by Jackson and Rogers

(2007) and Peterson et al. (2010). However, the interpretation of the parameters differ. What is the ratio of random over

preferential meetings (i.e. citations) in their case in the ratio of producing over learning papers here. The intuition behind

this connection is that citation dynamics is directly correlated to popularity dynamics, and in the popularity dynamics

learning is done “preferentially” whereas writing papers corresponds to a random attachment. See also appendix F.
31Downloaded from http://snap.stanford.edu/data/index.html#citnets. Credit is due to Gehrke et al. (2003) and

Leskovec et al. (2005).
32There is an overlap between the two. arXiv is a server where scientists, mainly physicists, can freely post pre- and

post-prints of their work. See arXiv.org.
33An important problem arising if one tries to test the prediction of the learning-based or Price’s model is that they

model the “complete” system. In other words, the distribution that they predict includes all papers and all citations to

those papers. Most available studies use “cohort” datasets. For instance, Golosovsky and Solomon (2012) use physics

papers published between 1980 and 1989 and cited by 2008, omitting all the papers published between 1990 and 2008 and

all the citations they make and receive. Note that in his own empirical test of Price’s model, Mark Newman constructs the

network by taking all articles citing five key papers, which is much closer to what the model actually models. Another way

to think about this question is to realize that in both Price’s and the learning based model, no citation comes from outside

the network or is made to a paper outside the network (the number of references is equal to the number of citations). An

ideal test of these models would require data on science as a whole, which still omits citations to and references by non

scientific literature.
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1 2 3 4 5 6 7 8 9 10

Year Number Number Empirical Predicted Minimum PL “Shoulder” Shifted Estimated

of of in/out in/out degree for exponent param. for PL innovation

edges nodes degree degree PL fit shifted PL exponent probability

T wt 〈k〉 h kmin γPL r γSPL b

High Energy Physics - Theory

1994 12879 4924 2.62 2.81 6 2.53 2.79 2.99 0.50

1995 28131 7078 3.97 4.31 24 3.11 3.65 2.85 0.46

1996 53091 9541 5.56 6.06 25 2.79 4.37 2.72 0.42

1997 87713 12124 7.23 8.08 28 2.63 4.80 2.59 0.37

1998 125163 14766 8.48 9.75 29 2.57 5.11 2.52 0.34

1999 167110 17485 9.56 10.99 36 2.61 5.66 2.52 0.34

2000 217790 20523 10.61 12.26 58 2.77 6.27 2.51 0.34

2001 271863 23587 11.53 13.30 100 2.98 6.90 2.52 0.34

2002 333973 26792 12.47 14.45 62 2.75 7.53 2.52 0.34

2003 352807 27770 12.70 14.83 55 2.70 7.60 2.51 0.34

High Energy Physics - Phenomenology

1994 11387 4423 2.57 3.29 22 3.56 1.68 2.51 0.34

1995 29802 7276 4.10 4.91 20 3.04 3.05 2.62 0.38

1996 58904 10478 5.62 6.86 16 2.74 4.07 2.59 0.37

1997 98307 14013 7.02 8.44 25 2.94 5.19 2.61 0.38

1998 142934 17736 8.06 9.80 76 3.74 5.82 2.59 0.37

1999 201300 21739 9.26 11.54 56 3.37 6.34 2.55 0.35

2000 263313 25764 10.22 12.90 64 3.38 6.75 2.52 0.34

2001 333942 29877 11.18 14.17 72 3.40 7.21 2.51 0.34

2002 411527 34014 12.10 15.42 94 3.49 7.66 2.50 0.33

2003 421578 34546 12.20 15.61 94 3.47 7.69 2.49 0.33

Table 2: High Energy Physics Theory and Phenomenology citation network statistics . The fourth column

gives the empirical average in-degree. Columns 8 and 9 give the estimated parameters of a Waring distribution. The fifth

column gives the average in-degree as predicted by the model, using the estimated parameters from columns 8 and 9 and

equations 21 and 22. The last column gives b as computed using column 9 and equation 21. Columns 6 and 7 give the

parameters estimated under the assumption of a Power Law (PL). See the main text for additional details.
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Figure 4: Maximum likelihood fit for the citation distributions of the Hep-Th (left) and Hep-Ph (right)

networks at the end of 2003. In panels a, b and c, the grey points are empirical values, and the black lines are the

theoretical results constructed by using equation 13 with values of the fitted parameters (columns 8 and 9 in table 2) from

k = 0 to the maximum observed degree, and renormalizing such that it sums up to one. All subpanels of a given panel

display the same raw data. a) Probability distribution. b) Cumulative distribution. c) Counter cumulative distribution.

Panel d) is a Quantile-Quantile plot, where the black line materializes perfect fit.

likelihood function associated to equation 13. For comparison purposes, the fit of a power law is also

added.34

Results are reported in table 2. The sixth and seventh columns show the estimated parameters

assuming a power law (for the tail), and the eighth and ninth columns give the estimated parameters

assuming a shifted power law (for the whole distribution). Early networks (1992-93) are not reported.

The resulting look of the predicted laws can be seen in figure 4. The last column gives the corresponding

value of b, computed using the estimated shifted power law exponents and equation 21. The fourth

and fifth columns compare the empirical mean in-degree (equal to the mean out-degree) and the value

of h deduced from the estimated shifted power law parameters and the system 21-22 (or, equivalently,

23-24).

First, it seems that the fits are reasonably good, although a deviation can be observed when the

counter cumulative distribution is plotted, especially for the HepPh network (subpanel c of the right

panel of figure 4). Second, one sees that the predicted mean in-degree is close to the observed one

(columns 4 and 5 of table 2). Finally, the shifted power law exponent is strikingly stable over time and

across the two networks, and imply b ≈ 1/3. If one is to take this exercise seriously, it says that high

energy physicists spend a third of their time working on their own paper and two thirds learning the

work of others.
34The power law fit was done using the procedure and code of Clauset et al. (2009) (translated to R by Laurent Dubroca)
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Figure 5: Temporal relationship between γ and h. The data is taken from table 2, columns 8 and 9 (left panel), 4

and 9 (middle) and 4 and 8 (right). On the left panel, the two points available from Eom and Fortunato’s (2011) study of

the American Physical Society data are added. On the left, a flat curve favors the LB model and a horizontal one favors

the P model. On the middle panel, a flat curve favors the LB model and a decreasing ones favors the P model. On the

right panel, a flat curve favors the P model whereas. an increasing curve favors the LB model.

7.4 Other results from the literature

One can also compare the estimates above with those reported in the literature. Jackson and Rogers

(2007) estimated a shifted power law on a dataset containing all papers which either cite Milgram’s

small world paper or contain the phrase “small world”. They found γ = 2.63, which imply b = 0.39, and

report a mean degree h = 5. Tsallis and De Albuquerque (2000) estimated the Tsallis distribution, from

which we can deduce the shifted power law parameters. For the Physical Review D dataset originally

studied by Redner (1998), that includes citations to papers published in this journal between 1975 and

1994, one finds from Tsallis’s parameters that γ = 2.56 and r = 12.02, implying b = 0.36 and h = 21.46.

Peterson et al. (2010) estimated a Waring distribution on the same data35 and found γ = 3.1 and

r = 31 leading to b = 0.52 and h = 28.18 (using formula 20) or h = 27 (as reported in their table

1). Another dataset of Redner, including citations to a cohort (1981) of papers (ISI data), gives from

Tsallis and De Albuquerque’s (2000)’s estimates γ = 2.89 and r = 17.15 (i.e. b = 0.36 and h = 21.46)

and from Peterson et al.’s (2010) estimates γ = 3.2 and r = 25 (i.e. b = 0.55 and h = 20.83 or 17.3 from

their paper). Peterson et al. (2010) analyze another dataset, made of publications from high h-index

chemists, and find γ = 2.935 and r = 37 (i.e. b = 0.48 and h = 39.57 or 42 from their paper). Newman

(2009) constructed a dataset with the 2407 papers citing five landmark publications of network science,

and reported the estimated coefficients r = 6.38 and γ = 2.28, from which one finds b = 0.22 and

h = 23. Golosovsky and Solomon (2012), with a dataset of 418,438 physics papers that were published

during 1980-89 and their citations by July 2008, found r = 10.2 and γ = 3.15, from which one deduces

b = 0.53 and h = 11.73. The estimates reported in table 2 for the last year of the High Energy Physics

citation networks nicely fit between those results.36

The differentiated prediction of the two models regarding the effect of h can be tested both with time

35Not exactly the same data since the dataset has been corrected, see Sidney Redner’s website.
36Atalay (2011) also fits a Waring distribution to the same data. His table 1 indicates r = 14.82 and γ = 2.513 for the

last year of the Hep-Th network in excellent agreement with the last line, columns 5 and 9 of table 2 in this paper.
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series and cross-section data, a task which is out of the scope of this paper. However, some heuristic

arguments can be given for both cases, using recently published figures. Time-series and cross-sections

are discussed in order.

It is known that h, understood here as the average bibliography size, has increased over time. For

instance, Biglu (2008), using the whole ISI data, reports a value of h increasing from 8.40 to 34.63

between 1970 and 2005, This trend of h implies that, if we had a long dataset (say, 50 years), and with

reliable values of h, we could try to discriminate between the two models.37 I do not have access to

such a dataset, but, with a number of necessary cautions, it is possible to comment on the one analyzed

by Eom and Fortunato (2011). They use a dataset constructed as a growing network, as is needed here.

The dataset is large and covers a very long period: 414,977 papers published between 1893 and 2008 in

American Physical Society journals. They compare the fits given by the lognormal, the shifted power

law, and the power law. They found that the shifted power law provides a better fit than a normal power

law. However, because their purpose is to compare the fits given by different hypothesis, they do not fit

the whole distribution, but only the part with values of k greater than kSPL
min , where kSPL

min is chosen so as

to maximize the Kolmogorov-Smirnov statistics, as was proposed for power laws by Clauset et al. (2009).

Eom and Fortunato (2011) reported the estimated shifted power law coefficient at in 1950 and at the

end of the period, γ1950 = 5.6 and γ2008 = 3.1. Since they also report the average degree 〈k〉1950 = 2.2

and 〈k〉1950 = 9, we may use equation 20 to find r1950 = 7.92 and r2008 = 9.9. Hence, the increase of h

leads both to a decrease of γ, as predicted by Price’s model (assuming constant initial attractiveness),

and to an increase of r, as predicted by the learning-based model (assuming constant b). In the arXiv

datasets (table 2), except for early years of the Hep-Th network, the increasing in-degree is associated

to a stable exponent, and an increasing shoulder parameter, which tends to support the learning-based

over Price’s model. It should be noted that Eom and Fortunato (2011) fit the shifted power law only

after a certain value kSPL
min , whereas the fits reported here are for the full distribution. Also, they fit

a shifted power law whereas the fits here are done with a Waring distribution. Overall, time series

evidence does not provide firm conclusions regarding the superiority of Price’s or the learning-based

model (see figure 5).

On the other hand, recently published figures allow us to look at the relationship between h and γ

in cross-sections. This is also theoretically more attractive: disciplines with different citation practices

are expected to have a different shape of the citation distribution. Albarrán et al. (2011) have studied

3.7 millions articles and their citations received after 5 years. They split the articles in different sub-

categories and reported the mean number of references made, 〈kout〉, and the mean number of citations

received, 〈kin〉, both of which can be interpreted as h. They then fit for each subfield a power law and

reported kmin, and γPL. We can use this evidence as follows.

37One issue in this exercise is that the models lead to steady-state distributions, and it is not totally clear that if h changes

over time the exponent changes accordingly and fast enough for its effect being detectable in the data. In other words, it is

not really appropriate to do comparative statics on non-equilibrium systems. In the complex network literature, the fact

that growing networks feature an increasing average degree is known as network acceleration (Dorogovtsev and Mendes,

2001), densification (Leskovec et al., 2005), or log-networks (Krapivsky and Redner, 2005). Fitting the citation dynamic

process would preferably be done by endogeneizing h in the theoretical model, solving for the non-equilibrium degree

distribution (Cooper and Pra lat, 2010) and fitting finite-time expressions. I refrain from going into such complications in

this paper, where the main purpose is to add one layer (social embeddedness of learning) on the backbone model of Price

to make a theoretical point.
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First, as above, the learning-based model roughly predicts a positive relationship between h and

kmin that Price’s model does not. The bottom panels of figure 6 seems to give more credit to the

learning-based model, especially if we consider h to be proxied by the in-degree (bottom right panel).
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Figure 6: Cross section correlations between the parameters of a non pure power law estimation (γPL and kmin)

and the mean number of citations received (〈kin〉) and mean number of references made (〈kout〉) (which are different

because this dataset is not constructed as a network). All results are computed using table B p.71 and E1 p.99 in

Albarrán et al. (2011). Each value corresponds to the estimation for a single Thomson Scientific sub-fields. See their

paper for details. Based on intuitive heuristic arguments, one may regard the correlation between γPL and 〈k〉 (upper

panels) as indicative of the correlation between γSPL and h, and the correlation between kmin and 〈k〉 (lower panels)

as indicative of the correlation between r and h. This provides thus a direct way to discriminate between the Learning

Based (LB) and Price’s (P) models, because the LB predicts no correlation in the upper panels, and positive correlation

on the lower panels, whereas the P model predicts a negative correlation in the upper panels, and no correlation on the

lower panels. See the main text for a more detailed discussion.

Second, if we consider that γPL ≈ γSPL,
38 we can test if the negative relationship between h and γ

predicted by Price’s model holds, or if there is no relation at all, as expected from the learning-based

38In fact only a milder assumption is needed, that is, for the interpretation to hold, it is needed that the derivatives

of γPL and γSPL with respect to h have the same sign and a comparable order of magnitude. Even this is a strong

assumption, as one can observe, for instance, that the Pearson correlation between the seventh and ninth column of table

2 is only 0.33 (Hep-Ph) and 0.08 (Hep-Th). Still, the strong theoretical link between γPL and γSPL legitimates the

discussion of this subsection.
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model. The top panels of figure 6 indicate again weak relationship, but, if any, it is positive. Surely, it

does not validate the learning-based model, but it suggests that the negative dependence of the power

law exponent on h in Price’s model may not be a good feature.

It should be emphasized that in both models, the two parameters are assumed to be independent,

but in the real world they could be correlated. For instance, considering the parameters of Price’s

model, one can think that the initial attractiveness of an article is linked to h, because an article is

more likely to be effectively cited if many citations are to be distributed (a positive relation between a

and h). As far as the parameters of the learning-based model are concerned, we can think that in a field

where the learning rate is very high, agents will know more but produce fewer papers, so they might

want to put more references in their papers (a negative relationship between b and h). Moreover, the

fact that the models, by construction, have a mean in-degree equal to the mean out-degree may cause

confusion for empirical work and its interpretation. Furthermore, both models take h as fixed, whereas

it is well known that the distribution of the number of references per paper is far from being nicely

peaked around its mean value. On the contrary, it is right skewed, although less than the distribution

of citations (Albarrán and Ruiz-Castillo, 2011).

The discussion of this subsection is, to say the least, rather acrobatic. Power law and shifted power

law exponents are clearly not the same thing, nor are kmin and r. However, it does not seem too

unreasonable to conclude that the negative relationship between the shifted power law exponent and

the mean in/out-degree predicted by Price’s model should be questioned. If it is falsified, the learning

based model appears as a natural candidate for explaining a shifted power law distribution but with an

effect of the average in/out-degree on the shoulder, and not on the tail. That being said, the model is

above all a theoretical one, and should not, in this form, be taken too seriously for empirical purposes.

The following section discusses these and other limitations.

8 Limitations

Several aspects of the model, its analysis, and the empirical discussion deserve comments.

A classical critique to this type of model is that the monotonic relationship between age and expected

(in)degree is not in line with reality. In fact, Adamic and Huberman (2000) disputed the original scale-

free network model on the grounds that the world wide web does not feature such a relationship. A

first answer is that the Adamic and Huberman’s (2000) critique does not decrease the merit of the

Barabási and Albert’s (1999) model as a simple, canonical model capturing the essence of a phenomena

while omitting perhaps important but not essential features, at least at a first step of the analysis.

Second, Newman (2009) has argued that in the case of scientific publications, it does exist a “first-

mover advantage”. In spite of this fact, it would probably be exaggerative to say that no papers

are better than others, and that only age and chance matter to garner citations. I conclude that

the introduction of aging (as in Dorogovtsev and Mendes, 2000), burst dynamics (Ratkiewicz et al.,

2010) and paper intrinsic value (as in Bianconi and Barabási, 2001) are important avenues towards a

more realistic version of the model. In the same vein, one might refine the social side of the network

dynamics, by assuming more realistic social network structure (see appendix G), or e.g., introducing

specific processes for authorship and co-authorship dynamics.

Another extension would be to take into account the mesoscale, nearly-decomposable structure of
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science. In fact, growing two-mode networks were historically designed for a similar purpose. Although

Yule was interested in the sizes of biological genera and did not think of his model as a network, applying

Yule processes on a set of items and a set of categories produces a Yule-Simon distribution of knowledge

categories’ sizes.

Regarding the mathematical analysis, several shortcomings must be acknowledged. First, many

results are derived using the mean-field continuous approximation, but this method does not always

give very good results. The master equation method (sometimes called rate equation when written

in continuous time) (Simon, 1955; Krapivsky et al., 2000; Dorogovtsev et al., 2000) provides a better

approximation (as was shown for the distribution of popularity), but could not be used directly for the

case of citation distributions. Moreover, the effect of population finiteness could not be analytically

derived for the citation distribution. Finally, a rigorous analysis of the initial conditions has not been

attempted. A more complete analysis, along the lines of Bollobás et al. (2001), should reveal the exact

domain of validity of the results. I would like to stress here that there have been several controversies

surrounding the mathematics of this type of system, thus, at best, I claim only reasonable use of

generally admitted methods, certainly not exactness (some results may be exact under certain well

defined limits, but it would require some work to prove it).

Besides the shortcomings of what has been done, one can comment on the lack of analysis of

other properties of the model. Here, the focus was only on the degree distributions. There are many

other topological quantities in networks that are informative and can be modeled and compared with

empirical data, such as clustering, path length, assortativity, degree correlations, different measures of

centrality, distribution of component sizes, etc. These quantities, well defined for one-mode undirected

networks, can be more complicated to define and model on the two-mode and the directed networks

that are studied here. As such, they have been omitted here but remain important avenues for future

investigations.

Turning to the empirical validation, several issues are discussed in order. First, it is hard to test the

theory because in practice we do not have data on b. How many papers are read by a scientist between

two of her publications? Is it really constant over the career cycle? Does it differ from field to field? Is

it constant over time? Jones (2009) has shown that, because of knowledge accumulation, it is harder

and harder to reach the scientific frontier (the “burden of knowledge” effect). One might think that this

implies a decrease of b (more papers need to be read before one can publish). Alternatively, one may

argue that it is true that it is harder to reach the frontier, but conditional on being at the frontier, the

number of papers to be read before one is able to publish does not depend on the amount of previously

accumulated knowledge. Additional work is needed to clarify the empirical content of b. As far as the

other parameter is concerned, the observed increase of h can be thought of as a natural consequence

of the growth of the knowledge base (the more papers there are, the more a new paper needs to cite

previous papers). In fact, it is possible to endogenize h, and similar power laws are obtained in finite

time, but the system is significantly more complicated and has no steady state. Therefore I have chosen

to study steady states, and discuss the effects of parameters as one generally does in comparative statics.

I believe that this is a useful simplification to make the theoretical point that is the purpose of this

paper. Nevertheless, a more realistic model would necessarily include network acceleration. In addition,

the comparison between the learning-based and Price’s models may be altered if acceleration is included

in both.
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Further effort in modelling this type of system should in any case help designing empirical investi-

gations. For instance, many empirical papers study a cohort of papers (published in one single year)

and their citations received during a certain time window (e.g. the ISI dataset in Redner, 1998), or

during a time window which is expected to be long enough such there will be no more citations to those

papers (e.g. Stringer et al., 2010). The study of Albarrán and Ruiz-Castillo (2011) take the papers

published during a certain time span (1992-1997) and the citations they receive during a certain time

window (1992-2007). A third type of studies take the whole dataset (e.g. Eom and Fortunato (2011)

and this paper). In fact, there is no reason why the distribution within a cohort should be the same as

the distribution for the whole dataset. As a matter of fact, cohort distributions are much less skewed

for cohort data than in whole datasets. For instance Stringer et al. (2010) found that a discrete log-

normal fits well their cohort data. while Newman (2009), Eom and Fortunato (2011), and this paper

argue that the shifted power law works well for whole datasets. Ideally, one would model and test both

distributions.

The comparison of the learning-based and Price’s models with data should not, in my view, be

taken too seriously. Many other very important factors shape the structure of citation network, which

also implies that we do not know exactly what is captured under the label of “initial attractiveness” or

“relative share of learning/producing” when comparing the models with data. Both models privileged

parsimony and analytical tractability over detailed empirical content. The point of Price was that

papers benefit from a cumulative advantage: the more they are cited, the more they are likely to be

cited again, a prediction confirmed empirically to a good extent by Newman (2009). My point is that

socially embedded learning is one of the plausible mechanisms behind the cumulative advantage driving

the self-organization of science and its materialization into a citation network. I intended to shed light

on the humans in the shadow of citation networks, advocating a view of knowledge items networks

(scientific publications or others, linked by citation or another relational feature) more systematically

based on the human agency underpinning them, being it related to rational individual decision making,

psychological aspects of attentional behavior, or social embeddedness. For instance, in a stand-alone

citation network model such as Price’s, the decision-making process is about “what to cite”, whereas in

the learning-based it is firstly about “what to learn”, creating space for modelling search explicitly. A

model encompassing social and bibliographic search would thus be a natural follow-up of the research

presented here.

9 Conclusion

In this paper, it was argued that the cumulative advantage enjoyed by scientific publication is a conse-

quence of the social embeddedness of learning. It was shown that growth (creation of new papers) and

preferential attachment (learning of popular papers) generates power law-like distributions for papers’

popularity and papers’ number of citations received. The trade-off between the production and the

consumption of papers is the key parameter which was estimated using data on citation networks.

The model presented here has been discussed in the context of scientific evolution, because the topic

is of high importance for economic development, is interesting in itself, and leads to a nice translation

of the theoretical concepts for empirical work. I believe nonetheless that it is more general and can be

useful for thinking about a number of other situations, in particular all contexts in which actors and
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their ideas/artefacts co-evolve.

The core of the mathematical system, a growing two-mode network with polynomial attachment

kernel, was analyzed using hypergeometric functions solutions of the master equation and mean-field

continuous approximations. This system may apply in all cases where only one set of nodes of a

two-mode network is growing.

The model in its complete form may be useful in applications where one needs to study the evolution

of a two-mode network and its relationships with associated one-mode networks. It demonstrates that

the classical self-reinforcing dynamics of a given network (“preferential attachment”), traditionally

micro-founded by a “copying” mechanism (i.e. linking to friends-of-friends), can also be explained by

a similar mechanism taking place on the associated two-mode network: papers are cited preferentially

because they are learned preferentially, because agents learn random ideas of random friends.

This feature of the model also draws attention to the time scales involved in the growth of author-

paper networks. From the viewpoint of the citation networks, the time scale is defined by the arrival of

new papers, neglecting all the “learning events” happening in between. I tried to convince the reader

that these two-mode network events do, however, matter a lot in shaping the (one-mode) citation

network. I would tentatively suggest that this is also the case in many other one-mode networks, and

expect further research along this line to be fruitful for understanding interrelated complex systems.
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Valverde, S., Solé, R., Bedau, M. and Packard, N. (2007), ‘Topology and evolution of technology

innovation networks’, Physical Review E 76(5), 056118.

Vázquez, A. (2003), ‘Growing network with local rules: Preferential attachment, clustering hierarchy,

and degree correlations’, Physical Review E 67(5), 056104.

Vega-Redondo, F. (2007), Complex social networks, Cambridge University Press.

Yule, G. (1925), ‘A mathematical theory of evolution, based on the conclusions of Dr. J.C. Willis,

F.R.S.’, Philosophical Transactions of the Royal Society of London. Series B, Containing Papers of

a Biological Character 213, 21–87.

Zeng, A., Yeung, C., Shang, M. and Zhang, Y. (2012), ‘The reinforcing influence of recommendations

on global diversification’, EPL (Europhysics Letters) 97(1), 18005.

Zipf, G. (1949), Human behavior and the principle of least effort., Addison-Wesley Press.

A Evolution of individual paper’s popularity when n is infinite

Let us write a difference equation for the evolution of the degree of paper j (recall that here we assume

n → ∞).

kj(t + 1) − kj(t) = (1 − b)
kj(t)

t
(A.1)

which becomes

kj(t + 1) =

(

1 +
1

b̂t

)

kj(t)

=

(

1 +
1

b̂t

)(

1 +
1

b̂(t − 1)

)

. . .

(

1 +
1

b̂tj

)

kj(tj)

=
t∏

i=tj

(
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1

b̂i

)

(A.2)
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One can then express the product in terms of Gamma functions or Pochhammer symbols. Evaluating

the solution at t instead of t+1 and choosing a simplification in terms of the Beta function one obtains

6

Equation 6 is the exact solution for the deterministic approximation of the evolution of paper j

assuming n → ∞.

B Popularity distribution when n is infinite

Assuming an infinite population, the model is similar to Simon’s (1955). To be precise, Simon’s model

assumes that, in our context, there is one and exactly one new actor per period, but since we are

counting the edges attached to papers, it does not matter what is on the other side of the edges. What

matters is that exactly one edge is added at each period. With probability b, it comes with a new paper,

and with complementary probability it attaches to an existing paper.

Simon used a technique known now as the master equation method. It consists in specifying the

probability that, during any time step, a given bin of the histogram increases or decreases.

The master equation is as follows. The number of papers with degree k in (t + 1) is equal to the

number of papers with degree k in t, plus the number of papers with degree k − 1 in t that have been

learned, minus the number of papers with degree k in t that have been learned. Putting this together

Pt+1(k) − Pt(k) = (1 − b)Pt(k − 1)At(k − 1) − (1 − b)Pt(k)At(k) (B.1)

From equation 2, the attachment kernel for n → ∞ is k/t. Putting this and Pt(k) = wtpt(k) in

equation B.1, and simplifying, one gets

(t + 1)pt+1(k) − tpt(k) = (1 − b)pt(k − 1)(k − 1) − (1 − b)pt(k)k

Now, assume that a stationary distribution exists for t → ∞, so pt+1(k) = pt(k) = p(k) to obtain

p(k) = (1 − b) [(k − 1)p(k − 1) − kp(k)] (B.2)

For k = 0, we know that p(0) = 0 since each paper enters with a degree equals to 1. For k = 1,

equation B.1 is modified thus

Pt+1(1) = Pt(1) + b − (1 − b)Pt(1)
1
t

Using the same simplification as before leads to

p(1) =
1

2 − b
(B.3)

The system (B.2-B.3) was solved recursively by Simon (1955) to yield the Yule-Simon distribution,

equation 9, which is a power law because of the following relation (derived using Stirling approximation).

B(a, b) ∝ Γ(a)b−a if a is fixed and b is large (B.4)
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C Popularity distribution when n is finite

The master equation B.1 does not change, except that now it has the attachment kernel given by

equation 2, without assuming infinite n. Using the usual simplifications and assuming a steady state

gives the recurrence

p(k)(k(n − k) + b̂nμ) = p(k − 1)(k − 1)(n − (k − 1)) (C.1)

This equation can be solved using different methods. Here I choose to present the derivation using the

definition of generalized hypergeometric functions. The reason is that the final result contains a quantity,
n−4±

√
n(n+4b̂μ)
2 , the origin of which is not straightforward to see unless we use the method below and

observe that these are simply the roots of the denominator of the term used to calculate the ratio of

two consecutive terms of the degree distribution. Another reason to use generalized hypergeometric

functions is that they often naturally represent the generating function of probability mass functions

involving special functions, as is the case for the Yule-Simon, the Waring, and the distribution below. It

is common in growing network models to solve the master equation by solving the Ordinary Differential

Equation (ODE) involving the generating function of the degree distribution. The solution of the ODE

is most often a generalized hypergeometric function (see e.g. Dorogovtsev et al.’s (2000) equation

8). I suggest that this result can be obtained directly by writing the series associated to the degree

distribution, and avoid using generating functions39. The method below and how and why this relates

to symbolic computation and computer science (a simonian theme again), is nicely described in the

book A=B (Petkovšek et al., 1996).

Let us start by writing the recurrence for the degree distribution in terms of k + 1

p(k + 1)
p(k)

=
k(n − k)

b̂nμ + (k + 1)(n − (k + 1))

Now, consider the series for the degree distribution

∞∑

k=1

pk = p(1) + p(1)
1(n − 1)

b̂nμ + 2(n − 2)
+ p(1)

1(n − 1)

b̂nμ + 2(n − 2)

2(n − 2)

b̂nμ + 3(n − 3)
+ . . .

= p(1)
(
1 +

1(n − 1)

b̂nμ + 2(n − 2)
+

1(n − 1)

b̂nμ + 2(n − 2)

2(n − 2)

b̂nμ + 3(n − 3)
+ . . .

)

= p(1)
(
1 +

∞∑

K=1

K∏

i=1

i(n − i)

b̂nμ + (i + 1)(n − (i + 1))

)

(C.2)

Now, consider the following series

tm+1

tm
=

(m + 1)(n − (m + 1))

b̂nμ + (m + 2)(n − (m + 2))
=

(m + 1)(m + 1 − n)
(m − r1)(m − r2)

(C.3)

where r1 and r2 are the two roots of b̂nμ + (m + 2)(n − (m + 2)) = 0, namely

{r1, r2} =
n − 4 ±

√
n(n + 4b̂μ)

2
(C.4)

39The method works nicely for Simon’s and Price’s models. In these cases, the function involved is a Gauss Hypergeo-

metric function and one can use Gauss’s Hypergeometric Theorem to check that the result is a proper probability mass

function (i.e.
∑

k pk = 1).

38



Also assume that t0 = 1. If we write the series tm explicitly, we have

∞∑

m=0

tm = 1 +
1(n − 1)

b̂nμ + 2(n − 2)
+

1(n − 1)

b̂nμ + 2(n − 2)

2(n − 2)

b̂nμ + 3(n − 3)
+ . . .

= 1 +
∞∑

K=1

K∏

i=1

i(n − i)

b̂nμ + (i + 1)(n − (i + 1))

(C.5)

so that substituting C.5 into C.2, we have a simple relationship between the series tm and pk

∞∑

k=1

pk = p(1)
∞∑

m=0

tm (C.6)

On the other hand, by definition of hypergeometric series (see e.g. Petkovšek et al., 1996), series

C.3 implies
∞∑

m=0

tm = 3F2

[
1, 1 − n, 1

−r1, −r2

; 1

]

(C.7)

where the generalized hypergeometric series is defined as

pFq

[
a1, a2 . . . ap

b1, b2 . . . bq

; z

]

=
∞∑

s=0

(a1)s . . . (ap)s

(b1)s . . . (bq)s

zs

s!
(C.8)

where the Pochhammer symbol is defined in equation 18. Substituting equation C.7 into C.6 gives

∞∑

k=1

p(k) = p(1) 3F2

[
1, 1 − n, 1

−r1, −r2

; 1

]

Using equation C.8, this becomes

∞∑

k=1

p(k) = p(1)
∞∑

s=0

(1)s(1 − n)s

(−r1)s(−r2)s

Choosing s = k − 1, one gets

∞∑

k=1

p(k) = p(1)
∞∑

k=1

(1)k−1(1 − n)k−1

(−r1)k−1(−r2)k−1

By comparison of the two sides we can get rid of the summation term, leaving us with equation 16

Finally, the initial condition is found by writing the master equation for k = 1

Pt+1(1) = Pt(1) + b − (1 − b)Pt(1)
n − 1
μnt

Assuming steady state and using the same simplifications as before, one obtains 17

D Discrete citations distribution when n is infinite

To derive the exact distribution of citations, one would need to model popularity and citations together

by writing the master equation for the joint probability mass functions of k and kC . This task is

arguably out of the scope of this paper. Nevertheless, I can propose here a turn around which does
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lack mathematical rigor but indeed provides a formula which is better than that from the mean-field

continuous approximations, because it is a probability mass function, i.e. it sums up to one.

The idea is to derive the mean-field continuous approximation of a very related model for which the

exact discrete degree distribution is known, namely Price’s model (Dorogovtsev et al., 2000; Newman,

2010). By comparing the two mean-field continuous approximations (Price’s and learning-based models)

and looking at the discrete degree distribution of the known model (Price’s), one can guess the discrete

degree distribution of the learning-based model.

Price’s model is described as follows. At each period, a new paper arrives, and it cites h existing

papers with probability proportional to their citations count plus a constant. The constant, denoted a,

is the so-called “initial attractiveness” of a paper. It is necessary because since papers have in-degree

equal to zero at birth, they would never have a chance to be cited if that constant was not there. Denote

qj the degree of paper j. The time index is w. We have

dqj(w)
dw

= h
qj + a

∑w
j=1(qj + a)

= h
qj + a

w(h + a)

With the initial condition that qj(wj) = 0, one obtains

qj(w) = a

((
w

wj

)h
a +1

− 1

)

and by the usual method

p(q) =
(a

h
+ 1
)

a
a
h +1(q + a)−(2+ a

h ) (D.1)

Clearly, this is a shifted power law with r = a and γ = 2 + a
h . Now, let us look at the exact solution

found by Dorogovtsev et al. (2000) (see also Newman, 2010) using a master equation technique40:

p(q) =
B(q + a, 2 + a

h )

B(a, 1 + a
h )

(D.2)

We wish to compare D.1 and D.2. We need not care about the constants, since they come from

the normalization constraint. We are left with the simple observation that B(q + a, 2 + a
h ) compares

with (q + a)−(2+ a
h ). Indeed, the second is the approximation of the first assuming that (q + a) → ∞

(using Stirling approximation). Note that this type of relationship between the mean-field continuous

approximation and the master equation solution can also be observed for Simon’s model (see equations

8 and 9)

Now, if we compare the mean-field continuous approximation of the learning based model (equation

12) with the mean-field continuous approximation of Price’s model, we see that the role played by q +a

in the latter is played by k + b̂bh in the former, and that the role played by 2 + a/h in the latter is

played by 2 + b̂b in the former. Substituting these values in equation D.2, we get 13

40Dorogovtsev et al. use the parameter ā = a/h to solve the model, so equation (9) in their paper looks identical to

the distribution of citations in the learning-based model (or in a mixed attachment model such as Jackson and Rogers’s),

but it is not. After converting back to the original parameters, we observe that the power law exponent depends on h

and the shoulder parameter does not: this is Price’s model.

40



E On Lotka’s law

In the model above, actors are treated symmetrically. As a result, they have a similar number of papers

learned and created. This is clearly against the empirical evidence known as Lotka’s law, which states

that the number of publications of individual scientists are power law distributed. In the model, this

distribution is binomial. For simplicity, consider the number of papers known instead of the number of

papers produced. To “know” ka papers at time t, a r.c. agent needs to have been chosen exactly ka

times, and not chosen exactly (t − ka) times. Thus it follows that:

Proposition E.1. The distribution of actors’ number of papers known is the binomial distribution

pt(ka) =

(
t

ka

)(
1
n

)ka
(

1 −
1
n

)t−ka

Hence, one can say that the model shows that it is possible to have skewed citations network without

heterogeneity of author’s productivity or author’s knowledge amount.41 If one wants to obtain Lotka’s

law, then it is a simple matter of adding the Ramasco et al.’s (2004) model of co-authorship “on top”

of the learning-based model. This opens interesting avenues because the way one specifies how learning

in teams takes place can alter some results. Therefore an extended model can highlight the interplay of

team-based work and collective learning in scientific evolution, without loosing analytical tractability.

F The model with productivity parameters

A notably unrealistic aspect of the model is that during one period, the r.c. agent learns or produce

exactly one paper. Let us assume here that during one time period, an agent either learns λL papers

or produce λP papers. The evolution of paper j’s popularity is given by

dkj(t)
dt

= (1 − b)λL
kj(t)

t(bλP + (1 − b)λL)

which, using kj(tj) = 1, has solution

kj(t) =

(
t

tj

) 1
1+b̂bλP /λL

(F.1)

The usual method then gives a power law similar to (8) but with exponent 2 + b̂bλP

λL
instead of

1 + b̂ = 2 + b̂b, and appropriate normalizing constant. The interpretation is straightforward: learning

many papers per period implies a flatter distribution because learning is biased towards popular papers.

Producing many papers per period steepen the distribution because produced papers arrive with degree

one (they are known solely by their author) which increases the first bin of the histogram. In other

words, the parameters λP and λL plays the same role as, respectively, b and 1 − b.

Again using the standard method followed in the main text, the dynamics of the number of citations

received by paper j is

dkC
j (t)

dt
= bhλP

1
t(bλP + (1 − b)λL)/n

kj(t)
n

= bhλP
kj(t)

t(bλP + (1 − b)λL)
41The variance of this distribution increases with t, so agents heterogeneity grows unboundedly, but the coefficient of

variation (mean/variance) is stable and equal 1 − 1/n. The variance is always much lower than what it would be under

Lotka’s law.
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where kj(t) is given above by (F.1). The distribution of citations received is found to be a shifted power

law with exponent equal to that of the popularity distribution γ = 2+ b̂bλP

λL
and the shoulder parameter

r = b̂bhλP

λL
. Hence to make the point that socially embedded learning generates a shifted power law

citation distribution, it is not necessary to introduce complications linked to the relative productivity

of learning/producing papers.

G The model with a social network

In the text, a full social network was assumed. This is a very strong assumption, and in view of

the huge amount of research on research on the effects of network structure on different processes

and outcomes, it should be expected that assuming more realistic network structure would change the

results. A detailed study is out of the scope of this paper, and we shall contend ourselves here with some

simulations to be seen as a set of robustness checks of the results obtained under the assumption of a full

graph. It is basically shown that random graphs delivers a behavior very similar to full graphs, whereas

circles (one dimensional boundaryless lattice) lead to noticeably different results. The conclusion that

imitating random ideas of random friends and citing randomly within one’s knowledge set leads to

skewed distribution of popularity and citations is preserved in any case.
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Figure 7: Effect of social network- One dimensional lattice and Erdős-Renyi. The simulation setup is b = 0.2,

n = 20, h = 5, 50000 time steps, and 100 simulations are averaged. The circle network is a one dimensional boundaryless

lattice where each agent is connected to two agents on her left and two on her right. The Erdős-Renyi graph is a

(connected) random graph with 40 edges. The plain lines are the same than in figure 2
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Figure 8: Effect of social network- Real-world network. The simulation setup is b = 0.2, h = 5, 150000 time

steps, and 5 simulations are averaged. The social network is either a full one, either a real world network, namely the

collaboration network from papers about network science as collected and made available by Newman (2006) (379 nodes

and 914 edges).
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Figure 9: Effect of sparse social network- effect of b. The simulation setup is three different values of b, n = 100,

h = 5, 50000 time steps,and 10 simulations are averaged. The social network is a circle where agents are connected to four

agents on each side. The left panel shows the simulations and the right panel shows theoretical results (using equation

13)

The first simulation exercise compares stark theoretical structures, namely a one dimensional bound-

aryless lattice (a circle) and an Erdős-Renyi graph (a random graph) with results known with great

detail, i.e. for n = 20. The results, depicted in figure 7, show that the distribution of popularity stays

the same to a large extent. The distribution of citations, while similar when a random graph is used,

exhibits a “break” in the middle of the curve when the social network is a circle.

The second test uses the largest component (379 nodes) of a real-world collaboration network (New-
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man, 2006), which is known to have a skewed degree distribution. In this case, the difference observed

between the full and the sparse network seems similar for popularity and for citations: the curve for

sparse graph is more “round” and cuts the curve for full graph at two different points, i.e., it has a

lower constant and a lower tail, as one observes in figure 8.

The last set of simulations is designed to check that the effect of the parameters b and h is the same

when we consider a sparse graph. Figure 9 shows that the effect of b on the distribution of citations is

as expected, even in the worst case scenario which is a circle. The effect of h deserves more attention

since it is used to discriminate between Price’s and the learning-based model empirically. Figure 10

shows that the effect of h on the distribution of citations is as expected in the case of the random graph,

but not in the case of the circle network. In the latter, the change in h does not lead to a parallel shift

of the curve, and there is also a more marked cut-off. This somehow limits the span of the results

presented in the main text under the full graph assumption, and calls for further research. That being

said, once we compare the results obtained under the same parameter conditions (same h) and changing

only the underlying social network (see figure 11), we see that the overlap seems really good when the

probability mass distribution is plotted (in particular, the break in the citation distribution found for

n = 20 in figure 7 disappears in this set of simulations where n = 100). However, a significant difference

between the full and random on the one hand and the circle network on the other hand reappears when

plotting the counter-cumulative version of the same raw data.

Overall, I conclude that sparse social networks lead to degree distributions which are significantly

different, but not completely at odd with those obtained under the full network assumption. To the

extent that the effects of b and h are preserved, and this is roughly the case, the full network assumption

is not only a mathematical convenience but a requirement following from the exigence of parsimony.

Obviously, a lot of interesting research is ahead if one wishes to understand in detail the consequences

of the social network structure on popularity and citation distributions.
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Figure 10: Effect of social network- effect of h. The simulation setup is b = 0.2, n = 100, three different values

of h, 50000 time steps, and 100 simulations are averaged. Three social networks are compared: a circle where agents

are connected to four agents on each side, an Erdős-renyi graph with mean degree equal to 10, and a full graph. The

bottom-right shows the simulations and the right panel shows theoretical results (using equation 13)
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