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Abstract

Although intuitively appealing (and common), drawing network strategy implica-
tions from empirical evidence of network performance effects in pooled cross-section is
not necessarily warranted. This is because network positions can influence both the
mean and variance of firm performance. Strategic prescriptions are warranted if empir-
ically observed network effects reflect increases in mean firm performance. If network
effects reflect increases in firm performance variance, however, such prescriptions are
warranted only if the increase in the odds of achieving high performance is sufficient
to compensate for the concomitant increase in the odds of realizing poor performance.
Our simulation study, designed to examine network performance effects in both pooled
cross-section and within-firm over time across a wide range of conditions, counsels cau-
tion in drawing implications for network strategies. We discuss the implications of
our findings for research on network effects, and more broadly for drawing strategic
inferences from studies of firm performance in pooled cross-section.

1 Introduction

At the intersection of network and strategy literatures, researchers are concerned with how

patterns of strategic alliances create network-based advantages for well-connected firms. Re-

searchers have examined whether firms should occupy densely interconnected “closed” net-
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work positions, which afford coordination and integration benefits by facilitating the ease of

exchange and commonness of information among firms (Coleman, 1988, 1990), or in sparsely

interconnected “open” network positions, which confer information access and control ben-

efits through conveyance of diverse information and resources and brokerage opportunities

(Burt, 1992, 2000; Granovetter, 1973).

Despite empirical evidence remaining somewhat equivocal, the idea of “network effects”

on firm performance is by now uncontroversial, and attention focused increasingly on the

identification of conditions under which open or closed network positions are more or less

advantageous (e.g., Ahuja, 2000; Baum et al., 2010; Burt 1998, 2000; Rowley et al., 2000).

What remains uncertain, however, is whether the evidence of “network effects” supports

commonly inferred prescriptions for “network strategy,” where the former is typically based

on empirical estimates from panel or pooled time-series-and-cross-section data showing that

firms occupying a particular type of network position at time t outperform firms that do

not at time t + 1, and the latter is based on the inference that firms sustaining the type of

network position shown to be beneficial in pooled cross-section, will outperform those that

do not over the longer term.

Although such an inference is intuitively appealing, the implications of network effects

in cross-section do not translate straightforwardly into implications for sustained network

strategy. This is because network positions can affect both the mean and variance of firm

performance outcomes, which play distinct roles in competition for high performance (March,

1991). If a network position increases both the mean and variance of performance, the firm

gains a performance advantage over its rivals. A network position advantage may also be

gained if the increase in performance variance is sufficient to compensate for a decrease in

mean performance, and vice versa. When competition is for primacy at a given point in

time, increasing the variance, rather than the mean, of performance contributes increasingly

to competitive advantage as the number of competitors increases (March, 1991).

But increased performance variance also exposes firms to a greater risk of very poor perfor-

mance, and, as a result, the benefit of increasing firm performance variance depends impor-

tantly on the distribution of possible performance outcomes. The likelihood of achieving high

performance, in particular, depends on the right-hand tail of the performance distribution;

the left-hand tail is critical to experiencing poor performance. If the distribution is right

skewed, with only a small number of high-performance outcomes available relative to poor
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ones, increasing performance variance improves a firm’s chances of achieving one of the high

outcomes, but the increased odds may be to too small to compensate for the reduction in

the mean that results from the concomitantly higher odds of obtaining poor outcomes.

The implication of these observations is consequential: if empirical evidence of network

effects in pooled cross-section reflects the influence of firms’ network positions at time t on the

variance, rather than the mean, of their performance at time t+1, whether network positions

associated with high performance in cross-section may also prove beneficial if sustained over

time depends on whether the increased odds of achieving high performance are nullified by

a concomitant rise in the risk of experiencing poor outcomes.

Three factors suggest both that empirical findings for network effects plausibly reflect per-

formance variance (rather than mean) effects and that such nullification is therefore likely.

One is that empirical studies of network effects model the role of network position in achiev-

ing high performance in pooled cross-section, which is governed by performance variance,

rather than avoiding low performance, which is governed by mean performance (March,

1991). A second is the commonly observed right-skewness of firm performance distributions

(e.g., Adriani and McKelvey, 2009; Powell, 2003), which suggest that increased performance

variance may often raise firms’ risk of low performance more than their chances of achiev-

ing high performance, and thus reduce their mean performance. The third is that analyses

of performance in pooled cross-section are informed by performance variation across rather

than within firms, and thus indifferent to which particular firm performs well in each cross

section. As a result, while firms occupying a particular type of network position may tend to

achieve high performance in any given cross section, it may be different firms achieving the

high performance in each instance.

In this paper, we assess the extent to which network strategies can be inferred from network

effects empirically observed in pooled cross-section. We focus on firm performance effects

of open and closed network positions, both because they are the main focus of influential

contemporary empirical work on network effects, and because of their distinct performance

implications. In particular, recent empirical research (e.g., Ahuja, 2000; Rothaermel and

Deeds, 2004; Rowley et al., 2000) suggests that open network positions facilitate exploratory

(non-local) search, which increases firms’ performance variance, while closed network posi-

tions facilitate exploitive (local) search, which lowers firms’ performance variance (Holland,

1975; March, 1991).
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Our approach is simulation based. This approach allows us to examine performance in both

pooled cross-section and within-firm over time across a wide range of skewness of possible

performance outcomes. Our simulation model is designed to characterize innovation networks

and outcomes, for which the role of strategic alliances in the acquisition of external knowledge

is well established (Powell et al., 1996; Rosenkopf and Almeida, 2003; Rosenkopf and Nerkar,

2001), exploitation and exploration activities are highly germane (Gilsing et al., 2008; Lavie

and Rosenkopf, 2006; Rothaermel and Deeds, 2004; Rowley et al., 2000), network effects have

been an important focus of research (e.g., Ahuja, 2000; Powell et al., 2005; Rowley et al.,

2000), and distributions of possible performance outcome are known to be variously skewed

(Abernathy and Utterback, 1978; Tushman and Anderson, 1986).

After developing our theoretical predictions regarding firms’ network positions and perfor-

mance variation more fully, we describe and validate our simulation model, demonstrating

that, across a wide range of distributions of possible firm performance, the model replicates

both the properties of “real world” networks, as well as network effects on performance in

pooled cross-section that mirror those obtained in empirical network studies. Subsequently,

we turn our attention to network strategies, and specifically, to the questions of 1) whether

network positions associated with high performance in pooled cross-section are also beneficial

when sustained in the long run, and 2) how the skewness of distributions of possible firm

performance impacts the veracity of conclusions for network strategy drawn from network

effects observed in pooled cross-section.

2 Network position and performance

Although network theorists agree that “better-connected” firms gain a competitive advan-

tage, there is disagreement regarding what “better-connected” actually means. Coleman’s

(1988) closure argument implies that firms are better off occupying densely interconnected,

closed network positions in which their partners are also partners. Burt’s (1992) structural

hole argument, in contrast, prescribes that firms embed themselves in sparsely connected,

open network positions comprised of disconnected partners. Rather than arguing the supe-

riority of one network position over the other, Burt (1998, p. 45) suggests a contingency

approach to reconcile this disagreement: “Closure and hole arguments are not as contradic-

tory as they might seem... The ambiguity stems in large part from the different roles that
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social capital plays in the study populations with which each is justified.” Open and closed

network positions afford distinct benefits that are useful for different purposes, and under-

standing their effects requires consideration of the conditions under which firms benefit from

possessing the distinct benefits they afford.

Consistent with Burt’s (1998) view, recent studies have pursued contingency approaches

in which the benefits of open and closed network positions depend on environmental condi-

tions and task purposes (Ahuja, 2000; Rothaermel and Deeds, 2004; Rowley et al., 2000).

These approaches conceive the appropriate type of network position to depend on their dif-

ferential value for exploitive and exploratory learning modes. That is, the degree to which

firms are focused on exploiting existing technologies, skills, and information, or exploring the

environment for emerging innovations and other significant changes.

Exploitation involves using existing knowledge to improve organizational functioning by re-

ducing variability in the quality or efficiency of current strategies, competencies, technologies

and procedures. In exploitation, the emphasis is on refining existing knowledge by gathering

specific information that will provide deeper understanding in a particular area. The solution

space is thus well defined, and search is local and highly specific. The classic exemplar is the

well-known “experience curve” phenomenon in which firms reduce production cost and/or

time by eliminating redundancies and inefficiencies through continuous tuning of internal

practices and processes (Yelle, 1979; Argote, 1993). Exploration, in contrast, entails pro-

cesses of concerted variation and experimentation to identify new ways of doing things and

new things to do. Because the focus is on gathering information and identifying emerging

innovations and alternative future options, in exploration, the solution space is ill-defined,

search is wide, and a premium is placed on newer, more diverse information.

March (1991) views both processes as essential, but observes that firms face a trade-off

between how much to invest in refining existing technologies to stay competitive in their

current markets in the short term, compared to developing new knowledge about novel tech-

nologies with which to compete over the long term as environmental demands change. The

balance of resources firms allocate to exploitation and exploration thus tends to depend on

environmental conditions (Lant et al., 1992; Rowley et al., 2000). Environmental uncertainty,

in particular, by affecting the predictability and frequency of change (Dess and Beard, 1984),

influences the degree to which firms must emphasize refinement of existing knowledge and/or

seek out new opportunities. In uncertain environments firms must allocate more resources
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to exploration than in stabler environments in which there is greater clarity about future

directions and fewer environmental disturbances.

The distinct information requirements of exploitation and exploration suggest different pre-

scriptions regarding appropriate network position (Gilsing et al., 2008; Rowley et al., 2000).

Open network positions, comprised of disconnected, non-redundant partners, are ideal for

gaining access to diverse sources of information and knowledge, to facilitate identification of

emerging opportunities and threats, and location of complementary knowledge (Powell et al.,

1996; Mitsuhashi, 2003). Open network positions thus afford a firm unique information and

perspectives from each of its partners that facilitates broad search for emerging innovations

and alternative future options. In uncertain environments requiring large investments in

exploration, sparsely connected, open network positions are therefore expected to be advan-

tageous. Closed network positions, by contrast, inhibit firms’ access to broader, divergent,

distant, and less familiar approaches critical to exploration (Uzzi, 1996, 1997). Although

this limits their usefulness in meeting the demands of uncertain environments, the access

to redundant and validating information they afford is essential to meeting the information

requirements of exploitation (Dyer and Singh, 1998; Van de Ven, 1976; Walker et al., 1997).

The ability to triangulate across multiple, redundant sources enhances evaluation of acquired

information obtained from each source, aiding in refinement of existing knowledge. In stable,

certain environments requiring large investments in exploitation, closed network positions

are thus expected to be advantageous.

Combined, the previous arguments offer clear predictions regarding the value of open and

closed network positions: Firms operating in a rapidly changing environment are expected

to benefit from open network positions facilitating exploration, while firms in a stable envi-

ronment are expected to benefit from closed network positions facilitating exploitation.

To this point, we have grounded our discussion in social networks literature. Similar pre-

dictions follow, however, from March’s (1991) reasoning on firm strategies that change the

mean and/or variance of their performance distributions. The starting point for March’s

argument is a very general one: when observing a population of firms at any point in time,

the highest performing firms will tend to be those having the highest variance performance

distribution. Thus in cross-section, the correlation between firm performance and variance-

increasing strategies will tend to be positive. Moreover, as the aggregate, population-level

performance distribution becomes more right-skewed, this correlation should tend to increase.
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To see this, consider Figure 1. As the figure shows, holding mean performance in the pop-

ulation constant, increasing the right skew of the population-level performance distribution

raises both the density of the right tail and the mass near zero. As a result, increasing the

skew of possible population-level performance outcomes also increases the odds that high

performance variance firms are the best performers in the population.

Performance

F
re

qu
en

cy

σσ = 0.2
σσ = 0.5
σσ = 1.0

Figure 1: Showing the effects of increasing skewness of population-level performance distri-
butions. Log-normal distributions with constant mean (of 1, shown by the vertical line) and
increasing both variance and skewness moving from thick black to thin black to grey.

In a network context, open positions represent variance-increasing strategies (Burt, 1992).

Consequently, as the probability of occasional, very large, disruptive innovations (and thus the

right-skewness of the population-level performance distribution) increases, the performance

of firms occupying open network positions should increase in pooled cross-section. By the

same logic, as the probability of such large, disruptive innovations falls, and innovation in

the population becomes largely incremental, the performance of firms occupying variance-

reducing closed network positions should increase in cross-section. These predictions match

both theoretical arguments and empirical findings in pooled cross-section studies of network

effects (e.g., Ahuja, 2000; Gilsing et al., 2008; Rothaermel and Deeds, 2004; Rowley et al.,

2000).
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Now, rather than in cross-section, consider the longer-term implications of firms attempting

to strategically manipulate the moments of their performance distributions over time via their

network positions. Variance-increasing open network positions raise both the value of the

firm’s high performance outcomes and lower the value of its poor performance outcomes. The

implications of these two effects for a firm’s long-run performance depend on the skewness

of the aggregate, population-level performance distribution. As illustrated above in Figure

1, holding mean performance constant, increasing skewness raises both the right tail density

and the mass of very poor outcomes. As a result, when the skew of the population-level

performance distribution is low, high firm-level performance variance improves a firm’s odds

of very good outcomes, but not of very poor outcomes given their relatively small frequency.

As the skew of the aggregate performance distribution increases, however, a high variance

firm strategy raises not only the odds of very good outcomes, but also, increasingly, of

very poor outcomes. In contrast, while a low variance firm strategy does not increase the

odds of very good outcomes, it does afford protection against very poor outcomes. The

long-term effect of sustaining open and closed network positions on firm performance should

thus depend on the skewness of the population-level performance distribution. Specifically,

the long-term performance of firms sustaining open network positions should decline with

the right-skewness of the population-level performance distribution, while, oppositely, the

long-term performance of firms sustaining closed network positions should increase with the

right-skewness of the population-level performance distribution. Table 1 summarizes our

theoretical predictions. Note that the predictions are opposite not only between open and

closed network positions, but also for performance in cross-section and over time within each

network position, complicating inferences for firm strategy from evidence in pooled cross-

section.

Network Effect on Performance in Performance
position firm perf. cross-section over time

Closed Variance Decreases with skewness of Increases with skewness of
decreasing population-level perf. distribution population-level perf. distribution

Open Variance Increases with skewness of Decreases with skewness of
increasing population-level perf. distribution population-level perf. distribution

Table 1: Predictions of firm performance effects of open and closed network positions in
different environments.
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3 Model

In this section we develop a model aimed at elaborating the arguments presented above.

Although many strategies likely affect the variance of firm performance, here we focus on

network strategies, drawing inspiration from the extensive literature on the sources of value

of open and closed network positions. We also follow this literature in framing our model in

the context of firms allying in order to innovate, and formalize the exploration-exploitation

spectrum by focusing on the properties of innovations that take place. Specifically, we assume

that an exploitation environment, innovations tend to be of similar importance, and thus we

can see innovation “size” as being drawn from a distribution with relatively low skewness.

However, in an exploration environment, there can be wide differences in the effects of in-

novations; most are small, and have little impact, but when a large innovation does arrive,

it can be highly disruptive. With this formalism we capture very simply the effects of the

population-level technological environment as it favors exploration or exploitation as means

of successful innovation.

3.1 Sketch of the model

We first describe the model verbally, and then specify the formalization we use in implemen-

tation.

Firms ally for the purpose of innovating and in so doing they create an industry network.

Three forces shape the evolution of that network.

The first is the process of alliance formation. Firms form alliances with the goal of creating

innovations, and for any firm, each alliance represents one R&D project.1 An alliance is in

essence an institution for knowledge sharing, so a firm forms an alliance with another firm

in order to access the knowledge it needs to (potentially) make that project successful. The

need to have complementary knowledge for successful innovation implies that partners will be

neither too close together nor too far apart in knowledge space, and the probability that a firm

succeeds through a particular alliance is a positive, single-peaked function of the distance in

knowledge space from the firm to its partner in that alliance. Because the knowledge space

is a metric space, this need for proximity will induce some amount of local correlation in

the decisions to ally, yielding both repetition and cliquish-ness in firms’ partnering decisions

1For simplicity, we assume that firms undertake no R&D outside alliances.
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(Baum et al., 2010).

The second force shaping the alliance network is learning. When two firms ally, they learn

from each other, and so move closer together in knowledge space. This can affect their

suitability as partners in subsequent periods.

The third, and most important, driving force in the model is innovation. When a firm

produces an innovation, it disrupts the activities of all other (non-innovating) firms. In

response, firms rearrange their activities by deploying different knowledge than they did

before the innovation. An innovation thus changes the value of the knowledge stocks of other

firms; and it changes the value of partnerships between firms (represented by their specific

knowledge endowments). We compress this into a single action, in which non-innovating firms

are relocated in knowledge space, thereby changing the value of their (potential) partnerships,

and the innovating firm (if any) receives a value equal to the total displacement of other firms

in knowledge space. As a consequence, firms can calculate the expected benefit of any possible

alliance as the product of its success probability and the total dislocation the firm can expect

to impose on other firms in the industry, minus alliance cost. Alliances form when expected

profits are positive for both partners.

In each period all actual and potential alliances are (re)evaluated. If a potential alliance

shows positive expected profits it forms, or is maintained. If an existing alliance shows

negative expected profits it is terminated. Combined, the decisions of firms to ally with

profitable partners, their learning from one another, and their dislocation in knowledge space

in response to innovations produce networks that exhibit features common to “real world”

networks. In the following sections we operationalize these assumptions, taking each element

of the process individually.

3.2 Firms and the arrival of innovations

A fixed, finite population of N firms is located in a 2-dimensional metric knowledge space,

which we take to be unit square [0, 1]2, with periodic structure (i.e. a torus). Each firm is

characterized by a knowledge endowment, vi = (vi,1, vi,2), fori = 1, ..., N , which defines its

location in knowledge space.

We treat innovations as stochastic, and independent across firms. Each firm engages in

knowledge sharing with each of its alliance partners, and each alliance formed by the focal

firm contributes additively to the probability that this firm succeeds in this period. The
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marginal contribution of a particular alliance to the firm’s project portfolio is its success

rate, which in turns depends on the characteristics of the alliance.

Specifically, the success rate for any alliance depends of the “goodness of fit” of the alliance,

which is assumed to be a single-peaked function of the Euclidean distance (with a maximum at

finite distance d∗) between the alliance partners in knowledge space.2 Formally, we employ

a bell-shaped (Gaussian) function to map knowledge-distance to one-period success rates,

according to

λij ≡ f(dij) = λ̄e−[(dij−d
∗)/σ]2 , (1)

where dij is the distance in knowledge space between i and j,

dij =

[∑
`=1,2

(1/2− |1/2− |vi,` − vj,`||)2
]1/2

, (2)

and λ̄� 1 is a scaling parameter which we use to control the maximum success probability.

Firm i’s overall success rate is λi =
∑

ij∈g λij, where g is the network of existing alliances

during the period we consider. The population-level arrival rate of innovations is λ =
∑N

i=1 λi.

Provided success rates are small enough (λij ≤ λ̄ � 1 ), any firm’s overall success rate λi

is also small, and thus the population-wide arrival rate of innovations λ is less than one, in

which case at most one firm succeeds in any period. We impose parameter values such that

this constraint is satisfied.

3.3 Dislocation following an innovation

Following an innovation, the knowledge landscape changes, altering the value of different

types of knowledge and different knowledge combinations. We assume that an innovation by

firm i disrupts the status quo for all other firms. Firms respond by deploying new knowledge

in their activities, and so an innovation changes both where firms are located in space and

which combinations of knowledge are valuable. The extent to which a non-innovating firm is

2Empirical studies have shown, in a variety of contexts, that alliance and merger success is driven by
partners’ relative knowledge endowments. This is commonly formalized using “distance in knowledge space”,
which is measured in a variety of ways. Additionally, recent work has shown that the probability that a
pair of firms forms an alliance is concave in their distance in knowledge space (e.g., Ahuja and Katila, 2001;
Mowery et al., 1996, 1998; Mueller et al., 2009; Rothaermel and Boeker, 2008; Schoenmakers and Duysters,
2006; Stuart, 1998).
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affected by an innovation is determined both by its proximity to the innovating firm, and by

the size of the innovation. We operationalize this by assuming that following an innovation,

firms are dislocated in the knowledge space. More precisely, following an innovation by firm

i, firm i itself is not moved but all other firms are dislocated as a function of their distance

to i in knowledge space.

Any firm j is relocated, uniformly at random within a disk centered on j’s pre-innovation

location. The disk has radius

rj = θ · rmax(1−
√

2dij), (3)

where rmax is the maximum possible dislocation,
√

2/2 is the maximum possible distance

between firms and θ measures the size of the innovation. Firms are affected by an innovation

as a linear function of their distances to the innovating firm. The magnitude of this distance

effect, however, depends on the size of the innovation, θ. Innovation size is treated as a

positive, multiplicative shock, drawn from a binary random variable with expectation equal

to 1 and variance and skewness which we control with the parameter s. By changing the

skew of the innovation size distribution, we control the nature of the technological regime in

which firms operate, and thus the skew of the population-level performance distribution.

Define realized dislocation of firm j as δj.
3 Total dislocation from an innovation is thus

given by

Vi =
∑
j 6=i

δj. (4)

The expected magnitude of the dislocation of firm j being rj/2, total expected dislocation,

used by firms to calculate expected values of an alliance, is

E [Vi] =
∑
j 6=i

E [rj] = E [θ] ·
∑
j 6=i

rj/2 =
∑
j 6=i

rj/2. (5)

3.4 Strategic alliance formation

The value to firm i of a particular alliance ij is the marginal contribution of that particular

alliance to the firm’s expected profit, net of alliance cost c. The marginal contribution of

3In terms of implementation, the direction of motion of firm j is an angle drawn uniformly at random in
[0, 2π); distance of dislocation of j, δj , is drawn from a uniform distribution U [0, rj ].
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alliance ij to the success rate of firm i is λij.
4 If i innovates, the value of that innovation

is the sum of the dislocations it imposes on all other firms, as in Equation 4. We can thus

write the expected value of alliance ij to firm i as

πiji = λij · E [Vi]− c, (6)

the product of λij, the marginal contribution of alliance ij to the success rate of firm i, and

the dislocation i expects to impose on other firms, net of alliance cost c.

An alliance will form if expected profits are positive to both partnering firms. Rewriting,

the alliance (formation or continuation) condition is thus

λij · E [Vi] ≥ c and λij · E [Vj] ≥ c. (7)

3.5 Learning

If firms i and j ally, they learn from each other, and so move closer together in knowledge

space.5 We model this as a linear partial adjustment process

vt+1
i,1 = αvtj,1 + (1− α) vti,1 and vt+1

i,2 = αvtj,2 + (1− α) vti,2, (8)

where parameter α ∈ (0, 1/2) measures absorptive capacity in the industry.

In each period the industry network thus consists of the alliances formed by all firm pairs

satisfying the condition in Equation 7. However, in a dynamic industry, we observe that

knowledge portfolios, alliances and the industry network all change over time. At the pop-

ulation level, the industry network structure is determined by (current) knowledge stocks

of the firms in it. But the network structure is instrumental in the innovation within the

industry. Innovations force firms to respond, and to redeploy their knowledge, possibly using

different knowledge in reaction to the new market conditions created by the innovation. Thus

innovations change firms’ position in the knowledge space, by forcing them to use different

knowledge than they had done previously. So at the population-level, network structure and

industry knowledge profile co-evolve. In the sections that follow, we explore this co-evolution

4We assume that innovations do not compete in any after-market, so firms can treat each alliance decision
independently from all others, both their own and other firms’.

5This feature of alliances has been documented by Mowery et al., 1998; Uzzi, 1997.
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through numerical simulation of the model.

4 Numerical implementation of the model

The single period outcome of the model is easily characterized. There is a unique (pairwise

stable) equilibrium in which all pairs of firms ij and only those pairs such that the condition

in Equation 7 holds form (or continue) an alliance. Over time however, the model being one

of of complex co-evolution, its behavior does not lend itself to analytical solution. We resort

to numerical simulation, with the following settings.

We consider a population of N = 100 firms, and use as the knowledge space the unit torus.

Thus each firm’s knowledge endowment is a pair of positive real numbers, 0 ≤ vi,1, vi,2 ≤ 1, for

all i = 1, . . . , 100. At the outset, all firms hold knowledge endowments distributed uniformly

over the unit torus. We set the optimal distance to d∗ = 0.025.6 We set σ, the parameter that

governs how fast success probabilities fall as firm-pairs deviate from the optimal distance, at

0.025. This implies we are quite demanding in terms of being close to the optimal distance:

two firms located on top of each other would only have a success rate of roughly one third of

the maximum success rate λ̄. The upper bound to the success rate of an alliance (which is

achieved when participants are at the optimal distance) is λ̄ = 0.004, as visible in Equation

1. The maximum possible dislocation following an innovation is 0.05. Absorptive capacity,

α = 0.01. The cost of forming and maintaining an alliance is set to c = 0.000001.

These parameters produce a reasonably dense network of average degree near five (i.e., a

density of roughly 5%), and an industry-wide arrival rate of innovations of about 0.3 (i.e., on

average one innovation every third period). The network is sparse enough for network-effects

to materialize, and the arrival rate of innovation is low enough to keep inertia in the network.

Numerous explorations around the values we use here have no produced significant variation

in the nature of the results.

Finally, we control the nature of the innovation regime using the log-normal distribution

from which the innovation size is drawn (Section 3.2). For each innovation, size (θ) is drawn

independently from a binary random variable taking the value s with probability 1/ (s+ 1)

and the value 1/s with probability s/ (s+ 1), with s ≥ 1. Then we get E [θ] = 1 and

6We set d∗ to a small value because we have in mind a very broadly defined industry such that of
absorptive capacity and the need for novelty, the two forces generally taken to combine to produce the
inverted-U relationship, absorptive capacity dominates.
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V [θ] = (s− 1)2 /s, which is a mean-preserving multiplicative random shock that we use

to control the variance, skewness and higher moments of the innovation size, and thus,

population-level performance distribution. We generate 500 random values of s ∈ [1, 30],

each with equal mean innovation size/firm performance.

The experiment is run by initializing the firms’ knowledge endowments uniformly at ran-

dom over the unit torus. Alliances form each period according to the condition in equation 7.

Innovations arrive randomly, determined by the independent Poisson processes of the set of

alliances as described in Subsection 3.2. We discard the initial 500 periods, to avoid any pos-

sible spurious effects arising from the initialization, and run the alliance formation/innovation

process for 10,000 periods. We repeat this for 500 different values of s ∈ [1, 30].

5 Results

We examine some aggregate properties of the alliance network, before turning to a more

detailed analysis of the relationship between position and performance.

5.1 The network: snapshots and dynamics

As a first step in the analysis, we display in Figure 2 two representative networks captured

in period t = 1000 in two runs of the model, one having a low skewness of the innovation

size distribution (left panel, s = 2), the other having high skewness (right panel, s = 30).

Standard network descriptive statistics are given.

Here we obtain a first intuition about the effect that the skewness in the innovation size

distribution has on network structure. This effect is dynamic rather than static. Indeed,

at any point in time, firms make alliance decisions based on expected profits, disregarding

higher moments of the innovation size distribution. So for given firm locations, the alliance

formation decisions are independent from θ (recall that mean innovation size remain constant

across values of s). However, innovation interacts with learning. Over time, the effect of the

latter is to bring firms closer in knowledge space. The low-skew innovation regime (s = 2)

has frequent innovation of roughly constant magnitude (θ), counter-balancing the effect of

learning in terms of increasing the clustering of firms in knowledge space. The high-skew

regime (s = 30), in contrast, has many very small innovations whose effect is nullified by

learning, and only rarely large ones. So most often in time, firms will be closer in knowledge

15
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Figure 2: Two representative networks for low-skew (left panel, s = 2) and high-skew (right
panel, s = 30) innovation distributions at period t = 1000. The network on the left panel
(right panel) is characterized by: average degree: 3.78 (5.84); average clustering: 0.73 (0.87);
average betweenness: 17.16 (8.3); average constraint: 0.65 (0.54); average distance among
reachable pairs: 3.25 (2.30); number of connected components: 10 (15).

space in a highly skewed regime, with higher average degree and clustering, and consequently

more connected components and shorter distance among reachable pairs (within the smaller,

denser components).

These intuitions are confirmed by Figure 3, which displays average degree and average

clustering for the final 500 periods of two representative histories of the network, one for low-

skew (left panel, s = 2) and the other for a high-skew (right panel, s = 30) innovation regimes.

As firms ally, learn, innovate and are dislocated by others’ innovations, the distribution of

firms over the knowledge space changes, and so the alliances formed change. This implies a

co-evolution between knowledge endowments and network behavior.

In both cases we observe that network activity (degree and clustering) rises and falls over

time, however, the patterns are differ markedly for low and high-skew innovation regimes.

In the low-skew regime, fluctuations are homogeneous over time. In the high-skewed regime,

there is in general very little movement from one period to the next, and the effect of learning

dominates. Firms in a given connected component get closer in knowledge space, forming

more alliances (also among partners of a given firm) as global convergence takes place toward

16
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Figure 3: Time series of average degree and average clustering for low-skew (s = 2, left panel)
and high-skew (s = 30, right panel) innovation distributions.

the center of gravity of the set of connected firms. Innovation size (θ), is typically so small

that their effect is overwhelmed by the learning process. But, infrequently, a very large,

disruptive innovation occurs, and dislocates many firms. Degree and clustering then fall

significantly, before routinized learning again takes command.

We can use this observation to address the interpretation of the parameter θ given above.

We would expect in an era or industry where exploitation dominates that each period there

is some small innovation. Most innovation attempts are successful and of comparable impor-

tance. In a period of exploration, however, we would expect that most innovation attempts

are relatively unsuccessful. Every now and then, however, there will be a success, and it can

be big enough to cause major disruptions in the industry.

5.2 Network position and performance

Our overarching concern is whether prescriptions for firm strategy can be derived straight-

forwardly from empirical findings in pooled cross-section. In the context of interfirm alliance

networks, this is framed in terms of open versus closed network positions. In this section we

tackle this issue directly. There are two ways to think about the relationship between firms’

network positions and their performance. In the first, the locus is the innovation: what de-

termines the size of an innovation? This is the pooled cross-section approach. In the second,
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the locus is the firm: what determines the size of a firm’s innovative performance? This is the

within-firm, over time approach, which is relevant for strategic prescriptions. We ask both

questions and examine whether the answers are consistent with or, as we predict, opposite

to, each other, and thus whether or not evidence of network effects in pooled cross-section

data supports prescriptions for network strategy over time.

For comprehensiveness, we do this with two alternative measures. Node betweenness is

a direct measure of the openness of a network position.7 Betweenness is large when a firm

connects two otherwise disconnected (or very distant) parts of a network. Such a firm occupies

a fairly unique, open position in terms of accessing and controlling access to a broad set of

diverse resources. Low betweenness, by contrast, signals a more common structural position

where the source of social capital is redundancy and commonality of neighbors. A firm

with low betweenness occupies a closed network position. An alternative, direct measure of

closure is constraint.8 Constraint increases when the degree of the focal firm decreases, when

the number of distance-two neighbors decreases, and when the clustering of the focal firm’s

neighborhood increases (Burt, 1992). We use both measures and observe the consistency of

our results.

Earlier, we argued that in pooled cross-section open network positions would become more

beneficial to firms as the skew of the distribution of possible performance outcomes increased,

whereas over time the opposite would hold. We assess the veracity of this prediction by ex-

amining the correlation between firms’ betweenness and innovation size. To observe network

effects in pooled cross-section, each time there a firm innovates, we record the profits of the

innovating firm (i.e., total dislocation imposed on other firms minus the cost of its alliance

portfolio this period), and the betweenness of the innovating firm. We thus have innovation-

centric data. To observe “network strategy” effects, we follow each firm over its entire history,

and at the end of the simulation record, for each firm, total profits over this history (i.e., the

total dislocations it has imposed on other firms through its innovations minus the total cost it

has incurred in making alliances), and the average of its betweenness measured every period.

Here we have firm-centric data. Correlations between innovation size and betweenness on

the one hand, and total profits and betweenness on the other allow us to compare pooled

7Betweenness centrality of firm i, bi, is the sum, over all possible pairs k, l ∈ N − {i}, of the proportion
pk,i,l of shortest paths between k and l that run through i, i.e., bi =

∑
k,l 6=i pk,i,l.

8Constraint of firm i, Ci is defined as Ci =
∑

j 6=i

∑
q 6=i,j(ai,j + ai,qaq,j)

2, where ai,j = 1 if i and j have
an alliance and 0 otherwise.
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cross-section and within-firm long-run relationships. To observe how these relationships are

affected by the skewness of possible performance outcomes, we use as the abscissa the ob-

served skew of the population-level performance distribution. That is, for each value of the

parameter s, which controls the innovation size distribution, at the end of each simulation

run, we calculate the skew of the distribution of observed firm profits. We display Spearman

correlations against this variable in the left panel of Figure 4.
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Cross−section
Strategy

Figure 4: The relationship between betweenness and performance in cross-section and over
time, by skewness of the observed distribution of firm profits. Left panel shows correlations
between profit and betweenness; right panel displays t-statistics (means over standard errors
of differences) of above and below median firm profits, for cross-section ranked by innovation
size, for strategy ranked by firm average betweenness over time.

To provide an alternate view of the results, we present the data a second way. The cross-

section analysis essentially asks about innovations: “What are the properties of big (versus

small) innovations?” By contrast, the strategy analysis asks about firms: “What is the

performance of high (versus low) betweenness firms?” We can address those questions directly

by comparing large and small innovations, or open-positioned and close-positioned firms. In

the first instance, we compare the betweenness of the top and bottom halves of the innovation

size distributions. In the second instance we compare total profits for the top and bottom

halves of the population of firms ranked by betweenness. To perform these comparisons and

assess their statistical significance, we use a simple difference of means test. We report the

value of the t-statistic, which is the number of standard errors by which the two sample means

are separated. A value of the t-statistic outside (approximately) [−2, 2] means rejection of

19



the null hypothesis that the two sample means are the same. We display t-statistics against

the observed skew of the observed distribution of firm profits on the right panel of Figure 4.

What we observe in the left panel of Figure 4 is that, in pooled cross-section, open network

positions are positively correlated with firm performance. Further, this correlation increases

in magnitude with the skewness of the population-level distribution of observed firm profits.

By comparison, in the long run, while the correlation is positive for low-skew profit distri-

butions, it falls as the skewness of firm profits increases, and becomes negative when skew is

high. The right panel, displaying the difference of means test for of top-versus-bottom halves

of the population, tells the same story. In cross-section, with innovation-centric data, there

is clearly a statistical difference: large innovations are strongly associated with firms holding

open positions (as measured by betweenness) and this association grows as the skewness of

firm profits increases. Over the long run, using firm-centric data, though, effects are less

clear. Statistically, it would be difficult to argue that high-profit firms have more or less

open positions than closed-position firms. We note, though, that if there is a trend, the ef-

fect of population-level performance skewness on the relationship between open positions and

profit is of opposite sign to that seen in cross-section. Consistent with the predictions above,
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Figure 5: The relationship between constraint and performance in cross-section and over
time, by skewness of the observed distribution of firm profits. Left panel shows correlations
between profit and constraint; right panel displays t-statistics (means over standard errors
of differences) of above and below median firm profits, for cross-section ranked by innovation
size, for strategy ranked by firm average constraint over time.
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then, the results indicate that the effects of network position on firm performance in pooled

cross-section and over time are contradictory, and that evidence of network effects in pooled

cross-section data does not straightforwardly support prescriptions for network strategy over

time.

To examine the effects of closed positions directly, we replicate the analysis using constraint

rather than betweenness to measure firms’ network positions. The results, presented in Figure

5 are analogous to those found in Figure 4 for betweenness. The left panel shows correlations

between performance and constraint, plotted against the skewness of the population-level

profit distribution. The right panel shows t-statistics for the difference in means: in pooled

cross-section we compare the constraint of the top and bottom halves of the innovation size

distributions; for the long run, we compare total profits for the top and bottom halves of the

population of firms ranked by constraint. As expected, the correlation patterns are reversed

from those for betweenness. And, again, the results are consistent with our theoretical

predictions.

These simulation results are consistent with the link drawn between network positions and

learning modes suggesting that closed positions reduce firm performance variation, while

open positions increase it. To assess the alignment of this characterization with the outcomes

experienced by our simulated firms, we computed correlations of firms’ profit variance with

betweenness and constraint. To observe how these relationships are affected by the skewness

of the population-level performance distribution, we again use the skew of the observed

distribution of firm profits as the abscissa. The correlations are presented in Figure 6.

The left panel shows that the correlation between firm profit variance and betweeness

is positive but decreasing as the skewness of the observed firm performance distribution

increases initially, and stabilizes at 0 for skewness> 3. The right panel shows that the

correlation between firm profit variance and constraint, oppostively, is negative but increasing

as the skew of the observed firm profit distribution increases initially, and stabilizes at 0 for

skewness> 3. Thus, for skewness< 3 the profit variance correlations are consistent with

the theoretical expectation that closed positions, characterized by high constraint, lower

firm performance variance, while open positions, characterized by high betweeness, raise it.

For skewness> 3, the disruptiveness of the innovation regime (controlled by the parameter

s ∈ [1, 30]) results in all firms experiencing similar performance variance and this reduces

the correlations with network position to zero. Firms’ profit variance converge as s increases
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because the probability of large innovations of size s, 1/ (s+ 1), declines, while the probability

of small innovations of size 1/s, s/ (s+ 1), increases. The result is that innovations of size

1/s become more frequent, but are too small to differentiate the profitability of innovators

from non-innovators, while innovations of size s become large, but are too infrequent to

differentiate the profitability of firms over time.

6 Discussion and conclusion

We have observed substantial discrepancies in correlations between network position and

performance in pooled cross-section and within-firm, over time, and as a result, prescriptions

drawn from the two types of correlations would be very different under some conditions.

We have advanced an explanation that resides in the nature of performance benefits firms

derive from their network positions. And, in particular, whether network positions affect

firm performance through its mean or variance.

Open network positions facilitate broad search for emerging innovations and future options

vital to exploratory search (Powell et al., 1996). Closed network positions, yield access to the

redundant and validating information essential to exploitive search (Dyer and Singh, 1998).

Appropriate network positions thus depend on the degree of uncertainty and rate of change
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Figure 6: The relationships of variance in firm profits with betweenness and constraint by
skewness of the observed distribution of firm profits.
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in the environment (Gilsing et al., 2008; Rowley et al., 2000). Specifically, firms operating

in rapidly changing environments will benefit from open network positions, which aid in

exploration, while firms in stable environments will benefit from closed network positions,

which aid in exploitation.

This link between network positions and learning modes suggests, as we observed, that open

and closed network positions affect firm performance distinctly, with closed positions reducing

firm performance variation, and open positions increasing it. Closed network positions should

therefore benefit firms when the population-level performance distribution favors low firm

performance variation, and open network positions when the distribution favors high firm

performance variation.

Following March (1991), we proposed that right-skewed distributions of possible outcomes

favor firms occupying variance-increasing open network positions in pooled cross-sectional

competition for high performance. Over time, however, because high variance also increases

exposure to poor outcomes, mean performance for firms sustaining open network positions

declines with the right-skewness of the population-level performance distribution. Moreover,

because variance-reducing closed network positions provide protection against poor outcomes,

the performance benefit of sustaining a closed network position over time increases with the

right-skewness of the population-level performance distribution.

To examine these predictions, we designed our model to permit variation in the disrup-

tiveness of the innovation regime – from incremental to radical – in order to alter the right-

skewness of the distribution of possible performance outcomes. The possibility of large size

innovations generates a right-skewed distribution of possible performance outcomes in which

firms occupying open network positions should achieve higher performance in pooled cross-

section. In contrast, if only incremental innovations are possible, variance-reducing closed

network positions should produce higher performance in cross-section. These predictions are

consistent with arguments and pooled cross-section findings in empirical studies of network

effects (e.g., Gilsing et al., 2008; Rowley et al., 2000), and our results support them. Our

analysis thus identifies performance variability as a general mechanism that can potentially

account for the observed empirical findings on firm performance in pooled cross-section.

The results also support the within-firm, over time prediction for both open and closed

network positions. Thus, while the correlations for betweenness in pooled cross-section in-

crease with the skewness of the population-level performance distribution, the within-firm
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over time correlations for betweenness decline with this distribution’s skewness (see Figure

4). In contrast, the correlations for constraint in pooled cross-section decreased with the

skewness of the population-level performance distribution, while the within-firm over time

correlations for constraint increased with skewness (see Figure 5). Moreover, the results

were largely consistent with theoretical expectation underlying the prectictions that closed

positions reduce firm performance variation, while open positions increase it (see Figure 6).

Network strategy prescriptions drawn from the pooled cross-section correlations would

thus counsel firms to adopt open network strategies in high-skew innovation regimes where

population-level performance is also skewed, but correlations based on firms’ long-run strate-

gies indicate that this prescription is exactly opposite to the behavior of firms successful in the

long run. Analogously, network strategy prescriptions drawn from the pooled cross-section

correlations would imply firms adopt closed network strategies in low-skew innovation regimes

where population-level performance also exhibits low-skew, while correlations based on firms’

long-run strategies show that this prescription again directly contradicts the behavior of firms

successful in the long run.

Although we have focused here on the influential stream of research on network position

effects, the phenomenon we articulate is likely to be far more general, applying broadly to

firm characteristics (R&D intensity, for instance) that are likely to affect firm performance

through its variance rather than (or in addition to) its mean.

We began with the observation that, while intuitively appealing (and common), drawing

network strategy implications from empirical evidence of network performance effects in

pooled cross-section is not necessarily warranted. As we explained, this is because network

positions may influence both the mean and variance of firm performance. Although strategic

prescriptions are warranted if network effects observed empirically in pooled cross-section

reflect increases in mean firm performance, if network effects instead reflect increases in

firm performance variance, such prescriptions are warranted only if the increase in the odds

of achieving high performance are sufficient to compensate for the concomitant increase in

the odds of realizing poor performance. Our analysis suggests that network effects may

indeed reflect changes in firm performance variance, and moreover, that the increased odds

of achieving high performance in cross-section may be insufficient to compensate for the

concomitant increase in the odds of realizing poor performance over time. This suggests the

exercise of caution in drawing implications for network strategies.

24



References

[1] Abernathy, W.J., and Utterback J.M. 2000. Patterns of industrial innovation. Technology

Review, 7: 40-47.

[2] Adriani P., and McKelvey B. 2009. From Gaussian to Paretian thinking: Causes and

implications of power laws in organizations. Organization Science, 20:1053-1071.

[3] Ahuja, G. 2000. Collaboration networks, structural holes, and innovation: A longitudinal

study. Administrative Science Quarterly, 45: 425-455.

[4] Argote, L. 1999. Organizational Learning: Creating, Retaining and Transferring Knowl-

edge. Boston MA: Kluwer.

[5] Baum J.A.C., Cowan, R. and Jonard, N. 2010. Network-independent partner selection

and the evolution of innovation networks. Management Science. 56, 2094-2110.

[6] Baum J.A.C., and Ingram P. 2002. Interorganizational learning and network organiza-

tion: Toward a behavioral theory of the interfirm. In M. Augier, J.G. March (Eds.).

The Economics of Choice, Change, and Organization: Essays in Memory of Richard M.

Cyert: 191-218. Cheltenham, UK: Edward Elgar.

[7] Baum J.A.C., McEvily B., and Rowley, T.J. 2010. Better with age? Tie longevity

and the performance implications of bridging and closure. Organization Science,

doi:10.1287/orsc.1100.0566.

[8] Burt, R. S. 1992. Structural Holes: The Social Structure of Competition. Cambridge:

MA: Harvard University Press.

[9] Burt, R. S. 2000. The network structure of social capital. Research in Organizational

Behavior, Vol. 22: 345-423. New York: JAI-Elsevier Science Inc.

[10] Coleman, J. S. 1988. Social Capital in the Creation of Human-Capital. American Journal

of Sociology, 94: S95-S120.

[11] Coleman, J. 1990. Foundations of the Social Theory. Cambridge, MA: Harvard Univer-

sity Press.

25



[12] Dess, G.G., and Beard, D.W. 1984. Dimensions of organizational task environments.

Administrative Science Quarterly, 29: 52-73.

[13] Dyer, J.H., and Singh, H. 1998. The Relational View: Cooperative Strategy and Sources

of Interorganizational Competitive Advantage. Academy of Management Review, 23:

660-679.

[14] Gilsing,V., Nooteboom, B., Vanhaverbeke, W., Duysters, G., and van den Oord, A.

2008. Network embeddedness and the exploration of novel technologies: Technological

distance, betweenness centrality and density. Research Policy, 37: 1717-1731.

[15] Granovetter, M. 1973. The strength of weak ties. American Journal of Sociology, 78:

1360-1380.

[16] Gulati, R. 1995. Social structure and alliance formation patterns: A longitudinal anal-

ysis. Administrative Science Quarterly, 40: 619-652.

[17] Gulati, R., and Gargiulo, M. 1999. Where do inter-organizational networks come from?

American Journal of Sociology, 104: 1439-1493.

[18] Holland, J.H. 1975. Adaptation in Natural and Artificial Systems. Ann Arbor MI: Uni-

versity of Michigan Press.

[19] Lant, T.K., Milliken, F.J., and Batra, B. 1992. The role of managerial learning and inter-

pretation in strategic persistence and reorientation: An empirical exploration. Strategic

Management Journal, 13: 585-608.

[20] Lavie, D., and Rosenkopf, L. 2006. Balancing exploration and exploitation in alliance

formation. Academy of Management Journal, 49: 797-818.

[21] Levinthal, D.A., and March, J.G. 1993. The myopia of learning. Strategic Management

Journal, 14 (Winter Special Issue): 95-112.

[22] Levitt, B., and March, J.G. 1988. Organizational learning. Annual Review of Sociology,

14: 319-340.

[23] March, J. G. 1991. Exploration and exploitation in organizational learning. Organization

Science, 2: 71-87.

26



[24] McEvily, B., and Zaheer, A. 1999. Bridging ties: A source of firm heterogeneity in

competitive capabilities. Strategic Management Journal, 20: 1133-1156.

[25] Mitsuhashi, H. 2003. Effects of the social origins of alliances on alliance performance.

Organization Studies, 24: 321-339.

[26] Powell, T. C. 2003. Varieties of competitive parity. Strategic Management Journal, 24:

61-86.

[27] Powell, W. W., White, D., Koput, K., and Owen-Smith, J. 2005. Network dynamics

and field evolution: The growth of interorganizational collaboration in the life sciences.

American Journal of Sociology, 110: 1132-1205.

[28] Rosenkopf, L. and Nerkar, A. 2001. Beyond local search: Boundary-spanning, explo-

ration, and impact in the optical disk industry. Strategic Management Journal, 22: 287-

306.

[29] Rosenkopf, L., and Almeida, P. 2003. Overcoming local search through alliances and

mobility. Management Science, 49: 751-766.

[30] Rothaermel, F., and Deeds, D.L. 2004. Exploration and exploitation alliances in biotech-

nology: A system of new product development. Strategic Management Journal, 25: 201-

221.

[31] Rowley, T., Behrens, D., and Krackhardt, D. 2000. Redundant governance structures:

An analysis of structural and relational embeddedness in the steel and semiconductor

industry. Strategic Management Journal, 21: 369-386.

[32] Tushman, M.L., and Anderson, P. 1986. Technological discontinuties and organizational

environments. Administrative Science Quarterly, 31, 439-465.

[33] Uzzi, B. 1996. The sources and consequences of embeddedness for the economic perfor-

mance of organizations: The network effect. American Sociological Review, 61: 674-698.

[34] Uzzi, B. 1997. Social structure and competition in interfirm networks: The paradox of

embeddedness. Administrative Science Quarterly, 42: 35-67.

27



[35] Van de Ven, A. H. 1976. On the nature, formation and maintenance of relations among

organizations. Academy of Management Review, 1: 24-36.

[36] Walker, G., Kogut, B., and Shan, W. 1997. Social capital, structural holes and the

formation of an industry network. Organization Science, 8: 109-125.

[37] Yelle, L. E. 1979. The learning curve: Historical review and comprehensive survey.

Decision Sciences, 10: 302-328.

28



The UNU-MERIT WORKING Paper Series 

 

2012-01 Maastricht reflections on innovation by Luc Soete 
2012-02 A methodological survey of dynamic microsimulation models by Jinjing Li and  

Cathal O'Donoghue 
2012-03 Evaluating binary alignment methods in microsimulation models by Jinjing Li and  

Cathal O'Donoghue 
2012-04 Estimates of the value of patent rights in China by Can Huang 
2012-05 The impact of malnutrition and post traumatic stress disorder on the performance 

of working memory in children by Elise de Neubourg and Chris de Neubourg 
2012-06 Cross-national trends in permanent earnings inequality and earnings instability in 

Europe 1994-2001 by Denisa Maria Sologon and Cathal O'Donoghue 
2012-07 Foreign aid transaction costs by Frieda Vandeninden 
2012-08 A simulation of social pensions in Europe by Frieda Vandeninden 
2012-09 The informal ICT sector and innovation processes in Senegal by Almamy Konté and 

Mariama Ndong 
2012-10 The monkey on your back?! Hierarchical positions and their influence on 

participants' behaviour within communities of learning by Martin Rehm, Wim 
Gijselaers and Mien Segers 

2012-11 Do Ak models really lack transitional dynamics? by Yoseph Yilma Getachew 
2012-12 The co-evolution of organizational performance and emotional contagion by R. 

Cowan, N. Jonard, and R.Weehuizen 
2012-13 "Surfeiting, the appetite may sicken": Entrepreneurship and the happiness of 

nations by Wim Naudé, José Ernesto Amorós and Oscar Cristi 
2012-14 Social interactions and complex networks by Daniel C. Opolot 
2012-15 New firm creation and failure: A matching approach by Thomas Gries, Stefan 

Jungblut and Wim Naudé 
2012-16 Gains from child-centred Early Childhood Education: Evidence from a Dutch pilot 

programme by Robert Bauchmüller 
2012-17 Highly skilled temporary return, technological change and Innovation: The Case of 

the TRQN Project in Afghanistan by Melissa Siegel and Katie Kuschminder 
2012-18 New Technologies in remittances sending: Opportunities for mobile remittances in 

Africa Melissa Siegel and Sonja Fransen 
2012-19 Implementation of cross-country migration surveys in conflict-affected settings: 

Lessons from the IS Academy survey in Burundi and Ethiopia by Sonja Fransen, 
Katie Kuschminder and Melissa Siegel 

2012-20 International entrepreneurship and technological capabilities in the Middle East 

and North Africa by Juliane Brach and Wim Naudé 
2012-21 Entrepreneurship, stages of development, and industrialization by Zoltan J. Ács and 

Wim Naudé 
2012-22 Innovation strategies and employment in Latin American firms by Gustavo Crespi 

and Pluvia Zuniga 
2012-23 An exploration of agricultural grassroots innovation in South Africa and 

implications for innovation indicator development by Brigid Letty, Zanele Shezi and 
Maxwell Mudhara 

2012-24 Employment effect of innovation: microdata evidence from Bangladesh and 

Pakistan by Abdul Waheed 



2012-25 Open innovation, contracts, and intellectual property rights: an exploratory 

empirical study by John Hagedoorn and Ann-Kristin Ridder 
2012-26 Remittances provide resilience against disasters in Africa by Wim Naudé and Henri 

Bezuidenhout 
2012-27 Entrepreneurship and economic development: Theory, evidence and policy by Wim 

Naudé 
2012-28 Whom to target - an obvious choice? by Esther Schüring and Franziska Gassmann 
2012-29 Sunk costs, extensive R&D subsidies and permanent inducement effects by Pere 

Arqué-Castells and Pierre Mohnen 
2012-30 Assessing contingent liabilities in public-private partnerships (PPPs) by Emmanouil 

Sfakianakis and Mindel van de Laar 
2012-31 Informal knowledge exchanges under complex social relations: A network study of 

handloom clusters in Kerala, India by Robin Cowan  and Anant Kamath 
2012-32 Proximate, intermediate and ultimate causality: Theories and experiences of 

growth and development by Adam Szirmai 
2012-33 Institutions and long-run growth performance: An analytic literature review of the 

institutional determinants of economic growth by Richard Bluhm and Adam Szirmai 
2012-34 Techniques for dealing with reverse causality between institutions and economic 

performance by Luciana Cingolani and Denis de Crombrugghe 
2012-35 Preliminary conclusions on institutions and economic performance by Denis de 

Crombrugghe and Kristine Farla 
2012-36 Stylized facts of governance, institutions and economic development. Exploring the 

institutional profiles database by Bart Verspagen 
2012-37 Exploring the Panel Components of the Institutional Profiles Database (IPD) by 

Luciana Cingolani and Denis de Crombrugghe 
2012-38 Institutions and credit by Kristine Farla 
2012-39 Industrial policy for growth by Kristine Farla 
2012-40 Explaining the dynamics of stagnation: An empirical examination of the North, 

Wallis and Weingast approach by Richard Bluhm, Denis de Crombrugghe and 
Adam Szirmai 

2012-41 The importance of manufacturing in economic development: Past, present and 

future perspectives by Wim Naudé and Adam Szirmai 
2012-42 Lords of Uhuru: the political economy of elite competition and institutional change 

in post-independence Kenya by Biniam Bedasso 
2012-43 Employment and wages of people living with HIV/AIDS by Pilar García-Gómez, José 

M. Labeaga and Juan Oliva 
2012-44 Prescriptions for network strategy: Does evidence of network effects in cross-

section support them? by Joel A.C. Baum, Robin Cowan, and Nicolas Jonard 




