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Abstract

We use a general equilibrium framework to study optimal health investment in a dynamic
model where agents derive utility from consumption and health. The steady state and the
dynamics of the model are studied under separable and non-separable preferences. A shock
undermining health which increases health expenditure and weakens the income base, not
only affects savings but also compromises the consumption capacity. The magnitude of the
effects strongly depends on the preferences. The dynamics of the model includes the equi-
librium dynamics and bifurcations. Simulation experiments lend additional supports to our
findings in favor of the non-separable preferences.
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1 Introduction

One of the most challenging tasks policy makers are facing in both developed and developing
countries is the design of an ‘efficient’ health care system to improve population welfare. In
the US for instance, this unachieved goal is commonly acknowledged to be as high a priority
as that of Administration. In Europe where health care systems have already been put to
the test, inefficiency usually leads governments to regularly introduce a variety of new schemes
(generalisation of generic drugs, dropped from the market of inefficient drugs, obligation for
people to have a family doctor, etc.) in order to reduce health spending and to improve the
health care system. In the developing world, the economic consequences of diseases like AIDS,
Malaria, etc. (sharp decline in life expectancy, fall in productivity, etc.) reinforced the idea of
formulating a well adapted health care system without large long-run costs in terms of income per
capita as recently pointed out by Acemoglu and Johnson (2007).1 Understanding the economic
mechanisms that drive the design and implementation of such policies is a key issue. The
aim of this study is to highlight some of these economic mechanisms, mainly those related to
consumption, savings and the financing of health expenditure in a context of health impairment.

Improvement of health is an important social and economic objective, which has obvious
direct returns in the sense it favors longer and better life, but also a large indirect effect through
the acceleration of economic growth.2 In fact, the interplay between economic growth and health
has been and still is a source of important debate in the literature since evidently, health is a
human capital. In an illuminating assessment of this question, Sen (1998) pointed out the crucial
connection between mortality and growth, and highlighted the ability of countries to reduce
mortality as a test of their economic performance. Sen (1998) also outlined that the forces that
contribute to an increase or a reduction of mortality often have economic causes.3 Moreover, the
increase of health expenditures in both developed and developing countries calls for a debate
on health policies focusing on limiting the growth of health spending as a rational response
to changing economic conditions notably the growth of income per capita as life expectancy
increases. The role of health expenditure in improving longevity was recently studied by Hall
and Jones (2007) who showed that spending on health to improve longevity led individuals to
procure additional periods of utility, and that the marginal utility of life extension does not
decline.4 Wastson (2006) studied to which extent differential levels of investment in public
health inputs explain observed differences in health outcomes across socioeconomic and racial
groups. Bhalotra and Rawlings (2011) investigate the intergenerational persistence of health
across time and region as well as across the distribution of maternal health. The structure of
utility functions was empirically tested by Evans and Viscusi (1991). The authors used a survey
data on risk-dollar tradeoffs for minor health effects and showed that health impact does not
alter the structure of the utility function in a fundamental way. This paper contributes to the
current debate by studying the effect of health shocks and the financing of health expenditure on
consumption and saving, while elaborating in depth on the role of agents’s preferences structure
in that respect.

In Grossman’s (1972) standard model, health is considered as a capital stock that increases
1Over the last few centuries, it has been recognised that improvements in health care are the main driving

force of life expectancy in both developed and developing countries (Kirkwood, 2008).
2See e.g., Chalkley and Malcomson (1998) and Deaton (2003) for a nice contribution to the debate.
3See also Cervellatti and Sunde (2005, 2007) and de la Croix (2008).
4See the recent study of Dolan and Kahnemann (2008) on interpretations of utility in the context of non-market

goods such as health. See also Bleichrodt and Pinto (2005) for some applications of non-expected utility in the

health area.
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with investment, by buying into health services, medical goods, or spending time on health
related activities. However, it also decreases naturally through the ageing process. As pointed
out by Gjerde et al. (2001), there are three key reasons why people want to improve health:

i) Since health directly enters the individual’s utility, it can be considered as a consumption
commodity.

ii) Health determines the total amount of time available for monetary and non-monetary
activities. Therefore it is an investment commodity.

iii) Being healthy lengthens the life span and lessens the likelihood of premature mortality.
Thus health is a determinant factor of longevity.

One key feature in the traditional modeling strategy à la Grossman is that preferences are
separable in health and ordinary consumption. As a result, the returns from these two goods are
independent. However, recent evidence stressed the fact that ordinary consumption is also crucial
for health. According to the World Health Organization 2002 report, while overweight status
and obesity coexist with stunting and micronutrient malnutrition, undernutrition has long been
considered to represent both a consequence and cause of poor human health, underdevelopment,
and underachievement throughout life.5 Undernutrition with respect to energy, protein, etc. can
adversely affect the quality of life, impair resistance to infection and diseases, and decrease span
of life.

Following Grossman (1972)’s consumption model, Dardanoni and Wagstaff (1990) introduce
the uncertainty within a static version of the same setup and find greater uncertainty results
in an increase in the demand for medical care. However, a static framework does not allow
for adjustments over time and may not fully characterise the effects of uncertainty. This issue
was challenged by Picone et al. (1998) who analyze the effect of uncertainty of the incidence of
illness on the precautionary behavior of elderly individuals within a stochastic dynamic model
à la Grossman. The approach of Picone et al. (1998) is interesting in that the optimization
problem is a result of a series of sequential decisions rather than one large maximization. The
sequential decisions elaborate on the fact that an individuals current demand for health partly
depends on previous decisions and on his/her uncertain expectations of the future. The authors
found that more risk averse individuals will exhibit extra precautionary behavior, especially
in the form of additional medical expenditures. Moreover, very risk averse individuals may
respond to an increase in uncertainty by reducing their savings. This follows from the fact that
increases in medical care are not completely offset by reductions in consumption. However,
the optimization problem of Picone et al. (1998) does not have a closed form solution. As a
result, the standard comparative statics cannot analytically be derived and the optimal paths
of consumption and medical care expenditures were numerically implemented.

Ehrlich and Chuma (1990) specified a demand function for quantity and quality of life.
Their model is based on Grossman (1972)’s type specification using the consumption-investment
commodity aspect of health. The authors calculated that optimal health and longevity are
correlated to the endowment of wealth, rather than necessarily current income. Gjerde et al.
(2001) analyzed the impact of adaptating to a falling health state on the demand for health and
medical care by integrating adaptation processes in the pure consumption model of Grossman
(1972). They also introduced the uncertainty of longevity and their simulation experiments
showed that adaptation affects health by lowering the incentives to invest in health, as well as
smoothening the optimal health stock path over life cycle.

5See e.g. the recent study of Nonnemaker et al. (2008).
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The contribution of Hazan and Zoabi (2006) is of particular interest as the authors challenge
the conventional view on the relation between longevity and growth by arguing that greater
longevity may have contributed less than previously thought for the significant accumulation
of human capital during the transition from stagnation to growth. The leading mechanism of
such finding is that in contrast to longevity, improvements in health are more likely to generate
quantity quality tradeoff from parents behavior of their offspring. Greater longevity positively
affects not only the returns to quality but also the returns to quantity. The result of Hazan and
Zoabi (2006) relies on the homothetic preferences of parents with respect to the quantity and
quality of their children. As a result, in a framework in which longevity is neutral, health can
induce quantity-quality tradeoff. This points out the key role of preferences in modeling the
relation between health and economic indicators such as consumption, saving, growth, etc. In
this paper, we address this issue by studying a broad mechanism of separable and non-separable
preferences in consumption and health.

At a first glance, one may observe that consumption and health are interconnected but we
cannot make conclusions about the net effects on health investment. Hence, it is very difficult,
at least analytically, to slice on the net effect of a high health deterioration rate and low health
productivity on health investment. It is important to note that not all diseases have the same
effects on individuals. For instance, we can distinguish between virulent epidemics which can
kill in a very short period of time, and strongly affect an individual’s health capital and life
expectancy on the one hand and epidemics which do not kill in the short term, but confine
people to bed, or constitute a handicap for the rest of their life on the other.6 Therefore, in
order to simplify and to avoid potential ambiguities in our modelling which entails the analysis
of all factors, including health shocks that can undermine health capital, we have two different
health shocks: one that accelerates the health deterioration rate, and another that decreases the
efficiency of health investment.

One of the main economic implications of health shock is a probable and significant distortion
in saving behavior. For example Freire (2002) studied the impact of AIDS on household savings
in South Africa. The author found that the pandemic, and the associated sharply declining life
expectancy is likely to shift savings downward for a while, therefore restricting economic growth
and standard of living in the medium and long-run. Chakraborty (2004) considered the problem
of public investment in health within the framework of overlapping generation models. The
author showed that in poor countries where life expectancy is weak, individuals are more likely
to discount the future and thus less inclined to save. Cuddington and Hancock (1994) also stated
that, health expenditure induces a decrease in savings at the expense of capital accumulation.
However, this is questionable since health expenditure is harmful to consumption. Therefore,
there is an overriding issue as to how to deal with savings in the context of health depreciation.7

Our study contributes to the literature in several aspects. Firstly, we adopt a more general
6Among those diseases we can quote Plague, Spanish Influenza, Cholera, Meningitis, Virus of Marburg (dis-

covered in Marburg in the north of Germany in 1967). The second kind of epidemic can be assimilated to endemic

diseases. The effect of these diseases is that, many people die but many people survive but are reduced to poverty

because of the loss of productivity, and their lives are blighted by frequent bouts of illness. Among them we find

AIDS, paludism, Leishmaniasis (the second-largest parasitic killer in the world after malaria).
7Looking at this from a different perspective, Acharya and Balvers (2004) revisited the concept of intertemporal

preferences replacing the unobservable concept of utility function by an observable health function. They showed

that the rate of time preference varies in an intuitive way with changes in conditional lifetime, initial wealth age,

and the marginal productivity of consumption in affecting health. Dusansky and Koç (2006) emphasised the role

of uncertainty examining the interconnection between individual consumer’s demand for medical care and choice

of health insurance coverage (see also Cameron et al., 1988 and Dardanoni and Wagstaff, 1990). It is worthwhile

to mention that those aspects of the issue are out of the scope of this study.
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set-up by considering both separable and non-separable preferences in consumption and health,
meaning that in the latter case consumption is also crucial for health. Secondly, we investigates
the effects of health shocks on the subsequent life cycle, in particular on savings and consumption
in a general equilibrium setting. In order to have a better picture of the life cycle aspect of the
issue, we also include a final good sector. To the best of our knowledge this aspect was not studied
so far as most studies rely on partial equilibrium demand model for health. Thirdly, even if our
framework is much more complex, we are able to fully characterise the analytical solutions of
the optimization problem and to study the dynamics of the model. The latter includes the
dynamics of transition and the characterization of bifurcations. We shall see that the picture
is quite sophisticated, depending on the assumed preferences. We pay a particular attention
to the way health enters the utility function, and focus on the effects of health depreciation
on savings, investment in health capital and consumption. Our framework postulates that the
marginal utility of consumption depends on health capital and vice-versa. For simplification,
we consider that the lifetime of individuals is infinite, thus removing any uncertainty on that
side. However, this facet of our approach is closely related to the framework of Grossman
(1972) and Ehrlich and Chuma (1990) in that health capital is still a determinant of lifetime
utility. Moreover, by using a constant-relative-risk-aversion utility, we allow households to shift
consumption between different periods according to their degree of risk aversion. In this context,
we study agents’ behavior facing health depreciation (which can be interpreted for instance as
resulting from epidemics) which either accelerates the depreciation of health capital or decreases
the productivity or efficiency of investment in health.

The chief outcomes of this paper demonstrate that a shock undermining health (increasing
health expenditure and weakening the income base), not only affects savings, but also com-
promises the consumption capacity as well as the human and physical capital of the economy
undercutting the process of economic development. We show that the magnitude of these effects
depends on the assumed preferences. It is worthwhile noticing that our interest is to look at the
steady states and the dynamics as well. The analysis is therefore relevant for permanent or long
run changes in the depreciation rates of health. From the dynamics perspective, a nice picture
that emerges from the transitional dynamics is the geometrical illustration of the common pa-
rameters support that allows us to link the two polar preferences (separable and non-separable).
Additionally, we show that bifurcations emerge with separable preferences while non-separable
preferences do not present such picture. We also provide simulation experiments of this dynam-
ics to study the role of preferences. We argue that the model with separable preferences gives
implausible predictions whereas the model with non-separable preferences is likely to explain
important dimensions of empirical facts.

While emphasising the preferences aspects of the issue, it is not our intention to deny the
relevance of other aspects such as the effects of health investments on expected lifetime, the
role of preventive health care, etc. We believe that a thorough study of the mechanisms implied
by preferences deserves a special attention while keeping other aspects for future investigation.
Moreover, it is worthwhile to notice that health status is a broad concept that goes beyond the
mere presence or absence of diseases.8 In our case, the term health status refers to the general
health situation of the individual.9

The remainder of the paper proceeds as follows. Section 2 provides empirical background for
8See e.g., Goenka and Liu (2010), Ryan and Vaithianathan (2003), Boucekkine and Laffargue (2010) and

d’Albis and Augeraud-Véron (2008).
9Indeed, the way people report their health status is directly related to their use of medical services, which

include visits to doctors or dentists, hospital stays, medicinal prescription, etc.
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further motivations to our framework. Section 3 studies the model with separable preferences
meaning that health and consumption enter additively into the utility function. Section 4 is
devoted to the model with non-separable preferences where there is multiplicative interaction
between health and consumption. Section 5 develops the equilibrium dynamics of the model
under both preferences assumption. Section 6 analyzes the emergence of bifurcations and pro-
vides simulation experiments to support the findings. Section 7 summarises and discusses our
findings with prior contributions.

2 A brief review of empirical facts

In this section, we briefly put forward some specific aspects of health which may help further
motivating our approach. Health impairment and malnutrition often occur in tandem. Indeed,
poor nutrition increases the risk and progression of disease and in turn, disease exacerbates
malnutrition. Curtis (2004) outlined a possible relationship between nutrition and scarlet fever.
The author suggested that poor nutrition during pregnancy may have caused women to give birth
to children who were particularly susceptible to scarlet fever.10 Bobat et al. (1997) studied
prenatal HIV-infected children in Italy. The authors concluded that breastfeeding not only
protects infants from common childhood illnesses, but it also could slow down the progression
to AIDS for HIV-infected children. However, the advantages of breastfeeding were lost by the
time children reached five years of age.11

Many factors may contribute to disease evolution making the identification of single causes
very difficult. However, the observations above suggest that improved nutrition and the prompt
treatment of infections in HIV infected individuals may delay the onset of AIDS. There is evi-
dence from several studies that macronutrients play a role in HIV disease progression. Friis and
Michaelsen (1998) focused on HIV-infected men in the USA. They suggested that high intakes
of riboflavin, vitamin E and iron, and possibly vitamin A, C and thiamin were associated with
reduced disease progression. Moreover, Fawzi et al. (1998) produced data from a randomised,
controlled vitamin A trial among pre-school children with acute pneumonia in Tanzania. They
concluded that vitamin A prolonged the life expectancy of the HIV infected, suggesting that
vitamin A may play a role in slowing the course of HIV infection in children.

VanMaanen (1988) led two exploratory studies with elderly US and UK people in various age-
groups. He found that the perception of health, by the self proclaimed ‘healthy’ elderly American
was more ‘a state of mind’. Whereas the ‘un-healthy’ elderly British person interpreted it as
‘the state of absence of disease’. In each case, health maintenance behavior patterns valued
were: balanced nutrition and physical exercise, etc. Subsequently, good nutrition throughout
adult life will help protect against diseases such as diabetes, coronary heart problems, strokes
and some cancers. For instance, the March 2003 report of the East Midlands Regional Assembly
stated that, healthy eating could lead to a 20% reduction in deaths from chronic diseases, and
appropriate dietary advice can prevent physical and mental deterioration, and improve the
quality of life of older people.

Studies on human capital allow us to analyze the effects of nutrition on labor productivity.
Fogel (1997) stated that nutritional improvements contributed to between 20 and 30% of the
income per capita growth in England during 1780-1979. The functionality of the individual and
his capacity to work in a productive way depended partly on her/his nutrition. In the same way,

10See e.g. Blaum (2005) for an empirical assessment of the role of pregnancy employment on health at birth.
11See also Boucekkine et al. (2008), Geoffard and Philipson (1996,1997), Gersovitz and Hammer (2004,2005),

Kremer (1996), and Tanaka (2005) for a study of the interplay between parental leave and child health.
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Seshadri and Tara (1989) showed that in India, iron deficiency in children affects their cognitive
capacity and their performance at school. Therefore, consumption of un-healthy goods plays an
important role when addressing health.

There are several channels through which diseases can affect the economy. Some recent
contribution have advocated the human capital channel. For example, Corrigan et al. (2005)
have used a calibrated OLG model to analyze the effect of the drop in life expectancy on
investment. The authors found a significant increase in the number of orphans as a result of
AIDS. McDonald and Roberts (2006) used an econometric model combining growth and health
capital equations.12 Applied on African countries, the model predicted the substantial effects
of the epidemic: the marginal impact on income per capita of a one percent increase in HIV
prevalence rate is minus 0,59%. The authors concluded that while the human and social costs
of the HIV/AIDS are major causes for concern, the macroeconomic effects of the epidemic are
by no way negligible. Thornton (2008) evaluated an experiment in which individuals in rural
Malawi were randomly assigned monetary incentives to learn their HIV results after being tested.

In a highly controversial paper, Young (2005) claimed that AIDS severely lowers fertility
for two main reasons: On the one hand, the epidemic has undoubtedly reduced willingness to
engage in unprotected sexual activity. On the other, the high mortality of adult males and
the resulting scarcity of labor are likely to increase the value a woman’s availability. Both
channels are arguably strong enough to induce a long-lasting decrease in fertility, which may
cause future consumption per capita to rise. Using a Barro-Becker based empirical model, the
author found that in the case of South-Africa, this decreasing fertility engine is so strong that it
dominates the human capital channel put forward by Corrigan et al. (2005). Hence, AIDS might
well be interpreted as a ‘gift of the dying’ for future South African generations. Nonetheless,
such a finding has been challenged by some authors, including the very interesting paper of
Kalemli-Ozcan (2006) who studied the fertility issues on a panel of 44 African countries between
1985-2000. The author showed that the HIV/AIDS affects the total fertility rate positively and
the school enrollment rates negatively.13

Several studies have elaborated on the relevance of the interdependence between health
investment, life expectancy and economic growth as well as outlining the crucial role of public
policies (Watson, 2006). In this respect, country historical figures are very interesting to put
forward. As outlined by Jones (2001), in 1998, the U.S. spent 13.% of its GDP on goods and
services related to health care which represents a big increase compared to the 5.1% spending
in 1960. The 1998 spending shares were 10.6% in Germany, 9.6% in France, 9.5% in Canada,
7.4% in Japan, and 6.7% in the U.K. At the same time, the pattern of life expectancy increase
is the opposite, considering that U.S. life expectancy at birth was 57.1 years in 1929, 68.2 years
in 1950 and up to 75.5 years by 1990.

Shaw et al. (2005) studied life expectancy production function for a sample of OECD
countries using a parametric specification. The authors found that pharmaceutical consumption
has positive impact on life expectancy for middle age and older. Shaw et al. (2005) also noted
that this relation is sensitive to age distribution. Peltzman (1987) studied the effect of life
expectancy at birth on wealth and government health spending and found only health to be a
significant determinant. Miller and Frech (2000) used OECD age strata data and found that
the determinants of life expectancy in each stratum regression were wealth, pharmaceutical and
non-pharmaceutical medical expenditures.

12See also Bloom and Mahal (1997) for a very careful econometric study on the effect of epidemics on economic

growth.
13See also Zivin et al. (2009).
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The literature also provides strong evidence support as to how healthiness is closely con-
nected to economic development. Gallup and Sachs (2001) argued that wiping out malaria in
sub-Saharan Africa could increase the continent’s per capita growth rate by as much as 2.6%
per year. In the U.S. between 1980 and 2000, the annual number of deaths fell by 16%, life ex-
pectancy increased across all age groups by an average of 5%, and the number of hospital days
fell by 56%.14 Additionally, using the value of a statistical life method15, the Medical Technol-
ogy Assessment and Policy (MEDTAP) revealed in their 2002 report that, annual health care
expenditure per person increased by $2,254 in the U.S. between 1980 and 2000. This report also
stated that for every additional $1 spent on health care, the value of health gains ranged from
$2.40 to $3.00, and at least a 40% increase in life expectancy is directly attributable to addi-
tional health care. However, as mentioned by Hall and Jones (2007) how much of this increase
is exactly due to increased health spending is unclear, but the large gains in life expectancy
clearly represent one of the major accomplishments of the 20th century. One way to explain for
this increase in share of health expenditure should be to consider health as a superior good. As
people get richer, consumption rises but they devote an increasing share of resources to health
care.16

Hereafter, we study the effects on subsequent life cycle of long-lived shocks undermining
health with either an acceleration of health capital deterioration, or a decrease in health invest-
ment efficiency.

3 The model with additively separable preferences

Most studies investigating the interaction between health and the ways it affects utility use an
additive structure. As a result health status and consumption are additively separable in the
utility function implying that the marginal utility of consumption is independent from health
status. Our first approach consists in exploring this framework as a benchmark model. However,
in contrast to previous studies that used additive models, we add a final good sector to better
understand the life cycle aspect of the issue. Additionally we also build upon the literature with
separable preferences by investigating the equilibrium dynamics and bifurcations. In the next
section, we will relax the separability assumption.

3.1 The consumer’s problem

We assume (like Hall and Jones, 2007) that health status and consumption at time z are addi-
tively separable in utility. Then the agent maximises the lifetime utility V : R2

+ → R:
∫ ∞

z
V (C(z),M(z))e−ρzdz =

∫ ∞

z
[U(C(z)) + ϕ(M(z))] e−ρzdz (1)

where V (C,M) is the instantaneous utility derived from consumption goods C(z), and stock of
health capital M(z), and ρ is the time preference or discount rate. We assume that ϕ(M(z))

14However, as noticed by Bhargava et al. (2001), life expectancy in a country is a broad measure of population

health, though it needs not accurately reflect the productivity of the labor force.
15The value of life is the cost of reducing the (average) number of deaths by one. When deciding on the

appropriate level of health care spending, a typical method is to equate the marginal cost of the health care to

the marginal benefits received. In order to obtain a marginal benefit amount, some estimation of the dollar value

of life is required.
16Newhouse (1992) has pointed out the crucial role played by the development of new technologies in the rise

of health spending. In fact, the invention of new and expensive medical technologies causes health spending to

rise over time.
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is an strictly increasing and concave function in M , and can be considered as the amount of
healthy time. The law of motion of non-human assets and health are respectively given by

Ȧ(z) = r(z)A(z) + w(z)− C(z)−m(z) (2)

Ṁ(z) = ψ(m(z))− δMM(z) (3)

where r(z) is the interest rate. We assume that each individual supplies one unit of work per unit
of time, then w(z) is the wage rate, m(z) is the flow of gross investment in stock of health capital
M(z). The health investment m(z) is produced with a decreasing-returns-to-scale technology
via the function ψ(m(z)).

Consistent with Ehrlich and Chuma (1990), we consider that the stock of health capital can
be maintained or increased through purposive investments m(z). However, health is submitted
to a natural biological deterioration at the rate δM . Thus, in contrary to Ehrlich and Chuma
(1990), we assume a constant rate of health depreciation. However, the greater the health that
one intends to maintain in later years, the earlier one must initiate significant investments in
counteracting the depreciation of health.

Individuals maximise lifetime utility (1), subject to the state variables Ȧ(z) and Ṁ(z) in
equations (2) and (3) respectively. The Hamiltonian and optimality conditions of this optimal
control problem are

H = [U(C(z)) + ϕ(M(z))] e−ρz

+ λAe−ρz [r(z)A(z) + w(z)− C(z)−m(z)]

+ λMe−ρz [ψ(m(z))− δMM(z)]

The first order conditions associated to this problem are given as:

∂H
∂C(z)

= UCe−ρz − λAe−ρz = 0 (4)

∂H
∂m(z)

= λMψ′(m(z))e−ρz − λAe−ρz = 0 (5)

∂H
∂M(z)

= [λ̇M − ρλM ]e−ρz = λMδMe−ρz − ϕ′(M(z))e−ρz (6)

∂H
∂A(z)

= e−ρz[ρλA − λ̇A] = r(z)λAe−ρz =⇒ λ̇A = λA(ρ− r(z)) (7)

The additional transversality conditions are:

lim
z→∞λA(z)e−ρzA(z) = 0 (8)

lim
z→∞λM (z)e−ρzM(z) = 0 (9)

We specify constant-relative-risk-aversion (CRRA) functions for U(C(z)) and ϕ(M(z)), and a
decreasing return in health investment for function ψ(m(z)) as:

U(C(z)) =
(C(z))1−σ1

1− σ1
(10)

ϕ(M(z)) = b
(M(z))1−σ2

1− σ2
(11)

ψ(m(z)) = π(m(z))α (12)

with σ1 > 0, σ2 > 0, b > 0 and 0 < α < 1. Here σ1 is the inverse of elasticity of substitution
between consumption at any two points in time, and σ2 denotes the same for health capi-
tal. U(C(z)) and ϕ(M(z)) are strictly increasing and concave respectively in C(z) and M(z).
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ψ(m(z)) represents the health investments function, which is concave in m(z), reflecting the
assumed diminishing returns in health investment. π is the productivity or efficiency of health
investment. Increased health care productivity not only shifts the health production function
upward, but causes each unit of health care to have a larger contribution to health as well.
From Eq. (5) we can derive the marginal value of health capital relative to the marginal value
of ordinary consumption, that is

λM

λA
=

1
ψ′(m(z))

=
1

πα(m(z))α−1
(13)

Ehrlich and Chuma (1990) also assumed that the consumer is choosing death when his stock
of capital M(z) is under a certain minimal level Mmin. In our setup, we assume Mmin = 0.
By doing so, we end up with a standard infinite time model, provided M(z) ≥ 0, ∀z. This
simplification will allow us to tackle much more comfortably the sophisticated optimization
problem. Equations (4) and (7) yield the traditional Euler relation:

Ċ =
UC(ρ− r)

U ′
C

⇒ Ċ

C
=

r − ρ

σ1
(14)

From (5) and (6) we obtain:

ṁ

m
=

δM + r

1− α
− ϕ′(M)ψ′(m)

(1− α)UC

=
δM + r

1− α
− bM−σ2παmα−1

(1− α)C−σ1
(15)

The negative sign on the second term of the right hand-side of (15) implies that when the value
of health increases, then health investment goes upward. Indeed, παmα−1 is the inverse of the
unit value of health which lowers the whole term when this value increases, ensuring an increase
in m. Let us now introduce the firm problem.

3.2 The firm’s problem

We now proceed to the producer side. We consider a representative firm with neoclassical
Cobb-Douglas technology:

F (K, L) = Y (z) = B(z)K(z)ε (L(z))1−ε , 0 < ε < 1

where F (K, L) denotes the production function, Y (z), K (z) and L (z) are respectively output,
capital input and labor input respectively, while B (z) is the technological level which grows at
a constant rate. Let us denote k̂ = K

L the capital-labor ratio. Then the output per labor can be
rewritten:

f(k̂) =
Y (z)
L(z)

= B(z)k̂(z)ε

The maximization of the profit function under perfect competition allows to equalise the marginal
cost of each factor with its marginal benefit. Therefore,

r(z) = εB(z)k̂(z)ε−1 − δ (16)

w(z) = f(k̂(z))− k̂(z)f ′(k̂(z)) = (1− ε)B(z)k̂(z)ε (17)

where δ ≥ 0 is the capital depreciation rate and w is the wage rate. Combining the demand and
the supply sides, we can characterise the equilibrium of the economy as follows.

9



3.3 Equilibrium

In a closed economy with no public debt, aggregate financial wealth equals, by definition, the
value of the capital stock. This implies that A(z) = K(z) for all z. We can therefore write

˙̂
k(z)

k̂(z)
=

K̇(z)
K(z)

− n =
F (K, L)− δK(z)− C(z)−m(z)

K(z)
− n

and

˙̂
k(z) = f(k̂(z))− Ĉ(z)− m̂(z)− (δ + n) k̂(z)

= B(z)k̂(z)ε − Ĉ(z)− m̂(z)− (δ + n) k̂(z) (18)

where Ĉ(z) and m̂(z) are respectively the consumption and health expenditure per labor, and
n (which for simplicity will be assumed null) is the population growth rate. Therefore, we are
able to summarise the dynamics of the economy by the following non-trivial four dimensional
system:





˙̂
C(z)

Ĉ(z)
= r(z)−ρ

σ1

˙̂m(z)
m̂(z) = δM+r(z)

1−α − bM(z)−σ2παm(z)α−1

(1−α)C(z)−σ1

˙̂
M(z) = π(m̂(z))α − δMM̂(z)
˙̂
k(z) = B(z)k̂(z)ε − Ĉ(z)− m̂(z)− δk̂(z)

(19)

with k̂(0) and M̂(0) given, plus the transversality conditions. The steady-state values of Ĉ, m̂,

M̂ , and k̂ are obtained by equalising ˙̂
C, ˙̂m, ˙̂

M , ˙̂
k to zero. We obtain:

Ĉ = Bk̂ε − m̂− δk̂ (20)

m̂
α
σ2

+1−α =
(

δM

π

) 1
σ2 bπα(Bk̂ε − m̂− δk̂)σ1

δM + r
(21)

M̂ =
πm̂α

δM
(22)

k̂ = B
1

1−ε

(
δ + ρ

ε

) 1
ε−1

(23)

The following proposition characterises the solution of the system and the positivity of m̂ and
Ĉ.

Proposition 1 There is a unique solution m̂ to the Equation (21), with m̂ < Bk̂ε − δk̂.

Proof. The proof is quite intuitive. Indeed, the left hand side of the equation (21) is strictly
increasing in m̂, while the right hand side is strictly decreasing, and the latter is equal to zero
when m̂ = Bk̂ε − δk̂ and equal to ( δM

πb )
1

σ2
bπα(Bk̂ε−δk̂)σ1

δM+r if m̂ = 0. Hence, there is a unique
solution m̂ to equation (21), with m̂ < Bk̂ε−δk̂ which therefore means that m̂ and Ĉ are always
positive. ¤

3.4 Comparative statics

In this section we study the static comparative of the model. We consider the effect of mod-
ifications in the parameters of the endogenous variables along the balanced growth path. We
will consider two cases: the case where B is independent of the determinants of health capital.
Then we examine an ad-hoc case where B is dependent on such determinants.
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3.4.1 B independent of health capital

The following proposition characterises the behavior of health investment and consumption with
respect to health depreciation rate.

Proposition 2 Health investment (resp. consumption) is a strictly increasing (resp. decreas-
ing) function of the health depreciation rate δM if and only if σ2 > δM

δM+ρ . In contrast, savings
are unaltered by changes in δM .

Proof. See Appendix. ¤

Two comments are in order with respect to the above result. Firstly, there is a minimum value
from which the marginal utility with respect to health capital (and thus to health investment)
will drop if M̂ or m̂ is raised in response to the deterioration of health depreciation. Henceforth,
high values of σ2 are compatible with increasing health investments. In contrast, large values
of σ2 are likely to make the marginal welfare cost of such investment prohibitive. Secondly,
the larger δM the lower the incentives to invest in health compared to investment in physical
capital (which depreciation is kept constant). Indeed as δM rises, the lower bound of the values
of σ2 needed to increase health investment tends to unity. Now notice that the marginal rate
of investment in physical capital, that is Bεk̂ε−1 − δ is unaffected by changes in δM . This is
due to the fact that when health depreciation do not affect total factor productivity (B) in
our model, then gross investment î is equal to δk̂ which is unrelated to δM . Therefore, in the
steady state, savings do not get modified by changes in δM . It follows that when σ2 > δM

δM+ρ ,
the rise in health investment in response to health depreciation is entirely paid by a decrease in
consumption, which is at odds with Cuddington and Hancok’s (1994) working assumption.

Proposition 3 When health productivity π decreases, an increase in health investment occurs
if and only if σ2 < 1, while consumption decreases and savings remain unchanged. If σ2 = 1,
there is a neutral effect on the economic variables, and if σ2 > 1 health expenditure decreases.

Proof. See Appendix. ¤

A few comments are in order here regarding the interpretation of the model. A decrease in π has
two effects on health investment m̂. On one hand, it decreases the efficiency of health investment
as featured in equation (22), therefore causing m̂ to drop. On the other hand, a lower π increases
the marginal value of health capital relative to the marginal value of the consumption good as
one can notice in Equation (13), inducing an incentive to invest more in health capital. However,
since a marginal drop in m̂ is valued by the utility term M−σ2 , the negative effect will dominate
the positive one for σ2 high enough, here σ2 > 1. If σ2 = 1, there is just a compensation
between the two effects which yields a neutral impact. For low values of σ2 allowing investment
in health, the latter is always financed by a reduction in ordinary consumption, while savings
remain constant. An important finding from this model is that faced with health depreciation,
whether people reduce or increase their health expenditure, their saving remains constant, and
an increase in health investment is moderately financed by a reduction of their consumption.

3.4.2 The case of productivity-decreasing health shock

We now suppose that the productivity B depends on the health productivity π and the health
depreciation rate δM in an ad-hoc way. We will assume (like Cuddington and Hancok, 1994) that
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a decreasing health capital induces lower productivity. More precisely, we will assume that all
factors pushing down this capital has a negative effect on B. Therefore, we make the hypothesis
that the health productivity π positively affects B, while the latter is negatively affected by δM .
The following result holds.

Proposition 4 Health investment (resp. consumption) increases (resp. decreases) in response
to the health shock δM if and only if

σ2 <
1

1−BδM
σ1k̂ε(δM + r)(Bk̂ε − m̂− δk̂)−1

+
ρ

δM − δMBδM
σ1k̂ε(δM + r)(Bk̂ε − m̂− δk̂)−1

while savings always decrease.

Proof. See Appendix. ¤

This result is in line with the Proposition (2), however, it is worse in the case of health investment.
Indeed, if δM increases infinitely, instead of σ2 > δM

δM+ρ , we now need σ2 in ]0;x[ with x =
1

1−BδM
σ1k̂ε(δM+r)(Bk̂ε−m̂−δk̂)−1

< 1 to allow a rise in m̂, where BδM
= ∂B

∂δM
< 0. It happens

that the interval of evolution of σ2 which would favor m̂ is reduced by the additional resource
constraint through the productivity B. On the ordinary consumption side, when it occurs, the
increase in health expenditure is totally compensated by a fall in consumption (see proof in the
Appendix). However, on the other side we observe a fall in the saving level, since the capital
stock is negatively affected through the negative effect of δM on the productivity B. Compared
to the case where the productivity B is not affected by the health parameters, at this point, to
finance an increase in health expenditure, in addition to the fall in consumption, savings drop
because of the loss of resources resulting from the loss of productivity. Furthermore, if the health
shock has a large effect (i.e. BδM

→ −∞), health investment will never increase (the necessary
and sufficient condition of proposition (4) tends to σ2 ≤ 0).

Proposition 5 A downshift of the health productivity π is followed by an increase in health
investment if and only if σ2 < 1

1+Bπσ1k̂επ(Bk̂ε−m̂−δk̂)−1
, meanwhile consumption and savings

decrease.

Proof. See Appendix. ¤

Let us comment on the meaning of this result. The interval in which the values of σ2 are
favorable to an increase in health expenditure is now reduced. Indeed we now need σ2 <

1
1+Bπσ1k̂επ(Bk̂ε−m̂−δk̂)−1

instead of σ2 < 1 to increase m̂, where Bπ = ∂B
∂π > 0. In other words,

from now on, even for σ2 ∈
]

1
1+Bπσ1k̂επ(Bk̂ε−m̂−δk̂)−1

; 1
]

a fall in π is followed by a fall in m̂. This
phenomenon is certainly due to the fact that the agent has also a resource problem. Indeed a fall
of π, has a negative effect on the wages through the productivity B, thus reducing his financial
possibilities. In addition, given that there is also a negative impact on the gross investment
in physical capital, we can expect a reduction of saving. As in Proposition (4), a drop in
consumption and savings will make it possible to pay the increase in health expenditure.

To conclude this section, it is worth noting that while some studies like Cuddington and
Hancok (1994) showed that an increase in health expenditure is inevitably accompanied by a
decrease in savings, our study demonstrated that health expenditure can be fully financed by
a decrease in saving and consumption, or by a reduction of consumption while saving remains
unaltered. However, in this benchmark model, the determination of the relationship between
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health investment (and therefore consumption and savings) and the health parameters δM and
π entirely depends on the health elasticity σ2. This constraint may be due to the fact that
health and ordinary consumption enter utility in an additive way. Therefore, marginal utility of
consumption is independent of health capital and vice-versa. We develop hereafter an alternative
model where consumption is also a determinant factor of good health, as largely previously
explained.

4 The model with non-separable preferences

We move from the above pattern, where consumption and health enter into the utility function
in an additive way. Remember that in the later case the marginal utility of consumption is in-
dependent from health, and this does not fit in for instance with the notion that good nutrition
is also important for health. Indeed, healthy eating might lead to a reduction in mortality from
chronic diseases, and appropriate dietary advice can prevent physical and mental deterioration,
and improve the quality of life. Evidence from Friis and Michaelsen (1998) supports this ratio-
nale. Therefore, consumption is also crucial for health. The alternative model we propose below
seeks to account for this important aspect.

4.1 Model set-up

The individual’s lifetime utility V : R2
+ → R is now specified as follows:

∫ ∞

z
V (C(z),M(z))e−ρzdz =

∫ ∞

z
U(C(z))ϕ(M(z))e−ρzdz (24)

In order for the function V (·) to fulfil the standard property of positive marginal utility, we
have to assume σ1 < 1, σ2 < 1. We disregard the case σ1 = σ2 = 1 because it imposes further
constraints on the values of economic variables. Indeed, when σ1 = 1, then VM = ln(C)ϕ′(M),
which requires C > 1. Therefore, we focus on the case σ1 < 1, σ2 < 1, which allows us to
compare results with the analogue benchmark model.

Individuals seek to maximise lifetime utility (24), which depends on a consumption stream
C(z) subject to the state variables Ȧ(z) and Ṁ(z) in Equations (2) and (3) respectively. The
hamiltonian of this problem is given by:

H = U(C(z))ϕ(M(z))e−ρz

+ λAe−ρz [r(z)A(z) + w(z)− C(z)−m(z)]

+ λMe−ρz [ψ(m(z))− δMM(z)]

The optimality conditions are:
∂H

∂C(z)
= UCϕ(M(z))e−ρz − λAe−ρz = 0 (25)

∂H
∂m(z)

= λMψ′(m(z))e−ρz − λAe−ρz = 0 (26)

∂H
∂M(z)

= [λ̇M − ρλM ]e−ρz = λMδMe−ρz − U(C(z))ϕ′(M(z))e−ρz (27)

∂H
∂A(z)

= e−ρz[ρλA − λ̇A] = r(z)λAe−ρz =⇒ λ̇A = λA(ρ− r(z)) (28)

with the transversality conditions:

lim
z→∞λA(z)e−ρzA(z) = 0 (29)

lim
z→∞λM (z)e−ρzM(z) = 0 (30)
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We use the same functional forms as in the benchmark set-up for U(C(z)), ϕ(M(z)) and ψ(m(z)).
However, for ϕ(M(z)), we get rid of the parameter b which is unimportant in what follows.
Equation (26) allows to find the shadow price λM

λA
= g(t) = 1

ψ′(m(z)) which is the unit value of
health capital. Moreover, a continuous stock equilibrium condition for health can be derived
from Equation (27):

λ̇M

λA
=

λM

λA
(ρ + δm)− U(C(z))ϕ′(M(z))

λA
(31)

Combining Equations (28) and (31), we obtain:

g (δm + r − g̃) =
1

λA(0)
U(C(z))ϕ′(M(z))e

∫ z
0 (r(z)−ρ)dz (32)

with g̃ = ġ
g and g = 1

πα(m(z))1−α. Equation (32) states that the instantaneous user cost of
health capital should equal the instantaneous marginal benefit. The explicit expression of the
shadow price can be derived from Equation (32) as %

g = ḡe

∞∫
z

(δm+r(z))dz
+

e

∞∫
z

(δm+r(z))dz

λA(0)

∫ ∞

z

[
U(C(v))ϕ′(M(v))e

∫ v
0 (r(z)−ρ)dz

]
e
−
∞∫
v

(δm+r(s))dz
dv (33)

where ḡ is an integration constant, reflecting the limit value of g when z tends to infinity
(assuming that such a limit value is finite). Equation (33) means that the value of health capital
is determined by the asymptotic value of life extension (the first term of the right-hand side),
and the value of healthy life or the discounted value of health benefits (second term).

We can now explore the connection between the path of health investment and the optimal
consumption over life cycle. Using Equation (25), we obtain λA = UCϕ(M(z)) and

λ̇A

λA
= ρ− r(z) =

Ċ(z)U ′
C

UC
+

Ṁ(z)ϕ′(M(z))
ϕ(M(z))

Then the path of the optimal consumption is:

Ċ(z) = −UC

U ′
C

(r(z)− ρ)− UC

U ′
C

ϕ′(M(z))
ϕ(M(z))

Ṁ(z) (34)

The first term on the right-hand side is the slope of the consumption path times the difference
between the rate of interest and time preference. The second term reflects the interaction
between the individual’s health and his capacity to consume. Next we replace UC , U ′

C and
ϕ′(M(z)) by their respective expressions in (34) for the elasticity parameters to show up:

Ċ(z)
C(z)

=
1
σ1

(r − ρ) +
1− σ2

σ1

Ṁ(z)
M(z)

=
1
σ1

(r − ρ) +
1− σ2

σ1

(
ψ(m)
M(z)

− δM

)
(35)

In the typical Ramsey setup, we have the following optimal rule:17

r = ρ− U ′
CC

UC

Ċ

C

17The Keynes-Ramsey standard term known as the difference between the interest rate and the pure rate of

time preference.
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This means that the interest rate should cover the impatience rate (or rate of time preference)
and the marginal utility loss as captured by the term −U ′CC

UC

Ċ
C , where U ′CC

UC
is the elasticity of

marginal utility with respect to consumption. Equation (34) can be rewritten as:

r = ρ− U ′
CC

UC

Ċ

C
− ϕ′(M(z))

ϕ(M(z))
M(z)

Ṁ(z)
M(z)

In this model, the interest rate should also account for the possible loss or gain in health capital
due to any marginal change in consumption and savings. This reflects the dependence between
the (marginal) welfare impacts of consumption and health investment. We shall now extract the
optimal law of motion for health investment m. Using Equation (26), we obtain:

λ̇M

λM
=

λ̇A

λA
− ṁψ′′(m)

ψ′(m)

= ρ− r(z) + (1− α)
ṁ(z)
m(z)

(36)

From equation (27) we get

λ̇M

λM
= −U(C(z))ϕ′(M)ψ′(m)

λA
+ δM + ρ

= −U(C(z))ϕ′(M)ψ′(m)
UCϕ(M)

+ δM + ρ (37)

Combining these two equations yields the path of the optimal health investment:

ṁ(z)
m(z)

=
r + δM

1− α
− U(C(z))

ϕ(M)
ϕ′(M)ψ′(m)
(1− α)UC

(38)

= −1− σ2

1− σ1

παmα−1

1− α

C(z)
M(z)

+
r + δM

1− α
(39)

The next proposition states required concavity conditions for U(C) and ϕ(M).

Proposition 6 The Mangasarian’s (1966) sufficient conditions for our optimal control problem
are fulfilled if and only if σ1σ2

(1−σ1)(1−σ2) > 1.

Proof. See Appendix. ¤

Let H = [H(C,M,m, A, r, w)] be the Hessian matrix of the Hamiltonian H associated with
the optimization problem. One sufficient condition guaranteeing solutions satisfying the control
problem are optimal is that H of the current value Hamiltonian is jointly concave in all the states
and controls (Mangasarian, 1966). This is done if the determinant of H is strictly positive (the
matrix is not negative semi-definite). While technical, Proposition 6 nicely states such condition.
Remember that in CRRA setting, σ1 and σ2 are the coefficients of relative risk aversion. Then,
σ1 and σ2 are the elasticities of marginal utility for consumption and health capital respectively.
The sufficient optimality condition here is that the product of the relative risk aversion must be
greater than the unit.
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4.2 Equilibrium

The dynamics of the economy is driven at equilibrium by the following system




˙̂
C(z)

Ĉ(z)
= 1

σ1
(εBk̂ε−1

z − δ − ρ) + 1−σ2
σ1

˙̂
M(z)

M̂(z)
˙̂m(z)
m̂(z) = −1−σ2

1−σ1

παm̂α−1

1−α
Ĉ(z)

M̂(z)
+ 1

1−α(r + δM )
˙̂

M(z) = π(m̂(z))α − δMM̂(z)
˙̂
kz = Bk̂ε

z − Ĉ − m̂− δk̂z

(40)

with k̂(0) and M̂(0) given, plus the transversality conditions. The steady-state values of Ĉ, m̂,

M̂ , and k̂ are obtained by equalising ˙̂
C, ˙̂m, ˙̂

M , ˙̂
k to zero. We therefore get:

Ĉ =
(δM + r) (1− σ1) B

1
1−ε

[(
δ+ρ

ε

) ε
ε−1 − δ

(
δ+ρ

ε

) 1
ε−1

]

αδM (1− σ2) + (1− σ1) (δM + r)
(41)

m̂ =
αδM (1− σ2) B

1
1−ε

[(
δ+ρ

ε

) ε
ε−1 − δ

(
δ+ρ

ε

) 1
ε−1

]

αδM (1− σ2) + (1− σ1) (δM + r)
(42)

M̂ =
πm̂α

δM
(43)

k̂ = B
1

1−ε

(
δ + ρ

ε

) 1
ε−1

(44)

Within the structure of the system, studying the stability properties analytically is simply un-
bearable. Instead, we resort to numerical simulations with a set of reasonable parameterizations
and the necessary corroborating sensitivity tests. We always end up with four eigenvalues with
two real negative parts and two real positive parts, suggesting that saddle path properties are
fulfilled.18

4.3 Comparative statics

We now elaborate on how the health parameters (δM , π) affect the steady-state values, and
notably the health investment variable (m̂), and the consequences on consumption, capital
stock and savings.

Proposition 7 Given condition of Proposition (6), a high deterioration rate of health causes
health expenditure to increase, and the latter is fully financed by a fall in consumption, and
saving remains unaffected.

Proof. See Appendix. ¤

Let us reiterate that with the benchmark model we get the same reaction only for σ2 low enough,
and more precisely when δM is high enough. On the contrary, in this case individuals react to
health depreciation by spending more on health, independently of the size of σ2, provided that
the concavity requirements stated in proposition (6) are fulfilled. Without doubt, under the
conditions of proposition (6) we have a positive effect of δM on m̂. This positive effect can be

18To simplify presentation, we do not report simulation results. Results are available from the authors upon

request.
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explained by the fact that in the alternative framework, the marginal utility of consumption
depends on health capital. Indeed, in order to enjoy consumption, one should be healthy,
and a deterioration of health now negatively affects the marginal utility drawn from ordinary
consumption. Therefore, one should invest more in health to maintain welfare optimal. This
increase is paid by a fall in consumption, and since the individual’s resources remain unchanged,
if not improved, then there is no impact on gross investment in physical capital and savings
remain constant.

Proposition 8 Given Proposition (6), the effect of a decrease in the health productivity π on
health investment, consumption and savings is neutral.

Proof. The proof is intuitive. Indeed, a decrease in π has two effects as in the benchmark
model: first, a fall in π decreases the marginal efficiency of health investment, therefore pushing
this variable downward. But on the other hand, decreasing π also increases the marginal value
of health capital relative to the marginal value of consumption, making it more desirable to
acquire. However, contrarily to the benchmark model where for high values of σ2 the negative
effect dominates the positive one, in this alternative model, the second effect just offsets the first
one. These two effects can be clearly identified in Equation (43) as well as the expression of the
unit value of health capital g = 1

ψ′(m̂) = 1
απm̂α−1 . The rational of this neutral effect is that, here

a decrease in health expenditure in response to a lower π (as it is the case in the benchmark
model) is more harmful, since in turn we will have a negative impact on the marginal utility of
consumption.

The conclusions emerging from the alternative model are different from those resulting from
the benchmark model. The foremost and common result from the two models is that rising health
expenditure does not always lead to a decrease in savings. However, while the benchmark model
results completely rely on the health elasticity σ2 as for the evolution of the health investment
m̂ in response to an health depreciation, in the alternative model, an increase in δM induces
purely a growth in health expenditure. Moreover, we have a neutral effect when π decreases,
without any elasticity constraint.

4.4 The case of productivity-decreasing health shock

As in the benchmark model, we take into account the health shock in the household’s choices,
via the channel of the productivity. We then assume that the level of technology B(z) or the
productivity of individuals depends on the health parameters. We suppose a function B(δM , π)
which depends on δM and π. Then B is an increasing function in the health productivity π, and
decreases with the health deterioration rate δM . Then, the following result can be highlighted

Proposition 9 The effect of health deterioration rate on health investment is positive if and

only if σ2 < 1 +
(1−σ1)[δMBδM

(δM+ρ)+ρ(1−ε)]
αδ2

MBδM

, and consumption and savings always decrease.

Proof. See Appendix. ¤

In contrast to the case where the productivity B is independent of δM , here the optimality of
increasing health expenditure in the face of health depreciation does depend on the values of σ1

and σ2. Clearly, the negative effect on productivity has an adverse effect on income, which in turn
induces a decrease in ordinary consumption and health investment. Such effects can dominate
those pointed out in the previous subsection where B is independent of health parameters.
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This can be clearly deduced from the necessary and sufficient conditions in Proposition (9).
In case of health deterioration with a tenus productivity effect, that is when BδM

is close to
zero, the limit condition becomes σ2 < ∞, that is m̂ will increase whatever elasticities’ values,
provided that the Mangasarian condition is checked. In contrast, if health deterioration has
strong adverse effects on productivity, say BδM

→ −∞, then the condition of Proposition (9)
violates the Mangasarian restriction in Proposition (6). Indeed, the limit condition becomes
σ2 < (1−σ1)(δM+ρ)

αδM
. Therefore σ2 < 1 if and only if (1−σ1)(δM+ρ)

αδM
< 0, which in turn implies that

σ1 > 1. Although the Mangasarian condition is a sufficient condition, the latter results mean
that the range of elasticities’ values yielding an increase in health expenditure will shrink as the
adverse productivity effect becomes tougher. On the physical capital side, due to the negative
effect on B, we have a fall in gross investment which causes savings to decrease. In this case,
the role of public health expenditure becomes crucial.

Proposition 10 In the presence of a decrease in π, health expenditure increases if and only if
σ2 > 1. Thus health expenditure should drop when π decreases in the alternative model, since
σ2 < 1 is imposed for marginal utility of M and C to be positive.

Proof. See Appendix. ¤

According to Proposition (6), Proposition (10) completely violates the concavity condition.
Therefore, we cannot expect an increase in health expenditure when the health productivity
π decreases. Indeed, the negative effect on the productivity undermines individuals resources,
forcing them to undercut their health investment, consumption and savings. Here, the negative
effect from the marginal efficiency of health dominates the positive one induced by the increase
in the unit value of health. Indeed, as featured in Equation (38), marginal utilities with respect
to M and C depend on the utility levels of C and M in this order (due to the non-separable
preferences). Therefore the negative effect of decreasing efficiency in the production of health
capital is magnified.

5 The equilibrium dynamics of the economy

This section is devoted to the analysis of the dynamical systems. This includes i) the study of the
equilibrium dynamics with phase diagrams and ii) the characterization of possible bifurcations.
Given the complexity of the problem, a first step was to reduce the dimension of the systems
by moving from the original systems of four to three equations. This is done by expressing the
variable in units of physical capital by setting: c = C

k , m̄ = m
k and M̄ = M

k . As in previously,
both separable and non-separable preferences are considered.

5.1 Separable preferences

5.1.1 Existence and stability of the system

In order to establish the new dynamical system, observe that

ċ

c
=

Ċ

C
− k̇

k
=

r − ρ

σ1
−Bkε−1 + c + m̄ + δ
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However r = Bεkε−1−δ = Bεkε−1−εδ+εδ+δ. It follows that Bεkε−1−δ = r+δ(1−ε)
ε . Moreover,

the variable m̄ is implicit in the term

˙̄m
m

=
ṁ

m
− k̇

k

=
δM + r

1− α
− bM̄−σ2παm̄α−1

(
r + δ(1− ε)

ε
− r − ρ

σ1
− m̄

)σ1 1
1− α

(
r + δ

εB

)$

− r − ρ

σ1

where $ = σ1 − σ2 + α− 1 consequently, the variables follows the system:

ċ

c
=

r − ρ

σ1
− r + δ(1− ε)

ε
+ c + m̄ (45)

˙̄m
m

=
δM + r

1− α
− bM̄−σ2παm̄α−1cσ1

1
1− α

(
r + δ

εB

)$

− r + δ(1− ε)
ε

+ c + m̄ (46)

˙̄M
M

=
πm̄α

M̄

(
r + δ

εB

)α−1

− δM − r + δ(1− ε)
ε

+ c + m̄ (47)

To solve the system given by Eq. (45-47), let us write A1 := 1
1−α

(
r+δ
εB

)$
, A2 :=

(
r+δ
εB

)α−1
,

A3 := π
δM+ r−ρ

σ1

A2, A4 := r+δ(1−ε)
ε − r−ρ

σ1
and A5 := δM+r

1−α − r−ρ
σ1

. After some calculations, the

solution or steady state values of c, M̄ and m̄ are obtained as:

c∗ = A4 − m̄∗ (48)

M̄∗ = A3(m̄∗)α (49)

A4(m̄∗)−σ2α+α−1 =
(

A5

A1

Aσ2
3

bπα

)σ−1
1

+ (m̄∗)−σ2α+α (50)

As can be seen from Eqs. (48-50) the steady for (m̄∗) is an implicit term. In what follows, we
discuss the conditions of existence for the equilibrium and the stability of the system. The next
proposition provides these conditions.

Proposition 11 The dynamical system admits a unique saddle point solution, iff:

i) ρ− δMσ1 < r < δσ1
1−ε
1−σ1

ii) bcσ1

M̄σ2m̄2

(
r+δ
εB

)σ1−σ2
> 1

M̄2

Proof. See Appendix. ¤

The condition i) in the proposition ensures the existence and uniqueness of the steady state
whereas condition ii) guarantees the stability. Relying on the implicit behavior of m̄ and param-
eters conditions, we prove in the Appendix that this leads to the the existence and uniqueness
of the solution. Furthermore, the stability of the system is proved thanks to the analysis of the
determinant and the trace of Jacobian matrix.

5.1.2 The dynamics of transition: phase diagrams

We are now interested in the changes in the equilibrium, when some health parameters are
modified. We propose a geometrical representation by drawing the phase diagrams associated
to the system (45-47). The diagrams are plotted on different planes while fixing each of the
variables. Lemma 1 elaborates on the phase diagrams in Figures 1, 2 and 3.
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Lemma 1 We have:

i) For m̄ fixed, the curve ċ = 0 is a horizontal line and the locus ˙̄M = 0 is an increasing and
concave function. Moreover we have limM̄→∞ c = b2 for b2 given.

ii) For c fixed, the curve ˙̄M = 0 monotonically increases and the locus ˙̄m = 0 is a decreasing
and convex function with limm̄→0 M̄ = 0 and limm̄→b− M̄ = ∞.

iii) For M̄ fixed, the curve ċ = 0 is a decreasing straight line on [0, d0[ and the locus ˙̄m = 0 is
an increasing function over the real support [d1, m̄0[ and it decreases monotonically from
m̄0.

Proof. See Appendix. ¤

Insert Figures 1, 2, 3

Fixing m̄ = m̄0 leads to the phase diagram onto the plane (c, M̄) (see Figure 1). We have
two curves. The first one (ċ = 0) is independent of the stock of health. An increase of the rate
of health depreciation (δM ) implies a shift of the second curve ( ˙̄M) towards the left. This curve
is increasing with both consumption and health. The shift induces a decrease of health from the
steady state E0 to a new one E1, where consumption remains constant.

Fixing c gives the second diagram on the plane (m̄, M̄) (see Figure 2). The trade-off is
between health stock and investment in health. The curve ˙̄M = 0 is increasing but health grows
more rapidly than the flow of investment. There is stability in the locus given by the right side
of ˙̄M = 0. When δM increases, the depreciation of health implies a lower level of the stock of
health. The curve ˙̄m = 0 shifts to the left. But the flow of investment increases, meaning that
the final steady state is reached when the curve ˙̄M = 0 moves forward. The final steady state
is the point E1 where the stock of health is lower than the one in the first equilibrium E0.

Fixing M̄ gives the third diagram in Figure (3) on the plane (c, m̄). Relying on the equation
(ċ = 0) there is a linear relation between the flow of investment and consumption. The stable
manifold is in the zones on the left hand side of E0 above the curve and the right hand side
of E0 below the curve. Within these two zones, the trajectories converge to the steady state
values. An increase of δM generates a higher level of investment flows. Moreover, a crowding
effect appears and consumption jumps backward from the first steady state E0 to the second
one E1.

5.2 Non-separable preferences

5.2.1 Existence and stability of the system

In that case and using the same variable definition above, the dynamical system is computed as:

ċ

c
=

r − δε− ρ

σ1
− r + δ(1− ε)

ε
+

1− σ2

σ1
π

(
r + δ

εB

)α−1
ε−1

m̄α + c + m̄− δM (51)

˙̄m
m

= −1− σ2

1− σ1
π

α

1− α

(
r + δ

εB

)α−1
ε−1 m̄α

M̄
+ c + m̄ +

r + δM

1− α
− r + δ(1− ε)

ε
(52)

˙̄M
M

= π

(
r + δ

εB

)α−1
ε−1 m̄α

M̄
+ c + m̄− δM − r + δ(1− ε)

ε
(53)
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In order to simplify notations, let us denote X0 := r−δε−ρ
σ1

− r+δ(1−ε)
ε , X1 := 1−σ2

σ1
π

(
r+δ
εB

)α−1
ε−1 ,

X2 := − ασ1
(1−σ1)(1−α)X1, X3 := r+δM

1−α − r+δ(1−ε)
ε , X4 := π

(
r+δ
εB

)α−1
ε−1 , X5 := −δM − r+δ(1−ε)

ε . The
computation of the solution leads to the steady state values:

m̄∗ = X
− 1

α
1

(
δM −X0 + X3 + X2

X5 −X3

X2 −X4

) 1
α

(54)

c∗ = −m̄∗ −X5 −X4
X5 −X3

X2 −X4
(55)

M̄∗ = (m̄∗)α X2 −X4

X5 −X3
(56)

The next proposition provides existence conditions of the above mentioned equilibrium.

Proposition 12 The following conditions must be verified for the existence of the equilibrium
of the dynamical system:

i) 1 < σ1 < 1−ασ2
1−α which implies σ2 < 1

ii) 1−ασ2
1−α < σ1 < 1 which implies σ2 > 1

Conditions i) and ii) implies the existence of a node and a saddle point respectively.

Proof. See Appendix. ¤

Thanks to the analysis of the Jacobian matrix associated to the system (51-53), it is demon-
strated in the Appendix that if condition i) holds, the determinant of Jacobian matrix is always
positive implying a node. If condition ii) holds, then the determinant is negative and there exists
a saddle point. The stability of the node and the saddle point depends on the sign of the trace
of the Jacobian matrix.

5.2.2 The dynamics of transition: phase diagrams

Here again, we turn to analysis of the changes in the equilibrium when some health parameters
are modified. Lemma 2 documents on the phase diagrams in Figures 4, 5 and 6 which are
associated to the system (51-53).

Lemma 2 We have:

i) For m̄ fixed, the curve ċ = 0 is a horizontal line and the locus ˙̄M = 0 is an increasing and
concave function, with limM̄→∞ c = a′ for a′ given.

ii) For c fixed, the curves ˙̄m = 0 and ˙̄M = 0 are convex and monotonically increasing with
limm̄→a M̄ = ∞ and limm̄→a′ M̄ = ∞ for a and a′ given.

iii) For M̄ fixed, the curve ċ = 0 is decreasing and the locus ˙̄m = 0 is an increasing function
over the support [d1,m1[ and it decreases monotonically from m1.

Proof. See Appendix. ¤

Insert Figures 4, 5, 6
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We fix m̄ and get the first diagram in Figure (4) onto the plane (c, M̄). As for the additive
case, the curve ċ = 0 doesn’t dependent on the stock of health M̄ . The consumption depends
though only on the flow of investment and on the rate of health depreciation. The curve ˙̄M = 0
is concave and increases with both variables. Starting from the steady state E0, an increase
of δM shifts upward the level of consumption, leading to the final equilibrium point E1. The
depreciation of health reduces the stock of health, but this reduction is compensated by the shift
of consumption. The result is a net increase of health.

The second phase diagram in Figure (5) is plotted onto the plane (m̄, M̄) by fixing c. The
two curves are increasing with the variables m̄ and M̄), but the stock of health grows faster
than the flow of investment. An increasing rate of health depreciation leads to a high reduction
of the stock of health which is not fully compensated by the investment. So the two curves shift
down to the steady state E1.

The third diagram in Figure (6) is obtained onto the plane (c, m̄) by fixing M̄ . There is a
linear relation between c and m̄ that gives the monotonically decreasing curve. An increase of
the depreciation rate shifts upward the consumption and the flow of investment in health on the
curve ċ = 0. We have the same with the curve ˙̄m = 0. The final steady state is reached at E1

where both variables increase.

At this stage of the dynamics of transition, it is important to draw attention to a nice point.
Propositions 11 and 12 give conditions on parameters for the existence and the stability of the
systems depending on the type of preferences. Nevertheless one can find a common support
parameters to both types of preferences. This common support is illustrated geometrically in
Figure 7. Indeed, from the condition i) in Proposition 11 we see that the interest rate is bounded
below and above by terms depending on the parameter σ1. As a result, the scale of the interest
rate largely depends on σ1. We draw the two bounds by varying σ1 and find the area where
our parameters lay. The first curve is B := ρ − δMσ1. It’s a decreasing line and it represents
the lower bound of the interest rate. The second curve is B := δσ1

1−ε
1−σ1

. It is represented by an
hyperbola with limσ1→1 B = ∞. The minimal interest rate is rmin = ρ− δM when σ1 = 1. The
minimal value of σ1 is

σmin
1 =

ρ + δM + δ − δε−
√

(ρ + δM + δ − δε)2 − 4ρδM

2δM
(57)

It is obtained as the point where the two curves intersect which is the admissible root of second
degree polynomial equation in σ1:

ρ− δMσ1 = δσ1
1− ε

1− σ1
⇐⇒ ρ− (ρ + δM + δ − δε)σ1 + δMσ2

1 (58)

Eq. (58) admits two roots (σ′2, σ
′′
2) = ρ+δM+δ−δε∓

√
(ρ+δM+δ−δε)2−4ρδM

2δM
of which σ′′2 corresponds

to negative values of interest rates, and σ′2 denotes the minimal positive interest rate. In Fig-
ure 7 the common support parameter σ1 for both separable and non-separable preferences is
represented by the shaded area. This area becomes larger if ρ < δM .

Insert Figures 7

6 Bifurcation analysis: Effects of health depreciation on the

steady states

Bifurcation occurs when a small smooth change made to the parameter values (the bifurcation
parameters) of a system causes a sudden ‘qualitative’ change in its behaviour. In the previous
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section, when studying the local stability, we observed that under certain conditions, saddle and
node points emerged from the dynamical system. In this section, wanted to know which kind
of preference (separable or non-separable) could favor the emergence of unstable motions. We
firstly characterise analytically the bifurcations and then implement simulation experiments.

6.1 Characterization of bifurcations

The characterization of bifurcations is done by studying the eigenvalues of a dynamical system.
In fact, we would like to understand the relations between the parameters and the eigenvalues.
At the neighborhood of the steady state, we apply the following linear system:

c(t) = c∗ + a1e
λ1tν11 + a2e

λ2tν21 + a3e
λ3tν31 (59)

m̄(t) = m̄∗ + a1e
λ1tν12 + a2e

λ2tν22 + a3e
λ3tν32 (60)

M̄(t) = M̄∗ + a1e
λ1tν13 + a2e

λ2tν23 + a3e
λ3tν33 (61)

where λi’s denote eigenvalues, the ν ′ijs are the coordinates of the eigenvectors associated to the
different eigenvalues. The constants ai are to be evaluated. By defining ν31 > 0 as unsta-
ble eigenvector, one can set a3 = 0. Moreover, we can normalise the first coordinate of the
eigenvectors: ν11 = ν21 = ν31 = 1. The eigenvalues of the matrices are given by the equation:

det(J −AI) = F (λ) = −λ3 + Tr(J)λ2 + fλ + det(J) = 0 (62)

where I denotes the identity matrix, J the Jacobian matrix of a given system, A the matrix
of coefficient ai and f is a coefficient that depends on the elements of the matrix. By setting
Tr(J) = t and det(J) = d, relation (62) becomes F (λ) = −λ3 + tλ2 + fλ + d = 0. After some
analytical calculations, the general form of the eigenvalues λi are obtained as:

λ1 =
A

6
− B

A
+

t

3
(63)

λ2,3 = − A

12
+

B

2A
+

t

3
± i

√
3

2

(
A

6
+

B

A

)
(64)

with

A =
(
36ft + 108d + t3 + 12

√
−12f3 − 3f2t2 + 54ft + 81d2 + 12dt3

)1/3

and

B = −2
(

f +
1
3
t2

)

For the case of separable preference (additive utility model), as the determinant d is negative,
the equilibrium is characterised either by a negative eigenvalue, or three negative ones, or by
a real eigenvalue and two complex ones. It is easy to see that real eigenvalues emerge if the
following equality condition holds: A2 = −6B. Unfortunately it has been impossible to bring
out any analytical appraisal of these eigenvalues in the case of separable preferences. Indeed,
as can be observed from Eqs. (63) and (64), these terms are terrific: bear in mind that terms
A and B already include the determinant d and the trace t of a matrix that involved the
Jacobian matrix J (see the expression of J in Appendix, Proof of Proposition 11). Therefore
the full analytical characterization of the eigenvalues is simply unbearable. Instead, we resort to
numerical simulations according to a set of parameter values. This is done in the next section.
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For the the non-separable preferences, fortunately, the expressions of the eigenvalues can be
analytically evaluated. Indeed, the expression of the associated Jacobian (see Appendix, Proof
of Proposition 12) is still manageable. After some calculations, we obtain real eigenvalues:

λ1 =
α(1− σ2)X4

M̄2(1− α)(1− σ1)
Xα (65)

λ2,3 =
1
2

[
1 +

1
σ1

aαXα−1 (66)

∓
√

5 + 2
(

1 +
1
σ1

aαXα−1

) (
c− 1 + X5 + X +

1
σ1

aXα +
r − δε− ρ

σ1

)]
(67)

where a = (1− σ2)π
(

r+δ
εB

)α−1
ε−1 and

X =
(

a

σ1

)− 1
α

[(
δM +

r + δM

1− α

)(
1 +

α(1− σ2)
α(1− σ2) + (1− α)(1− σ1)

)
− r − δε− ρ

σ1

] 1
α

In what follows, we implements simulation experiments to learn more about the relations between
the parameters and the eigenvalues.

6.2 Simulation experiments

This section aims mainly at understanding the relations between the parameters and the eigen-
values. As previously pointed out, this is analytically unbearable. Remmember that the dy-
namical systems are guided by the equations (45-47) for the additive utility, and by (51-53) for
multiplicative utility functions. Studying the stability supposes the linearization of the systems
around their steady state values, for given parameters as given by Eqs. (59-61). We have already
shown the conditions of existence for theses values. The issues we are concerned with are the
number and stability of the steady states, the bifurcation points and the tracking of the steady
solutions. We run the simulations with the parameters: b = 1, π = 1, σ1 = 0.7, σ2 = 1.4,
α = 0.5, δ = 0.02, ε = 0.75, B = 1 θ := δM = 0.025, ρ = 0.01, r = 0.1.

We can notice that the common feature of the two cases of additive and multiplicative
utility is that consumption per unit of capital c is linear in the first equations. It is also linearly
related to the equilibrium value of the flow of health investment m̄. We use this to simplify
the computations. In the case of additive utility, when we fix the level of c, a bifurcation (see
Figure 8) point appears at the level m̄ = 0.34182 for a value of 0.106% of the rate of health
depreciation. The plot is the projection of a 3-dimensional surface onto the plane m̄ − δM .
This bifurcation implies that the dynamical system qualitatively changes when δM is equal to
that value given the other parameters. Consequently there exists an homomorphism in Rn that
applies the trajectories among themselves, for δM < 0.10. The trajectories for other values of
δM are also qualitatively equivalent.

Insert Figure 8

As it has been shown, the eigenvalues of the additive case can be complex numbers. But
those of the multiplicative one are always real. We track the solutions by the ‘continuation
method’. We do an analysis in terms of level and have a qualitative graphic that shows how
the steady state solutions evolve as we change the parameter δM . For this, we plot the level
curves, for the two cases when δM varies within a low level (near zero), and a high level (near
unity). The flow of investment in health capital m is in the horizontal axis and the stock of
health capital M is in the vertical axis.

24



Insert Figure 9

It appears that when there is a fairly weak depreciation in health (see Figure 9), its stock
is high in the additive case. Health grows more rapidly than investment, from the levels (m =
0.2283, M = 0.7411). Inversely the multiplicative case shows a lower health stock that increases
more proportionately than investment flow from the point (m = 0.3923, M = 0.06325). The
multiplicative case seems then more realistic.

When we set the depreciation rate to its maximum (see Figure 10), the multiplicative case
shows very low levels of health capital combined with little investments. Alternatively, it ap-
pears in the additive case that more investment is done by individuals, but without significant
improvement of health stock. The investment flow is relatively high in the case additive case
but the gains in terms of health are not very important. The stock of health grows faster than
investment from the point (m = 0.5229,M = 0.5497). Here again, the non-separable kind
preference (multiplicative) is provide more realistic pictures.

Insert Figure 10

Now in Figure (11), we depict the evolution of the variables c, m and M , by setting δM

to its low level. Consumption c is on the x-axis, the stock of health capital M is on the z-
axis (the vertical one) and the flow of investment in health capital m is on the y-axis. In the
case of additive utility, when the depreciation rate is low, the stock of health decreases even if
consumption and health investment increase together. For fixed low level of investment m with
(m = 0.01), the stock of health remains high but it tends to decrease when consumption grows.
The decrease of the stock of health is accelerated by the investment. That’s seems unrealistic.
In the case of multiplicative utility, the stock increases with consumption and investment.

Insert Figure 11

Even when the depreciation rate is high (9.5%), the evolution of the variables remains nearly
identical to the situation of zero depreciation (see Figure 12), for the additive case. But changes
appear in the multiplicative case, as without investment, there is a positive relation between
health and consumption.

Insert Figure 12

7 Concluding discussion

We summarise the key results that emerge from our study and compare with prior studies. Our
findings can be gathered in three main strands.

i) When productivity is independent of health parameters

In the case of an acceleration of the health deterioration rate (δM ), in the benchmark
model, the reaction of health investment entirely relies on the elasticity of the marginal
utility of health σ2. Low values of σ2 (or when δM high enough) are compatible with
increasing health expenditure, while high values of σ2 are likely to make the marginal
welfare cost of such investment prohibitive. Indeed, the lower σ2, the less marginal utility
with respect to health capital will also drop. In the alternative model, individuals react to
such shock by increasing their health expenditure, independently of the size of σ2. This
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behaviour can be interpreted by the fact that marginal utility of consumption now depends
on health capital.

When we consider a loss of health productivity, we have two effects. Firstly, a decrease in
health productivity (π) induces a loss in health investment efficiency, which causes health
expenditure to drop. That’s what we call the negative effect. Secondly, a weak value of π

increases the marginal value of health capital relative to the marginal value of consumption
goods, which in turn induces an incentive to invest in health. This is the positive effect.
In the benchmark model, the positive effect dominates the negative one for σ2 low enough,
while in the alternative model, one of the two effects compensates the other, and the
resulting impact is neutral.

However, in both models, regardless of the two kind of shocks, a relevant result is contrary
to that of Cuddington and Hancok (1994). They predicted a decrease in savings while
health expenditure increases. In our framework, irrespective of the increase in health
investment, savings remain unchanged. And in case it increases, the latter is fully financed
by a cut in consumption.

ii) When productivity depends on health parameters

In the benchmark model, a high rate of health deterioration induces an increase in health
expenditure only for very low values of σ2. In that case, if health deterioration has large
negative effects on productivity, health investment does not increase. However, in the al-
ternative model, findings depend on whether health shocks have tenuous or large effects on
productivity. In the former case, health expenditure will increase whatever the elasticities’
values. In the case of health shocks strongly affecting productivity, the range of elasticities’
values yielding an increase in health expenditure will shrink as the adverse productivity
effect becomes tougher.

With a loss of health productivity (a decrease in π), while in the benchmark model we ob-
tain an increase in health expenditure for σ2 low enough, this expenditure should drop in
the alternative model (with multiplicative interaction between health and consumption).
Indeed, in the latter model, marginal utilities with respect to health capital and consump-
tion depend on the utility levels of consumption and health. Therefore, the negative effect
of decreasing efficiency in the production of health capital is magnified.

Finally, when productivity depends on health parameters, an increase in health expendi-
ture is found to be accompanied with a loss in both consumption and savings, due to the
loss of productivity.

iii) The dynamics

The study of the dynamics sheds new light on the functioning of the models. The dynamics
of transition allowed us to obtain the very nice result the geometrical illustration of the
common parameters support. We have shown that while both types of preferences were
not related a priori, their transitional dynamics can be connected. The density of the space
defining the support of common parameters depends on the natural biological deterioration
rate δM and the discount rate ρ. With regard to endogenous fluctuations, we observe that
the model with separable preferences generates bifurcations with chaotic trajectories, while
the model with non-separable preferences possesses a stable global dynamics.
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As evident from above, the assumption of Cuddington and Hancok (1994) is certainly not
fulfilled. A health impairment which stimulates increasing health expenditure and weakens
the income base, not only affects savings, but it also compromises the consumption capacity,
as well as the human and physical capital of the economy, and also undercuts the process of
economic development. In such cases, the role of public health expenditure becomes crucial in
increasing the average health level of individuals, which depends on the quality of the health
sector, which in turn depends on the amount of public resources devoted to this sector. This
finding can be linked in some sense to study of Hazan and Zoabi (2006) who incorporated health
into a model extending the basic Ben-Porath mechanism. The authors considered health and
education as integrated inputs in the production of human capital. They showed that increased
health can not only increase the return on quality but also the return on quantity so that the
transition from stagnation to growth becomes possible.

Our finding as regard the neutrality of health productivity π is also consistent with Hazan
and Zoabi (2006). Indeed, Hazan and Zoabi (2006) considered an homothetic utility function
and found that in a framework in which longevity is neutral, health can induce quantity-quality
tradeoff. As a result, improvements in health are more likely to generate quantityquality tradeoff
than gains in longevity. This result was also reinforced by Bleakley (2006) who found a natural
experiment that bridges between health and longevity.

While the study aims at providing a richer relationship between health expenditure and
outcomes than the existing literature, several challenges remain to be addressed. Some other
worthwhile extensions would be i) the role for preventive health care along with having the
consumer’s wage and working time dependent on health, ii) the effect of health investments on
expected lifetime, iii) the heterogeneity of populations (e.g. young/old, insured/uninsured). Yet,
the model developed in this paper is complex enough to incorporate all the potential extensions.
iv) Finally, so far, we have studied the model under the two polar assumptions of separable and
non-separable preferences.
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Appendix

Proof of proposition 2
With Equation (21) can be rewritten in terms of output as:

f = m̂
α
σ2

+1−α −
(

δM

π

) 1
σ2 bπα(Bk̂ε − m̂− δk̂)σ1

δM + r
= 0

Relying on the the implicit functions Theorem we obtain:

∂m̂

∂δM
= −

∂f
∂δM

∂f
∂m̂

=

(
δM
π

) 1
σ2 bπα(Bk̂ε − m̂− δk̂)σ1

(
δM+r
σ2δM

− 1
)

(δM + r)
[
( α

σ2
+ 1− α)m

α
σ2
−α(δM + r) + σ1

(
δM
π

) 1
σ2 bπα(Bk̂ε − m̂− δk̂)σ1−1

]

Now, observe that ∂m̂
∂δM

> 0 if δM+r
σ2δM

− 1 > 0, which means that σ2 > δM
δM+ρ . Proceeding in the

same way with respect to Ĉ, we have:

∂Ĉ

∂δM
= −

∂f
∂δM

∂f

∂Ĉ

= −

(
δM
π

) 1
σ2 bπαĈσ1

(
δM+r
σ2δM

− 1
)

(δM + r)
[
( α

σ2
+ 1− α)m

α
σ2
−α(δM + r) + σ1

(
δM
π

) 1
σ2 bπα(Bk̂ε − m̂− δk̂)σ1−1

]

In that case, if σ2 = σ1 = 1, and then:

m̂ =
δMbα(Bk̂ε − δk̂)
δM (1 + bα) + r

It follows that:

∂m̂

∂δM
=

bα(Bk̂ε − δk̂) [δM (1 + bα) + r]− δMbα(Bk̂ε − δk̂)(1 + bα)
[δM (1 + bα) + r]2

As a result, ∂m̂
∂δM

> 0 if and only if r > 0, which is always justified, and ∂Ĉ
∂δM

= − ∂m̂
∂δM

¤

Proof of proposition 3
The derivative of m̂ with respect to π is given by

∂m̂

∂π
= −

∂f
∂π
∂f
∂m̂

=

(
δM
π

) 1
σ2 bα(Bk̂ε − m̂− δk̂)σ1

(
1− 1

σ2

)

( α
σ2

+ 1− α)m
α
σ2
−α(δM + r) + σ1

(
δM
π

) 1
σ2 bπα(Bk̂ε − m̂− δk̂)σ1−1

Then ∂m̂
∂π < 0 if and only if σ2 < 1, which ends the first part of the proof. Similarly, we have:

∂Ĉ

∂π
= −

∂f
∂π
∂f

∂Ĉ

= −

(
δM
π

) 1
σ2 bα(Bk̂ε − m̂− δk̂)σ1

(
1− 1

σ2

)

( α
σ2

+ 1− α)m
α
σ2
−α(δM + r) + σ1

(
δM
π

) 1
σ2 bπα(Bk̂ε − m̂− δk̂)σ1−1
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Therefore, ∂Ĉ
∂π > 0 if and only if σ2 < 1. If σ2 = σ2 = 1, ∂m̂

∂π = ∂Ĉ
∂π = 0 ¤

Proof of proposition 4
Recall that we are dealing with the case of productivity B depending on health productivity
and π and the health depreciation rate δM . Thus, we have

∂m̂

∂δM
= −

∂f
∂δM

∂f
∂m̂

=

(
δM
π

) 1
σ2 bπα(Bk̂ε − m̂− δk̂)σ1

[
δM+r
σ2δM

− 1 + BδM
σ1k̂

ε(δM + r)(Bk̂ε − m̂− δk̂)−1
]

(δM + r)
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( α

σ2
+ 1− α)m

α
σ2
−α(δM + r) + σ1

(
δM
π

) 1
σ2 bπα(Bk̂ε − m̂− δk̂)σ1−1

]

It then follows that ∂m̂
∂δM

> 0 if and only if δM+r
σ2δM

− 1 + BδM
σ1k̂

ε(δM + r)(Bk̂ε − m̂− δk̂)−1 > 0,
that is σ2 < 1

1−BδM
σ1k̂ε(δM+r)(Bk̂ε−m̂−δk̂)−1

+ ρ

δM−δMBδM
σ1k̂ε(δM+r)(Bk̂ε−m̂−δk̂)−1

¤ Also,
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α
σ2
−α(δM + r) + σ1

(
δM
π
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] ¤

Proof of proposition 5
We have:

∂m̂

∂π
= −

∂f
∂π
∂f
∂m̂
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δM
π

) 1
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σ2

+ 1− α)m
α
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Then we can see easily that ∂m̂
∂π < 0 if and only if 1− 1

σ2
+ Bπσ1k̂

επ(Bk̂ε − m̂− δk̂)−1 < 0, that
is σ2 < 1

1+Bπσ1k̂επ(Bk̂ε−m̂−δk̂)−1
. Also,

∂Ĉ

∂π
= −

∂f
∂π
∂f

∂Ĉ

= −

(
δM
π

) 1
σ2 bα(Bk̂ε − m̂− δk̂)σ1

[
1− 1

σ2
+ Bπσ1k̂

επ(Bk̂ε − m̂− δk̂)−1
]

( α
σ2

+ 1− α)m
α
σ2
−α(δM + r) + σ1

(
δM
π

) 1
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¤

Proof of proposition 6
The Mangasarian sufficient condition stated is obtained by establishing the concavity of the
objective function in (C, M). The concavity of the state functions and the positivity of λA and
λM are straightforward. The Hamiltonian is given by

H = U(C(z))ϕ(M(z))e−ρz

+ λAe−ρz [r(z)A(z) + w(z)− C(z)−m(z)]

+ λMe−ρz [ψ(m(z))− δMM(z)]
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Let H = [H(C,M,m, A, r, w)] be the Hessian matrix of H and let |H| denotes the determinant
of H. After deriving the second derivatives of H, it is straightforward to show that the strict
positivity of |H| requires

|H| > 0 ⇐⇒ C−2σ1M−2σ2

[
σ1σ2

(1− σ1)(1− σ2)
− 1

]
> 0

That is either σ1 < 1 and σ2 < 1 or σ1 > 1 and σ2 > 1 ¤

Proof of proposition 7
The proof is based on the sign of the derivatives ∂m̂

∂δM
and ∂Ĉ

∂δM
. We have:

∂m̂

∂δM
=

rαB
1
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) ε
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) 1
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and,
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) 1
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Proof of proposition 9
We have:

∂m̂

∂δM
=
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ε
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Proof of proposition 10
The conditions ate checked for ∂m̂

∂π , and ∂Ĉ
∂π as:

∂m̂

∂π
=

αδM (1− σ2) B
ε
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(
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∂π < 0 if and only if 1− σ2 < 0, then σ2 > 1. Similarly,
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¤
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Proof of proposition 11
The condition i) in the proposition ensures the existence and uniqueness of equilibrium, while
condition ii) guarantees the stability. Indeed, the right hand side of Eq. (50) is an increasing
function of m̄ while the left hand side strictly decreases as long as the parameters σ1, σ2 and α
are less than unity. As a result, A4 must be positive. Also, from the fact that A3 in Eq. (49)
must be positive, the existence and uniqueness of the equilibrium follow. To prove the stability
of the system (45-47), we evaluate its Jacobian matrix:

J =




1 1 0
−bσ1M̄

−σ2παm̄α−1A1c
σ1−1 + 1 −bM̄−σ2πα(α− 1)m̄α−2A1c

σ1 + 1 bσ2M̄
−σ2−1παm̄α−1A1c

σ1

1 M̄−1παm̄α−1A2 + 1 −M̄−2παm̄αA2




The determinant of J is computed as:

det(J) = −b(πα)2A1A2M̄
−σ2−2m̄−1cσ1

(
1− α

m̄
+

σ1

c

)

− (
M̄−1παm̄α−1A2

) (
bσ2M̄

−σ2−1παm̄α−1A1c
σ1

)

which is negative implying the existence of a saddle point. The stability depends on the sign of
the trace of the matrix. The trace is computed as

Tr(J) = 2 + bM̄−σ2πα(1− α)m̄α−2A1c
σ1 − M̄−2παm̄αA2

= 2 + παm̄α

(
r + δ

εB

)α−1
[

bcσ1

M̄σ2m̄2

(
r + δ

εB

)σ1−σ2

− 1
M̄2

]

which is positive if bcσ1

M̄σ2m̄2

(
r+δ
εB

)σ1−σ2
> 1

M̄2 . ¤

Proof of proposition 12
The Jacobian matrix of the system (51-53) is:

J =




1 αX1 + 1 0
1 M̄−1m̄α−1X2 + 1 −M̄−2m̄αX2

1 M̄−1m̄α−1X4 + 1 −M̄−2m̄αX4




The determinant of J is computed as:

det(J) = − α

σ1
(1− σ2)M̄−2m̄αX2

4

(
1− σ2

1− σ1

α

1− α
+ 1

)

One easily checks that det(J) is positive condition if condition i) Proposition 12 holds and det(J)
is negative if condition ii) holds. The trace is evaluated as

Tr(J) = 2− (1− σ2)M̄−1m̄α−1X4

(
1− σ2

1− σ1

α2

1− α
M̄−1m̄ + 1

)

We see that if condition i) in the proposition holds, the trace is always positive if m̄ < σ1−1
1−σ2

1−α
α2 M̄ .

However, if condition ii) holds, the trace is positive if m̄ > 1−σ1
σ2−1

1−α
α2 M̄ ¤

Proof of Lemma 1
i) Figure (1): Relation (45) becomes constant and the (first) curve for ċ = 0 is a straight
line b1 = − r−ρ

σ1
+ r+δ(1−ε)

ε − m̄ defined on R+. Relation (47) gives the second curve c =

− a
M̄

+ b2 with a = πm̄α
(

r+δ
εB

)α−1
and b2 = δM + r+δ(1−ε)

ε − m̄. The support of c is R∗+.
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The derivatives of c are such that dc
dM̄

= a
M̄2 and d2c

dM̄2 = − 2a
M̄−3 meaning that the func-

tion c is increasing and concave. Moreover we have limM̄→∞ c = b2. Finally the values
a0 and a1 in Figure (1) are computed as a0 = a

b2
and a1 = a

r−ρ
σ1

+δM
. ii) Figure (2): The

(first) curve for ˙̄m = 0 is M̄ = a′
(

m̄α−1

a+m̄

) 1
σ2 is defined over the support R∗+ as m̄ > 0

with a′ = δM+r
1−α − r+δ(1−ε)

ε + c and a = bπαcσ1 1
1−α

(
r+δ
εB

)σ1−σ2+α−1
. We easily check that

dM̄
dm̄ = − 1

σ2
[m̄(2− α) + a(1− α)] m̄α

(
m̄α−1

a+m̄

)1+ 1
σ2 < 0 and

d2M̄

dm̄2
= − 1

σ2

[
m̄2(2− α)(2− α + σ2)− 2am̄(1− α)(2− α + σ2)

+ a2(1− α)(2− α + σ2)
]

1
m̄2(a + m̄)2σ2

(
m̄α−1

a + m̄

) 1
σ2

> 0

meaning that the curve increases and is convex. The (second) function for ˙̄M = 0 is M̄ = a m̄α

b−m̄

with a = π
(

r+δ
εB

)α−1
and b = r+δ(1−ε)

ε − c. It is defined over the support R+\{b}. We have
dM̄
dm̄ = a m̄α−1

(b−m̄)2
(m̄ + bα − m̄α). dM̄

dm̄ > 0 as α < 1. d2M̄
dm̄2 = a m̄α−2

(b−m̄)3
[m̄2(2 − 3α + α2) − b2α(1 −

α) + 2bm(2 − α)] > 0. Furthermore, limm̄→0 M̄ = 0 and limm̄→b− M̄ = ∞. As M̄ is a positive
function, we don’t take into account the values for b+. iii) Figure (3): The (first) curve for ċ = 0
is a straight line c = − r−ρ

σ1
+ r+δ(1−ε)

ε − m̄ which defined on [0, d0[ with d0 = − r−ρ
σ1

+ r+δ(1−ε)
ε .

The (second) curve obtained for ˙̄m = 0 and defined on R+ and is c = a
′′
(

a−a′m̄α

m̄α−1

) 1
σ2 , with

a = δM+r
1−α + δM , a′ = πA2

M̄
, a

′′
=

(
bM̄σ2παA1

)− 1
σ1 and A2 as defined in the text. We have

dc
dm̄ = a

′′ (m̄(am̄α−b))
1

σ2

m̄σ1(a′m̄α−a) (a′m̄α − a + aα) = 0 ⇔ m̄0 =
(

a(1−α)
a′

) 1
α . The function increases from d1

to m̄0 and decreases decreases monotonically after. Moreover,

d2c

dm̄2
= a

′′ (m̄(am̄α − b))
1

σ2

m̄2α2(a− a′m̄α)
[−a

′2m̄2α(1− α)

− a2(1− α)(α− σ1 − 1)− abm̄α(1− α)(2σ1 + ασ1 − 2)] < 0

The other quantities in Figure (3) are d1 =
(

1
πA1

a
) 1

α and C0 = d0 − m̄0.

Proof of Lemma 2
i) Figure (4): For ˙̄m = 0, the (first) curve is M̄ = −X2

m̄α

a+m̄ with a = X3 + c. It is defined over
the set R+\{−a}. We have dM̄

dm̄ = X2
m̄α−1

(a+m̄)2
(m̄(1−α)−aα) which is positive iff m̄ > aα

1−α . Also,
d2M̄
dm̄2 = −X2

m̄α−2

(a+m̄)3
(2am̄(2− α) + a2α(1− α)− m̄2(2− 3α + α2)) > 0. As a result M̄ is convex

and limm̄→0 M̄ = 0 and limm̄→−a M̄ = ∞. For ˙̄M = 0 the (second) curve is M̄ = −X4
m̄α

a
′
+m̄

with

a′ = X5+c. Its support is R+\{−a
′}. We have dM̄

dm̄ = X4
m̄α−1

(a′+m̄)2
(m̄(1−α)−a

′
α) which is positive

iff m̄ > a
′
α

1−α . Furthermore, d2M
dm̄2 = −X4

m̄α−2

(a′+m̄)3
(2a

′
m̄(2−α)+a

′2α(1−α)−m̄2(2−3α+α2)) > 0.

It follows that M̄ is convex with limm̄→0 M̄ = 0 and limm̄→−a
′ M̄ = ∞. The quantity m̄2 in

Figure (4) is obtained as follows. We have −X2
m̄α

a+m̄ = −X4
m̄α

a′+m̄
⇔ X2a

′ − aX4 = m̄(X4 −X2)

implying that m̄2 = X2a
′−X4a

X4−X2
. ii) Figure (5): From relation (51), the (first) curve for ċ = 0 is a

straight line on R+ as m̄ is fixed. We have c = δM−X0−m̄−X1m̄
α. The second curve is obtained

from relation (51) for ċ = 0, c = − a
M̄

+ a′ with a = πm̄α
(

r+δ
εB

)α−1
and a′ = δM + r+δ(1−ε)

ε − m̄.
The support of c is R∗+ and the derivatives are such that dc

dM̄
= a

M̄2 and d2c
dM̄2 = − 2a

M̄−3 meaning
that the function c is increasing and concave. Moreover we have limM̄→∞ c = a′. The quantities
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C0, C1, M̄0 and M̄1 in Figure (5) are computed as C0 = δM + r+δ(1−ε)
ε − r−δε−ρ

σ1
− m̄0 − m̄α

0 ,

C1 = δM + r+δ(1−ε)
ε −m̄0, M̄0 =

π( r+δ
εB )

α−1
ε−1 m̄α

0

δM+
r+δ(1−ε)

ε
−m̄0

and M̄1 =
π( r+δ

εB )
α−1
ε−1 m̄α

0

r−δε−ρ
σ1

−m̄α
0

1−σ2
σ1

π( r+δ
εB )

α−1
ε−1

where m̄0 is

fixed for m̄. iii) Figure (6): For ċ = 0, the (first) curve is given by c = δM −X0−m̄−X1m̄
α. We

have dc
dm̄ = −1 − αX1m̄

α−1 > 0 ⇔ X1 < 0 ⇒ σ2 > 1. Furthermore, d2c
dm̄2 = −α(α − 1)X1m̄

α−2

meaning concavity. So the function increases for m̄ < m̄1 and decreases when m̄ > m̄1, with
m̄1 = (−αX1)

1
1−α . The (second) curve for ˙̄m = 0 is c = −X5 − m̄ − X4M̄

−1m̄α. We have
dc
dm̄ = 1 − αX4M̄

−1m̄α−1 and d2c
dm̄2 = −α(α − 1)X4M̄

−1m̄α−2. It decreases and is convex. We
have C0 = δM + r+δ(1−ε)

ε − r−δε−ρ
σ1

, C1 = δ + r+δ(1−ε)
ε and C2 = δM −X0− m̄0−X1(−αX1)

α
1−α .
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Ċ = 0
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Figure 1: Phase diagram for separable preferences, plane (C,M̄)
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Figure 2: Phase diagram for separable preferences, plane (M̄ ,m̄)
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Figure 3: Phase diagram for separable preferences, plane (C, m̄)
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Figure 4: Phase diagram for non-separable preferences, plane (C,M̄)
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Figure 5: Phase diagram for non-separable preferences, plane (M̄ ,m̄)
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Figure 6: Phase diagram for non-separable preferences, plane (C,m̄)
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Figure 7: Geometrical illustration of parameters common support
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Figure 8: Bifurcation diagram on the plane (m̄: [y-axis], θ := δM : [x-axis])
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Figure 9: Weak health depreciation rate: Contour diagram on the plane (M̄ : [y-axis], m̄: [x-axis])
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Figure 10: High health depreciation rate: Contour diagram on the plane (M̄ : [y-axis], m̄: [x-
axis])
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Figure 11: Weak health depreciation rate: 3 dimensional diagram (x-axis: consumption [C],
y-axis: flow of investment in health capital [m], z-vertical axis: stock of health capital [M ])
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Figure 12: High health depreciation rate: 3 dimensional diagram (x-axis: consumption [C],
y-axis: flow of investment in health capital [m], z-vertical axis: stock of health capital [M ])
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