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Abstract

This paper studies the impact of interaction topologies on individual and

aggregate behavior in environments with social interactions. We study social

interaction games of an in�nitely large population with local and global exter-

nalities. Local externalities are limited within agents' ego-networks while the

global externality is derived from aggregate distribution in a feedback man-

ner. We consider two forms of heterogeneity, that due to individual intrinsic

tastes and that due to ego-networks. The agents know the potential number

of other agents they will interact with but do not posses complete informa-

tion about their neighbors' types and strategies so they base their decisions on

expectations and beliefs. We characterize the existence, uniqueness and multi-

plicity of equilibrium distribution of strategies. By considering arbitrary inter-

action topologies, we show that the interaction structure greatly determines the

uniqueness and multiplicity of equilibrium outcomes, as well as the equilibrium

aggregate distribution of strategies as measured by the mean strategy.

Keywords: Complex networks, Partial information, Local externality, Global

externality, Adoption.

JEL codes: C72, D82, D84, 033

1 Introduction

Social in�uence plays a great role in a wide range of socio-economic environments. Its
e�ect on individual behavior was recognized as early as 1900's by sociologists such
as Georg Simmel in his seminal work on social types; for example Simmel [1904],
where he points out the role of social in�uence in fashion and fads. Social in�uence,
or commonly referred to as social interactions, is also seen to take part in trade and
political alliances, public good provision, crime and technology adoption, evolution
of scienti�c theories, labor participation and employment among others. Empirical
work has been done to identify and quantify the role of social interactions in crime

∗This paper is a chapter of my Ph.D thesis carried out with the �nancial support from UNU-
MERIT. The helpful comments and suggestions from Théophile T. Azomahou, Bulat Sanditov,
François Lafond and Giorgio Triulzi are all highly acknowledged. Comments from participants
at the 10th Workshop on Networks in Economics and Sociology: Dynamic Networks at Utrecht
University, especially from Arnout van de Rijt are gratefully acknowledged. The usual disclaimer
applies.
†UNU-MERIT, Maastricht University, The Netherlands. Tel. +31 (0)43-3884400. E-mail ad-

dress: opolot@merit.unu.edu
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[Glaeser et al., 1995], labor participation [Mulligan, 1998], out-of-wedlock pregnancy
[Akerlof et al., 1996], unemployment [Topa, 2001] and substance use [Jones, 1994].
In line with the empirical work is the e�ort devoted to developing theoretical models
that have proven successful in describing the phenomena observed in environments
with social interactions, which can be categorized into three main classes. The local
interactions models; for environments in which the population size is small such that
the agents are aware of each others characteristics, or large population environments
with random interactions. For example models of population games, learning and
di�usion in social networks [Ellison, 1993, Young, 1993, Bala and Goyal, 1995, Vega-
Redondo, 2007, Acemoglu et al., 2008] and provision of local public goods [Bramoullé
and Kranton, 2007, Galeotti et al., 2010]. The global interactions model; in which
the population size is in�nitely large such that the agents only in�uence each other
through the global average behavior of the population [Brock and Durlauf, 2001].
The third class generalizes the local and global interactions and is for situations in
which the population size is in�nitely large and the individual behavior is in�uenced
by both the closest neighbors and the global distribution of strategies [Horst and
Scheinkman, 2006].

The magnitude of social in�uence on individual behavior depends on the size
of the interacting population and whether the interactions are localized within a
bounded neighborhood or are global. If the size of the interacting population is
large, we would expect that the cost of meeting or collecting information about all
other agents becomes high both in terms of time and resources. So the best an agent
would do is to take a statistical measure (for example a population average choice)
that would give an idea of how the strategies are distributed across the population.
In some social environments even when the interacting population is large individu-
als can still have small groups of other individuals that they would interact with on
a regular basis, for example family members and relatives, classmates, co-workers,
fellow researchers and many other forms of peer groups. If the sizes of these small
groups or neighbors matters in determining the magnitude of social in�uence, and
if the sizes of neighborhoods are heterogeneous across the population, then their
distribution must in turn act to in�uence individual and aggregate behavior. The
two other factors that determine the impact of social interaction on individual and
aggregate behavior are the level of information available to the agents at the time of
making decisions, and the nature of externalities derived from interacting with oth-
ers. That is whether it is of strategic substitutes or complements, and either positive
or negative externalities. For example in making a choice between competing tech-
nologies or softwares, if the game is of strategic complements such that individuals
bene�t from making compatible choices, then the larger the fraction of individuals
making a compatible choice within ones neighborhood the higher the reward. Sim-
ilarly in environments with positive externalities, such as provision of local public
goods, an individual's decision to contribute will depend on the fraction of other in-
dividuals within her neighborhood that also contribute, moreover the marginal social
cost within any neighborhood will be less than the marginal private cost.

In this paper, we study social interaction games with incomplete information in
environments with large populations and in which individual decisions are a�ected
by both local and global externalities. The local externality is limited within an
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agent's neighborhood, which we characterize by her ego-network1, and the global
externality is derived from aggregate distribution of strategies in a feedback manner.
The agents will be identi�ed with the sizes of the ego-network as their type; the
size of ones ego-network is commonly referred to as the degree in social networks
literature. The information is incomplete in the sense that agents have knowledge
of the number of other agents they will potentially interact with or encounter (that
will directly a�ect their decision) in the future but do not posses knowledge of their
types or identity at the time of making a decision. Unlike in most of the previous
models of social interactions where the sizes of neighborhoods is taken to be uniform
across the population, our framework incorporates a heterogeneous distribution of
neighborhood sizes. Since the population size is large, the agents posses only partial
information about the distribution of sizes of ego-networks across the population
such that they dichotomously assign probabilities from smallest possible size to the
largest possible size. We borrow techniques from the literature of complex networks
[Albert and Barabási, 2002, Newman, 2003] to address the problem of distribution of
sizes of ego-networks. A network (of connections between agents) is said to be com-
plex if its architecture does not exhibit uniform or clear patterns but rather displays
substantial heterogeneities. The tools employed to study such interaction structures
have their origin in random networks, formally initiated by Erdos and Renyi [1960].
When the network is complex, it is common to use probabilistic measures to capture
its topological properties, such as the degree distribution and degree correlations.
The agent's forecast of the distribution of neighborhood sizes across the population
through dichotomous assignments therefore corresponds to the degree distribution.
This concept has been applied to model local interactions in network games [Galeotti
et al., 2010, Galeotti and Vega-Redondo, 2011].

Galeotti et al. [2010] study incomplete information games with local externali-
ties. Agents posses partial information about the underlying interaction structure;
they know the potential number of agents they will interact with but do not know
the identity of their future partners. For example, in the case of choosing between
competing technologies based on complementarity, the agent may know the poten-
tial number of other agents that she will interact with but does not know who these
agents are. Other environments include the case in which a trader has knowledge of
the potential number of customers but does not know their distribution relative to
the number of other traders, or a Ph.D student deciding on the scienti�c theory to
follow can anticipate the number of fellow researchers she will interact with in the
future but does not know at the time of making the decision who these individuals
are. By specifying the agents' neighborhoods in the social network as the source of
their local externalities, Galeotti et al. [2010] characterize the impact of the level
of information, the nature of the game and individual position within the network
on the individual strategic behavior and payo�s. In a similar approach, Galeotti
and Vega-Redondo [2011] study games with local externalities but with special focus
on the continuous decision problem. Our framework di�ers in mainly two aspects.
First, we consider a discrete choice case with both local and global externalities. By
considering global interactions we are able to construct a micro-macro model and

1The words �neighborhood� and �ego-network� will be used interchangeably throughout the pa-
per.
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study the variations in aggregate characteristics as a result of variations in the inter-
action structure. Secondly, our framework is richer in the sense that we incorporate
heterogeneity in individual preferences, which allows us to study other equilibrium
phenomena; uniqueness and multiplicity.

A more closely related literature is the models of social interactions that employ
the random �elds approach of statistical mechanics [Blume, 1993, Durlauf, 1996].
The previous work in these models has considered either uniform neighborhood in-
teractions and/or global interactions with an exception of Horst and Scheinkman
[2006]. Horst and Scheinkman [2006] perform a qualitative analysis of games with
local and global interactions with continuous decisions. By treating the interactions
as an ergodic process, they are able to establish the existence of equilibrium, and
identify conditions on the preferences and the extent of local interactions under which
equilibrium outcome is unique. The main conditions are homogeneity in preferences
and that the extent of local interactions should decay su�ciently fast with the dis-
tance between agents. Our framework di�ers in three main aspects: First, as already
mentioned above, we consider discrete choice rather than continuous decisions, and
that individual decisions are based on their expectations of others' actions not their
actual environment ; information is limited at the time of making decisions. Sec-
ondly, by considering an arbitrary interaction structure with speci�c neighborhood
size distributions, a bound on the extent of local interactions is guaranteed and the
upper-bound is determined by the structure that the neighborhood size distribution
assumes. Third, we assume that individual actions are contingent on their type,
and by assuming that the actions are symmetric in the argument (type of agent),
homogeneity of preferences is guaranteed. Since our main concern in this paper is
to address the e�ects of interactions structure on individual and aggregate behavior,
we shall focus on the equilibrium outcome rather than the dynamics of the systems
towards equilibrium. For this reason, we shall make the assumption of consistency
between individual subjective and objective expectations at equilibrium as employed
in Durlauf [1996], Brock and Durlauf [2001]. With this speci�cation, we are able to
characterize equilibrium outcomes; the existence, uniqueness and multiplicity, and
by considering de�ned interaction structures we are able to obtain quantitative re-
sults on the e�ect of neighborhood size distribution on uniqueness and multiplicity
of equilibria. We also explore the interaction between the parameters of the model;
strength of local and global externalities.

In the remainder of the paper, we present the general framework in section 2,
giving details on how the externalities depend on the interaction structure. We also
present the general outline of the payo� structure and the characterization of equi-
librium for the interaction system being studied. In section 3 we consider a special
case of the binary action set, and explore the impact of changes in the interaction
topology and the network parameters on the equilibrium properties. In section 4
we characterize the e�ects of local externalities on individual welfare ranking of the
expected mean choice levels for the binary action set model developed in section 3.
The conclusion and possible extensions are given in section 5
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2 The model

2.1 Interaction structure and the local externality

We consider a social interaction game in which agents' neighborhoods are de�ned
by their social networks or ego-networks, which is the number of other agents one
directly interacts with. In this kind of setup, the interaction structure of the pop-
ulation can be de�ned by a graph G(N,E), where N is the number of vertices and
is equivalent to the number of agents (indexed i = 1, · · · , N), and E is the set of
edges linking pairs of agents. The neighborhood of an agent i is the set of agents
directly linked to her. The the size of i's neighborhood is therefore equivalent to
i's degree denoted by ki, which will also denote the identity of or type for i. We
are interested in determining the impact of the k's and their distribution across the
population on individual and aggregate behavior given the model parameters. Since
the population size is taken to be very large, we expect that the agents can posses
only partial information about the distribution of k across the population. They can
simply assign probabilities in a dichotomous manner. Borrowing from the literature
of complex networks, the distribution of k will be de�ned by a probability density
function P(k) = {p(k)}Kk=0, where p(k) ∀k is the fraction of individuals with degree k
[Newman, 2003, Vega-Redondo, 2007]. K is the maximum number of neighbors any
agent can have. It follows from the con�guration model that given P(k) the proba-
bility that any randomly chosen agent from the population is connected to a neighbor
of degree k is de�ned2 by the probability density function P̃(k) = {ζ(k)}Kk=1, where

ζ(k) =
p(k)k∑K

k′=1 p(k
′)k′

(2.1)

The agents have limited information about their future partners; in particular
they neither know their strategies nor their type, such that the interactions are
random (not with a �xed predetermined set of neighbors). Since agents's actions
are in�uenced by their social network, we can assume that actions are contingent
on the size of the ego-network, that is x(k). The implication is that an agent can
make expectations about her future partners based on the partial information she
possesses about the distribution of types across the population.

Denote by ni as the neighborhood of i; a hypothetical set whose elements would
be the potential future partners of i. What matters about the composition of ni is
its cardinality and the types of its elements. Denote by xni = {{xj(k)}Kk=1}j∈ni as
the degree contingent strategy pro�le of ni. We note that xni ∈ x, where x ∈ X is
the con�guration of the population, or simply the population strategy pro�le, and
X is the set of all possible con�gurations. We also note that the choice set X is
discrete, of which we shall later in the paper focus on a binary set. We can de�ne
i's expectation of any one of her randomly chosen neighbor as follows

Ei[xj |P] =
K∑
l=1

xj(l)ζ(l) (2.2)

2This is normally referred to as the excess degree of a vertex, and is proportional to the number
of �copies� of vertices with connectivity k within the population.
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The expression for the expectations in (2.2) is for a single neighbor, but what we need
is the conditional expectation(s) given that i has ki neighbors, that is Ei[xj |ki,P]
∀j ∈ n(i). To achieve this, we make the use of multinomial distribution, de�ned as
follows.

Denote by Rk, a rank vector that speci�es the distribution of degrees of the
neighbors of any randomly chosen agent with degree k. Since k is a K × 1 discrete
random vector, Rk is basically a support in k and de�ned as follows

Rk ≡
{
r = (r1, r2, · · · , rK)K :

K∑
l=1

rl = k

}
(2.3)

such that for each i ∈ N with degree k, r = (r1, r2, · · · , rK) ∈ Rk, for each l =
1, 2, · · · ,K, speci�es the corresponding number of i′s neighbors that have degree l,
where 0 ≤ rl ≤ k. And it follows that

∑K
l=1 rl = k. The distribution induced by

each r ∈ Rk follows a multinomial distribution given by:

Pk(r) =
k!

r1!r2!...rK !

K∏
l=1

ζ(l)rl (2.4)

Pk(r) can also be interpreted as the conditional (on k) degree distribution of i's
neighbors; it captures the entire information i possesses regarding the degree of her
neighbors. We can thus fully characterize the conditional expectation of i on her
entire neighborhood as

Ei[xni(r)|ki,P] =
∑
r∈Rk

Pk(r)vi(xni(r)) (2.5)

where vi(xni(r)) is a function of the degree contingent choices of neighbors of
i. For the sake of simple notations we denote Ei[xni(r)|ki,P] by Ei[xni ]. The form
assumed by vi(xni(r)) is determined by the nature of interactions; multiplicative,
strategic complementarity or substitutes, public good games, and this in turn deter-
mines the rewards that an agent attains from interacting with her neighbors. To be
more explicit, considering the de�nition of r above, by making an assumption that
x(k) is symmetric in k, vi(xni(r)) can be written as follows:3

vi(xni(r)) ≡ vi(x(1), · · · , x(1)︸ ︷︷ ︸
r1times

, x(2), · · · , x(2)︸ ︷︷ ︸
r2times

, · · · , x(K), · · · , x(K)︸ ︷︷ ︸
rKtimes

) (2.6)

Consider the following two cases; where the nature of interaction is such that there
is a positive multiplicative externality, and that in which the externaility is a com-
plementarity between i's action with the sum of the neighbors' actions (call this case
the positive summative externality).

In the case of the positive multiplicative externality, the in�uence of j's action on
i is taken to be the product of i's action and j's action, that is x(ki)x(kj). Given ki
neighbors with multinomial vector r, we have vi(xni(r)) = x(1)r1x(2)r2 · · ·x(K)rK .
Which is basically the Cobb-Douglas function. The resulting expressions of Ei[xni ]
becomes

Ei[xni ] =
∑
r∈Rk

{
k!

r1!r2!...rK !

K∏
l=1

[ζ(l)x(l)]rl

}
. (2.7)

3Symmetry of x(k) implies that all agents with degree k take the same action.
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For the case of positive summative externality, vi(xni(r)) =
∑K

l=1 rlx(l), such that

Ei[xni ] =
∑
r∈Rk

{
k!

r1!r2!...rK !

K∑
l=1

(
K∏
l=1

[ζ(l)]rl

)
rlx(l)

}
(2.8)

It is possible to make alternative speci�cations on vi(xni(r)) depending on the na-
ture of interactions. In this paper we shall mainly adopt the positive summative
externalities to illustrate the binary choice case considered in the sections to follow.

2.2 Empirical distribution

To take into account the global interactions, we introduce the empirical distribution,
speci�cally the empirical average, as an additional parameter in the model. The
empirical average associated with the action pro�le x = (x1, x2, · · · , xN ) is de�ned
as

ρ(x) =
1

N

N∑
i=1

xi (2.9)

Since the choices made depend on the interaction structure through the local inter-
action, the global average also endogenously depends on the interaction structure.
The agent's expectation of the empirical average at the time of making a decision is
mi(ρ) = E [ρ(x)].

The de�nition in (2.9) sums the actions over the population. Though the most
accurate would be to sum over the actions of all agents excluding i, we argue that
since the population contains in�nitely many agents, we expect that the contribution
of each individual agent to the global average is negligible. So the di�erence between
including i's action in computing her expectation of the empirical average and when
it is excluded, is negligible. For this reason, we treat mi(ρ) to be uniform across
agents, mi(ρ) = m ∀i ∈ N .

2.3 Payo� structure

The utility, Vi, agent i derives from interacting with the entire population can then
be expressed in an additive form as follows,

Vi(xi, x−i) = ui(xi) + Li(xi, xn(i)) +Gi(xi, x−i) + εi(xi) (2.10)

Where ui(.) is i's intrinsic (deterministic) utility for taking action xi; it will specify
how i evaluates choice xi. Li(.) is the local interaction or externality4; the social
utility derived from interaction with the neighbors. Gi(.) is the global externality,
which in this case will specify how an agent's choice is a�ected by the empirical
distribution (or average). As an example, we can think of these structure of the
utility in terms of the technology adoption, such that the intrinsic utility is individual
preference among the available choices (without consideration of what other agents
are choosing). Li(.) would be the bene�ts derived from compatibility of ones choice
of technology with that of the co-workers for example, and Gi(.) would be related

4The phrases �local and global interaction� will be used interchangeably with �local and global
externality� through out the paper.

7



to the cost of acquisition, such that if more individuals acquire technology B rather
than A, then the cost of B will be relatively lower.

εi(xi) is i's individual random utility term; random in the sense that it involves
the characteristics of an agent that are unobservable to the modeler, or in dynamic
adjustment models of game theory it is related to the shocks on agent's periodic
actions. We adopt an econometric interpretation for this model. Each agent i ∈ N
knows εi(xi) at the time of her decision. εi's are assumed to be independent and
identically distributed across agents and the distribution is common knowledge.

What we are interested in though is the expected utility of an agent given the
available information; which include the number of potential neighbors, the proba-
bilistic knowledge of the distribution of types (degrees) in the population. Let Ui(.)
denote the expected utility, then we have,

Ui(xi, x−i) = E [Vi(xi, x−i)] = ui(xi) + Li(xi,Ei[xn(i)]) +Gi(xi,E[x−i]) + εi(xi)
(2.11)

where Ei[xn(i)] and Ei[x−i] ≡ mi(ρ) are de�ned above.

The terms u, L and G are de�ned as follows; ui(xi) = hixi+c, and for the sake of
simplicity, in the analysis that follows hi will be taken to be constant, that is hi = h
for all i ∈ N .
We shall consider a particular environment in which social externalities are positive
and exhibit strategic complementarity; for this special case, L and G will assume a
quadratic form as follows.

Li(xi,Ei[xni ]) = αxiEi[xni ]

Gi(xi,E[x−i]) = βxiE[x−i] = βxim

}
(2.12)

where α speci�es the strength of i's expectation of her neighborhood on her marginal
utility.5 Similarly β is the strength of the global interaction.

2.4 Equilibrium characterization

To characterize the equilibrium outcomes in the environments with both local and
global interactions, we consider two stages of the interaction process. In the �rst
stage (�local equilibrium�), agents make decisions considering as given for each degree
distribution and neighborhood, the empirical distribution (average). They then make
a choice to maximize their utility given the anticipated choices of the neighborhood.
That is, the action pro�le associated with the empirical average can be treated as a
random variable, f(m, k,P) = {fi(m, ki,P)}i∈N , f(m, k,P) is an equilibrium action
pro�le if it satis�es

fi(m, ki,P) ∈ argmax
xi∈X

Ui(xi, {fj(m, kj ,P)}j 6=i,m, k,P) ∀i ∈ N. (2.13)

5We can also de�ne α as a function of r, that is α(r) = α′(1), · · · , α′(1)︸ ︷︷ ︸
r1times

, · · · , α′(K), · · · , α′(K)︸ ︷︷ ︸
rKtimes

.

Where α′ is the strength of local interaction with a neighbor of a given degree.
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In the second stage we consider the condition of self-consistency to de�ne a �global
equilibrium�. That is, for an interacting system of in�nitely many agents, the indi-
viduals' forecast of the average behavior (choice) coincides with the actual empirical
average of the actions.

Ei[ρ(x)] = E
[
f(m, k,P)

]
∀i (2.14)

In the �rst stage we de�ne the individual optimal strategies by a log-linear best
response rule, which corresponds to the individual choice probabilities; that is the
probability that an agent i takes action xi conditional on the exogenous characteris-
tics (degree, interaction topology, and other agents' strategies), Prob(xi|m, ki,P).

By assuming that the behavior of each agent is independent of the behavior of the
rest of the population (the agents play a non-cooperative game), we can characterize
the conditional joint probability distribution of the choices across the population as

Prob(x1, · · · , xN |m1(ρ), · · · ,mN (ρ), k1, · · · , kN ,P(k)) =
N∏
i=1

Prob(xi|m, ki,P(k))

(2.15)
The equilibrium joint distribution in (2.15) above has been proven to correspond
to the equilibrium (or rather long-run play) for the dynamic counterpart of the
interaction process. In the dynamic case, agents play a non-cooperative game in
which they are each given an opportunity to revise their strategy at random [Young,
1993, Blume, 1993].

From the equilibrium distribution in (2.15), we derive the corresponding equi-
librium mean choice, and by assuming self-consistency of mean choice, this mean
choice derived from the distribution is consistent with the mean choice m, that was
anticipated by the agents at the time of making their decisions.

In what follows, we consider the special case of a discrete binary choice, X =
{−1, 1}, This enables us to obtain a relatively simpli�ed result from which we derive
a better insight on the role of interaction topologies in social interactions.

3 A binary choice case

We consider a special case with a binary action set, X = {−1, 1}. Given their private
utilities and their expectations about the choices of their future neighbors and the
global average, the agents choose alternatives that optimize the expected utility U .
That is i will choose 1 if Ui(xi = 1, x−i) > Ui(xi = −1, x−i), which after substituting
(2.12) into (2.11) yields

εi(1)− εi(−1) > −2hi − 2αEi[xni ]− 2βm (3.1)

This yields the conditional probability of choosing 1 to be

Prob(xi = 1|m, k,P) = 1− Prob (εi(1)− εi(−1) ≤ −2hi − 2αEi[xni ]− 2βm) (3.2)

By assuming that the ε(−1) and ε(1) are independent and extreme-value dis-
tributed (IID) across all agents and alternatives6, it follows from McFadden [1984]

6If the ε's are IID, then

Prob(ε(−1)− ε(1) ≤ x) = 1

1 + exp(−ηx) ≡
exp(β

2
x)

exp(β
2
x) + exp(−β

2
x)
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and Anderson et al. [1992] that

Prob(xi = 1|m, k,P) =
exp

[
η(2h+ 2αEi[xni ] + 2βm)

]
1 + exp

[
η(2h+ 2αEi[xni ] + 2βm)

] (3.3)

where η measures the impact of random component in the decision process,7 the
degree of dispersion in the random component of private utility. Put in another way,
it is a measure of the inverse of heterogeneity of agents' preferences.

Alternatively, the choice probability can be expressed8 in a general form as

Prob(xi|m, k,P) =
exp

[
η(hxi + αxiEi[xni ] + βxim)

]∑
xi∈{−1,1} exp

[
η(hxi + αxiEi[xni ] + βxim)

] (3.5)

Since the ε's are IID across agents and alternatives, the joint conditional choice
probability is equivalent to

Prob(x|m, k,P) =
N∏
i

exp
[
η(hxi + αxiEi[xni ] + βxim)

]∑
xi∈{−1,1} exp

[
η(hxi + αxiEi[xni ] + βxim)

] (3.6)

Equation (3.6) can be seen as a product of the conditional probability distributions of
N independent and identically distributed binary random variables taking on values
{−1, 1}, with the probability given by (3.4). We can thus compute the expected
value (objective expectation) for each of the i ∈ N random variables as

E[xi|m, k,P] = (−1)Prob(xi = −1|m, k,P) + (1)Prob(xi = 1|m, k,P), (3.7)

which after making substitution9 using (3.3) and a few steps of algebra yields

E[xi|m, k,P] = tanh
(
η(h+ αEi[xni ] + βm)

)
(3.8)

Equation (3.8) is the conditional expected value of xi. To obtain the expected value of
xi for all possible values of k, we integrate over degree probability density distribution
(pdf). Denote the cumulative degree distribution (cdf) for the interaction structure

7A large η implies that the deterministic part of the utility function plays a vital role in the
maximization process, while as η tends to zero, the error component of the utility dominates and
the choice between x = 1 and x = −1 becomes a coin �ip.

8The choice probabilities can also be expressed in the form

Prob(xi|m, k,P) =
exp

[
η((hxi + c) + αxiEi[xni ] + βxim)

]∑
xi∈{−1,1} exp

[
η((hxi + c) + αxiEi[xni ] + βxim)

]
=

exp
[
η(hxi + αxiEi[xni ] + βxim)

]
× exp[ηc]∑

xi∈{−1,1} exp
[
η(hxi + αxiEi[xni ] + βxim)

]
× exp[ηc]

=
exp

[
η(hxi + αxiEi[xni ] + βxim)

]∑
xi∈{−1,1} exp

[
η(hxi + αxiEi[xni ] + βximi(ρ))

] (3.4)

9Substituting (3.3) into (3.7);

E[xi|m, k,P] = (−1)
exp

[
η(−2h− 2αEi[xni ]− 2βm)

]
1 + exp

[
η(−2h− 2αEi[xni ]− 2βm)

]+(1)
exp

[
η(2h+ 2αEi[xni ] + 2βm)

]
1 + exp

[
η(2h+ 2αEi[xni ] + 2βm)

]

10



with degree distribution p(k) by dFp, then the expected value of xi computed over
all possible values of k becomes

E[xi] =

∫
tanh

(
η(h+ αEi[xni ] + βm)

)
dFp (3.9)

Since k is a discrete random variable, and noting that the cdf can be expressed in
terms of the pdf dFp = p(k)dk, we can write the integral in equation 3.9 as a weighted
sum of the tanh's for all possible values of k, that is

E[xi] =
K∑
k=0

tanh
(
η(h+ αEi[xni ] + βm)

)
p(k) (3.10)

We postulate that if the empirical average de�ned by (2.9) exists, and is common
to all agents, then from the argument of the law of large numbers,10 this empirical
average coincides with the expected value of the N random variables as outlined by
(3.10).

From the law of large numbers,11 for a given realization x = (x1, · · · , xN ), the
sample mean choice will obey the following relation;

lim
N→∞

ρN ⇒ E[xi] (3.11)

The self consistency condition implies that, at equilibrium, the realized empirical
average ρN ⇒ E[xi] for N →∞, is equivalent to the expected empirical average m.
This condition leads to a closed equation whose root(s) are the steady state mean
choice level(s) for a system of interacting agents with local and global interactions.
That is,

m =
K∑
k=0

tanh
(
η(h+ αEi[xni ] + βm)

)
p(k). (3.12)

We would like to emphasize that in this type of analysis, like in Statistical me-
chanics, the interacting system of agents can be thought of as an ensemble; where
m, the population average of the actions, is the state of the system, and represents
the macro-characteristic of the system. The system can therefore be in any of the
possible states (i.e set of values of m). The con�guration of the system is determined
by the microscopic characteristics, which are speci�cally speaking, agent's private
preference, h, the neighborhood, k, and other parameters; η, α, and β. In the anal-
ysis, the point of focus is to study how variations at the microscopic level a�ects the
state of the system (macro-characteristics).

10A de�nition from Ellis [1985, Appendix page 299]: Let {Xj ; j = 1, 2, ...} be a sequence of
independent, identically distributed (i.i.d.) random vectors and de�ne Sn =

∑N
j=1Xj . If E{‖X1‖}

is �nite, then Sn
N

a.s→ E{X1}
11It is important to notice that the law of large numbers does not apply to the agent's expectation

of her neighborhood since the size of the neighborhood is bounded by K, a �nite and small number
of neighbors.
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3.1 Equilibrium

We use the solution concept of self consistent equilibrium, whose main elements are
de�ned in section 2.4, speci�cally (2.13) and (2.14). To be concise:

De�nition 1 A self consistent equilibrium is given by the population action con�g-
uration, x∗ = (x∗1, · · · , x∗N | k,P) that satis�es (2.13), with the corresponding set of
values of m∗ that solves (3.12).

The next theorem will establish the existence of equilibrium, but �rst we state the
property of monotonicity of individual actions, and its implications on the local
externality.

De�nition 2 Actions or strategies are said to be monotone in degree if for strategic
complements, k′ > k implies x(k′) > x(k), and x(k′) < x(k) for strategic substitutes.

The property of monotonicity means that equilibrium actions are non-decreasing
(non-increasing) in degree for the case of strategic complements (substitutes), and
has a direct implication on the local externality in that a player with a higher degree
will have a higher local externality than those with lower degree.

Consider a symmetric equilibrium in which all agents with the same degree k
choose the same action, x(k); for example if k = 5 then xi(5) = 1 for all i with
degree 5. Since x(k) is monotone in k, for a choice set X and heterogeneous ego-
networks 0 ≤ k ≤ K, a threshold should exist above (below) which a certain choice
is made.

Lemma 1 Given that xi(k) is monotonically non-decreasing in k, for a binary set
of x(k) = {−1, 1}, there exists a threshold kc such that

x(k) =

{
−1 if k < kc

1 if k ≥ kc
(3.13)

Lemma 1 is de�ned while assuming that alternative 1 is a better choice and hence
there is a positive externality from choosing 1. The reverse could be used to de�ne
the case of negative externalities. It is also possible to de�ne the case of multiple
thresholds. For example in cases where there is a limit to which the size of the
ego-networks can generate positive externality. That is for very small k an agent
would prefer to choose −1, but for k ≥ kc she would prefer to choose 1, till a limit
where the size of k becomes expensive to maintain, above which −1 is preferable
again. It also follows that if equilibrium can exist for the case of multiple threshold,
then monotonicity of actions in degree is a su�cient but not necessary condition for
existence of equilibrium con�guration.

This characteristic of the decision process results from the fact that the game
played is decentralized and is of incomplete information. The theorem follows.

Theorem 1 For any given interaction structure P (k), and equilibrium action con-
�guration x∗, there exists at least one equilibrium point, m∗, that solves (3.12).

Proof. Equation (3.12) can be rewritten in a functional form as,

f(m) = m−
K∑
k=0

tanh
(
η(h+ αEi[xni ] + βm)

)
p(k). (3.14)

12



We seek to show that there exist at least one value of m, m∗, for some constraints
on the model parameters 12 and a given network structure, such that f(m∗) = 0.

The hyperbolic function tanh(.) is monotone in its argument and is bounded on
the interval (-1,1). The sum of monotone functions is monotonic, since k is bounded
above by K, it follows that the weighted sum Ws(k) =

∑K
k=0 tanh

(
η(h+αEi[xni ] +

βm)
)
p(k), of tanh(.), on the right hand side of (3.14) is monotonic and bounded.

We also have that m ∈ [−1, 1], implying that f(m) exist and is continuous in the
interval m ∈ [−1, 1]. It then follows from the intermediate value theorem [Foerster,
2004] that there exist at least one m∗ ∈ [−1, 1] such that f(m∗) = 0.

For an explicit illustration consider the condition in which h = 0 and α = 0, it
can be easily checked that a root exists, m∗ = 0, satisfying f(m∗) = 0. And the
proof is true irrespective of either single or multiple thresholds of k.

3.2 Properties of Equilibrium

In the following analysis, we highlight the main properties of equilibrium outcome in
terms of its uniqueness and multiplicity relative to the model parameters; speci�cally
the parameter of agents' individual evaluation of choices, h, the parameter of hetero-
geneity, η and the strengths of the externalities α and β. We start with the baseline
model as the one in which individual do not care about what the potential future
neighbors will do but only care about the global share of agents taking a particular
action, that is p(k = 0) = 1. We shall then use the baseline model for comparison
with the case in which the network e�ects matter.

3.2.a Equilibrium for the baseline model, p(k = 0) = 1

To get a clear understanding of how the model parameters shape the equilibrium
mean choice outcome, let us start by considering the simplest case in which agents'
degrees are given by {ki = 0}i∈N , such that the agents are in�uenced by only the
global externality. Denote k = 0 as k0, and m for which k = 0 by m0. For p(k0) = 1
and p(k) = 0 for k 6= 0, equation (3.14) reduces to

m0 = tanh(η[h+ βm0]). (3.15)

Under this speci�cation, the agents enjoy only the global externalities on top of their
private utility and the interaction system reduces to a global interaction model of
Brock and Durlauf [2001], which has the following properties:

(i) When h = 0, and ηβ < 0, a unique root exist,m∗0 = 0; a symmetric equilibrium.

(ii) For h = 0 and ηβ > 0, three roots exist; one symmetric equilibrium and the
two asymmetric equilibria that take on equal magnitude but opposite sign, m∗−
and m∗+.

(iii) For h 6= 0 and ηβ > 0, there exists a threshold on ηh, hc such that; when
|ηh| < hc, multiple equilibria exist all of which are asymmetric, m∗−,m

∗
m,m

∗
+,

and when |ηh| > hc the equilibrium is unique and takes on the sign of h.

12Model parameters include α, β, η and h
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We brie�y elaborate on the three properties mentioned above. Recall that η is a
parameter that describes agents' heterogeneity in intrinsic taste, such that large η
indicates a population in which agents share similar individual tastes, and a small
η implies a large heterogeneity in tastes. Also recall that the agents individual
judgement of the choices, h, can also be interpreted as the private utility relative
magnitude13 (or bias) of the two choices such that if h > 0 then an individual pri-
vate judgement �nds action 1 better or superior than −1. The behavior of the system
is depicted in Figure 1.

-2 -1 1 2
m

-1.0

-0.5

0.5

1.0

f HmL

f Hm;ΗΒ=2L

f Hm;ΗΒ=2L

f Hm;ΗΒ=2L

f Hm;ΗΒ=0.5L

Figure 1 The equilibrium mean choice levels for the global interaction case. The bold purple

line is for ηh = 0 and ηβ = 0.5; dashed-orange line is for ηh = 0 and ηβ = 2; dashed-blue for

ηh = 0.4 and ηβ = 2; and bold green corresponds to ηh = 1 and ηβ = 2.

The �rst two properties above are for the case where individuals are indi�erent
between the two choices, that is h = 0. The �rst one basically says that if agents are
indi�erent between the choices, and if either there exists a large heterogeneity or a
small strength of global in�uence or both, then the population will be split into one
half adopting one choice and the other half adopting the other. We can also interpret
the strength of global externality as a measure of the desire to conform to the global
behavior, then property (i) says that when the desire to conform is low, agents base
their decision on their individual evaluation of the choices, but since the agents are
indi�erent and heterogeneous then we have a half-half probability that each of them
will choose one of the two alternative, hence m∗ = 0.

The second property results from relatively higher levels of homogeneity in indi-
vidual tastes and large strength of global externality. The magnitudes ofm∗− andm∗+
are thus determined by the levels of homogeneity and strength of global interaction.

The third property emphasizes the case in which h 6= 0. When |ηh| < hc, we
obtain multiple equilibria, and this represents a situation in which social in�uence
can lead agents to choosing alternatives which are not necessarily ranked best by
their individual evaluations. That is, let h = 0.4 such that individual private judge-
ment �nds action 1 better than −1, Figure 1 shows the possibility of obtaining an

13We de�ne the relative magnitude as the utility di�erence between the two actions, that is,
h = 1

2
{ui(1)− ui(−1)}
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equilibrium mean choice level for which m∗ < 0; the co-existence within the popula-
tion of the superior choice together with the less superior but dominant choice. The
phenomenon exhibited by social interaction that lead to the co-existence of compet-
ing alternatives has been used before to explain the co-existence of two competing
technologies [Cowan and Cowan, 1998] and scienti�c theories [Brock and Durlauf,
1999].

3.2.b Equilibrium for 0 ≤ p(k) ≤ 1

When 0 ≤ p(k) ≤ 1, the equilibrium mean choice is shaped by the interaction topol-
ogy, the strength and the size of local interactions; the size of agents' neighborhoods
or ego-networks. Consider the marginal changes in the mean choice level with respect
to the size of agents' neighborhood, and for a moment consider the case in which the
size of neighborhoods is constant across the population, such that

f(m) = m− tanh

(
η
[
H(k) + βm

])
(3.16)

where H(k) = h+ αEi[xni ]. The marginal change in mean choice level with respect
to k is given by 14

dm

dk
=

αη sech2 [η (H(k) + βm)]

1− ηβ sech2 [η (H(k) + βm)]

dH(k)

dk
(3.17)

A nonlinear relationship clearly shows up in (3.17), in which marginal change in
mean choice level with respect to the size of the neighborhood depends on the cur-
rent mean choice level and the model parameters. The right hand side of (3.17)
is positive on condition that dH(k)/dk > 0 ≡ dEi[xni ]/dk > 0. Substituting
for Ei[xni ] with the expression in (2.8) yields15 H(k) = h + αkx(k) such that
dH(k)/dk = x(k) + kdx(k)/dk. Since x(k) is monotonically non-decreasing in k,
it follows that dH(k)/dk > 0 and hence dm/dk > 0.

Consider the case in which h > 0, when compared to the baseline model for the
same values of |ηh| and hc, the threshold hc required to attain a unique equilibrium
for the case in which ηβ > 1 gets lower as k increases. That is if Hc is the threshold
required for a unique equilibrium to exist, and let the mean choice level at that �xed
point be m∗u, then Hc = hc at m

∗ = m∗u. It must therefore be that at m∗ = m∗u,
h < hc in the presence of network externalities. The same argument can be followed
to show that the level of individuals' evaluation or intrinsic preferences required for
a speci�c alternative to be fully adopted by the population is lower in the presence
of network externalities than in its absence.

When the neighborhood sizes are heterogeneously distributed across the popu-
lation the situation gets a bit more complex, but never the less we shall explore

14The marginal change in the degree can be derived from f(m) as

dm

dk
= −df(m)

dk

dm

df(m)
= − df(m)

dH(k)

dH(k)

dk

dm

df(m)

15Denote the multinomial coe�cient in (2.8) by C(k). If {ki = k}∀i∈N , the C(k) = 1, p(k) = 1,
and

∑K
l=0 ζ(l)rlx(l) = rkx(k) ≡ kx(k)
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the cases for de�ned interaction topologies in the sections that will follow. Before
embarking on that, the following corollary summarizes the above discussion and we
also summarize the results on the stability of equilibria.

Corollary 1 Let x(k) be a degree contingent action set. If x(k) is symmetric and
monotonically non-decreasing in k, then the magnitude of the equilibrium mean choice
level increases with the neighborhood size.

3.3 Steady states stability to local adjustment

To check for the stability of the steady states mean choice levels16 m∗−, m
∗
m, and m

∗
+,

we introduce the time variable t, such that the the mean choice at time t is denoted
by mt and similarly mt−1 for t − 1. The dynamic process is such that expected
choices and hence the corresponding mean choice at period t depends on the choices
made at period t− 1; this lead to the dynamic counter part of (3.12)

mt =
K∑
k=0

tanh (η(h+ αEi[xni ] + βmt−1)) p(k) (3.18)

For a given interaction structure, the stability check can be carried out in the same
procedure as in Brock and Durlauf [2001], we thus state the result here without
reproducing the steps.

Proposition 1 For a given interaction structure with degree distribution P (k), and
threshold kc, it follows from proposition 4 of Brock and Durlauf [2001] that,

(i) If equation (3.12) exhibits a unique root, that root is locally stable.

(ii) If equation (3.12) exhibits three roots, then the steady state mean choice levels
m∗− and m∗+ are locally stable whereas the steady state mean choice level m∗m
is locally unstable

3.4 Equilibrium under arbitrary interaction topologies

This section looks at the e�ect of changes in the interaction topology on the equi-
librium outcomes. The topology will be de�ned by an arbitrary degree distribution.
Two cases will be considered; the Poisson network and the scale-free network de-
gree distributions. First we characterize how the network parameters vary with the
equilibrium mean choice level, then we shall consider the e�ect of varying the net-
work structure. The questions that can be asked by these considerations are; What
happens to the state mean if we increase the connectivity or degree density? What
happens to the state mean if we increase or reduce the connectivity of one agent at
the expense of others' connectivity? The �rst question can be answered by looking
at the marginal changes in degree density for a given network, while the second can
be answered by comparing the state equilibrium outcomes for di�erent interaction
topologies.

16m∗− and m∗+ are the two steady state mean choice levels associated with the case in which the
largest parentage of agents choose −1 and 1 respectively, where as m∗m is the steady state mean
choice level associated with the case between m∗− and m∗+.
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3.4.a Poisson degree distribution

Consider a situation in which the interaction topology assumes the Poisson distribu-
tion, that is,

p(k) =
exp (−z)zk

k!
(3.19)

where z =
∑

k kp(k) is the average degree distribution. We shall consider the positive
externality described by (2.8). Denote the multinomial coe�cient by C(k) such that
C(k) = k!

r1!r2!...rK ! . Substituting for ζ(k) (where k is equivalent to l) in (3.12) gives,

m =

K∑
k=0

e−zzk

k!
tanh

(
η

[
h+ α

∑
r∈Rk

(
C(k)

K∑
l=0

K∏
l=1

(
e−zzl−1

(l − 1)!

)rl
rlx(l)

)
+ βm

])
(3.20)

We could follow the same steps as in subsection 3.2.b but the expression in (3.20) is
cumbersome to handle analytically. So we resort to simulations in order to get a clear
picture of the impact of network characteristics on the equilibrium mean choice level.
We numerically simulate a Poisson degree distribution network as an approximation
of Erdos and Renyi [1960] (hereafter ER network) for a large number of agents.

Figure 2 illustrates how the equilibrium mean choice, m∗ varies with the density
of the network. Setting the threshold parameter kc at 4, we observe the behavior of
m∗ for values of z ∼ 2, 3, 5, and the model parameters are set to be ηh = 0, ηα = 10,
and ηβ = 1.5. We set ηh = 0 simply because we want to capture mainly the impact
of the network topology, setting it otherwise does not change the result and most
importantly the interpretations. The result in Figure 2 is consistent with that derived
for a regular interaction topology in subsection 3.2.b. Increasing the degree density
increases the size of ego-networks across the population. As z increases we observe
a shift in equilibrium outcomes from a unique to multiple equiliria, and to a unique
equilibrium again but with di�erent signs as well as magnitude for the mean choice
levels.

Proposition 2 Let x(k) be symmetric and monotonically non-decreasing in k, for a
given kc and model parameters, the equilibrium mean choice level m∗+ increases with
z and there exists a value of z above which the equilibrium is unique. And vise versa
for m∗−.

Proof. Denote the fraction of agents from the neighborhood of an agent i with
degree k ≤ kc by fkc =

∑kc
k=1 p(k), and f

′
kc

=
∑K

k=kc
p(k) to be the fraction of agents

with degree k > kc. The threshold property will imply that all agents that belong to
fkc will choose alternative {-1}, and those in f ′kc choose {1}. Increasing the density
of connections within the population conditional on the degree of agent i (that is
while keeping the degree, k, of agent i constant), increases f ′kc . The e�ect of the
increase of f ′kc on i is through the choice probabilities17, and in turn her conditional

17Choice probability of i is

Prob(xi|m(ρ), k,P) =
exp

[
η((hxi) + αEi[xni ] + βximi(ρ))

]∑
xi∈{−1,1} exp

[
η((hxi) + αEi[xni ] + βximi(ρ))

]
17
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Figure 2 A plot of f(m) for Poisson degree distribution for values of kc = 4 and z ∼ 2, 3, 5. The

values of the model parameters are such that ηh = 0, ηα = 10, and ηβ = 1.5.

expected choice. That is the larger f ′kc the greater the probability of i choosing {1}.
If this scenario applies to every agent in the population the result is a general shift
of m∗ to high magnitudes of m∗+. A similar analysis and explanation holds if the
threshold condition is reversed in such a way that the monotonicity of x(k) is in the
direction of {-1}.

3.4.b Scale-free degree distribution

The scale-free degree distribution assumes properties of the power law distributions.
Speci�cally, the fraction of individuals in the network having degree k is described
by the following expression

p(k) =

{
0 if k = 0
k−γ

R(γ) if k = 1, · · · ,∞ (3.21)

where γ is a parameter and determines the decay of the distribution. R(γ) ≡∑∞
k=1 k

−γ is the Riemann zeta function and has the property that it converges
when γ > 1 and diverges for γ ≤ 1. The average degree in this case is given by
z(γ) = R(γ−1)

R(γ) . We notice that z(γ) diverges when γ < 2 and converges to 1 when

γ → ∞. Some empirical studies place γ between 2 and 3 [Clauset et al., 2009,
Barabasi and Albert, 1999]. Under scale-free degree distribution we thus have a
situation where a great fraction of the agents posses a lower degree and few agents
(hubs) posses very high degree. Scale-free degree distribution is thus the opposite
representation of the Poisson degree distribution.

For a given kc and model parameters, Prob(xi = 1|m(ρ), k,P) increases with z and Prob(xi =
−1|m(ρ), k,P) decreases with z.
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Figure 3 A plot of f(m) for the scale free degree distribution. The network parameters are set

at kc = 4, γ = 1.5, 2.0, 2.5, and values of the model parameters are such that ηh = 0, ηα = 10,

and ηβ = 1.2.

Figure 3 shows the behavior of f(m) for various network parameter (γ) values.18

The individual evaluation parameter h = 0. For the same level of threshold kc = 4
, f(m) is plotted for values of γ = 1.5, 2.0, 2.5. We observe that increasing γ has
an opposite e�ect as to that of increasing the degree density in the Poisson degree
distribution. Note that γ is a measure of the level of heterogeneity of the sizes
of ego-networks across the population, such that lower values of γ imply a more
heterogeneous population. It is observable from Figure 3 that the less heterogeneous
the population in the distribution of ego-networks the more �stable� the population
equilibrium state, and the reverse is true for a heterogeneous population. That is
if the population state mean is initially at m∗ = m∗−, making a transition from
m∗ = m∗− to m∗ = m∗+ requires a small threshold level kc, for γ = 2.5 than for
γ = 1.5. This point will be clearer when we compare the two degree distributions in
the next section. The above discussion is summarized in the following corollary.

Corollary 2 Let x(k) be symmetric and monotonically non-decreasing in k, for a
given kc and model parameters, the equilibrium mean choice level m∗+ decreases with
γ and there exists a value of γ above which the equilibrium is unique. The reverse is
true for m∗−.

18Substituting for the value of ζ(l) for the scale-free network topology we have the state mean
choice expressed in a functional form as follows

f(m) = m−
K∑
k=0

k−γ

R(γ) tanh

η
h+ α

∑
r∈Rk

(
C(k)

K∑
l=0

K∏
l=1

(
l−(γ−1)

R(γ − 1)

)rl
rlx(l)

)
+ βm
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3.4.c Variation of threshold parameter kc

We note that a similar variational e�ect on f(m) can be produced by keeping the
network parameters constant and vary the threshold parameter instead. Figure 4
shows the e�ect of varying kc on f(m), for Poisson distribution with z = 5. The
adjustment on kc produces a negative e�ect on the equilibrium mean choice level
when compared to the adjustment on z; the e�ect on the shape of f(m) is not
exact to that produced by adjusting z but the same equilibrium points could be
obtained. This has an important implication in real life decision problems with social
interaction, which is that since the interaction topology is exogenously given, any
social planner would not have to change the topology of interaction in the population
to obtain a desired outcome of the mean choice level, but she could rather reduce or
increase the threshold value through some form of incentives.
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Figure 4 A plot of f(m) for values of kc = 1, 5, 9, with z = 5. The model parameters are set

such that ηh = 0, ηα = 10, and ηβ = 1.5. For intermediate values of kc multiple equilibria exist,

but for small and large kc a unique m∗ is obtained.

3.4.d Mean-preserving spread of P (k)

The question we ask here is how changing the interaction topology in a mean pre-
serving manner would a�ect the equilibrium outcome; that is the equilibrium choice
probabilities and in turn the equilibrium mean choice level. The Poisson and SF
network degree distributions are generated for the same population size. The graph-
ical representation is presented in Figure 5; f(m) is plotted for kc = 4 and similar
conditions of the model parameters for both distributions. Two choices of γ are made
such that γ = 2.0 produces a more heterogeneous SF degree distribution with the
average degree z ∼ 3 below that for Poisson network, and γ = 1.5 leads to a less
heterogeneous population with z ∼ 10.

Proposition 3 Let F (k) and F ′(k) respectively be the cumulative degree distribu-
tions for P (k) and P ′(k). Also let P ′(k) be a mean-preserving spread of P (k) such
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Figure 5 A plot of f(m) for kc = 4, ηh = 0, ηα = 10, and ηβ = 1.5.

that there exists a k = keq for which F (keq) = F ′(keq). If kc < keq, m
∗
+ under P (k)

is greater than m∗+ under P ′(k), and vise versa for kc > keq.

Proof. Let P (k) and P ′(k) respectively denote the degree density distributions for
the Poisson and SF degree topologies, and F (k) and F ′(k) be the respective cumu-
lative degree distribution functions; the fraction of agents with degree less than or
equal to k. Since both distributions are generated from the same population size,
then P ′(k) for γ = 2 is close to being a mean preserving spread of P (k). It fol-
lows that there must exist a value of k = keq, the �intersection degree�, at which
F (keq) = F ′(keq). When k < keq, F (k) < F ′(k), which implies that if the threshold
parameter kc < keq, then F (kc) < F ′(kc). Since the fraction of agents choosing
alternative {1}, m∗+ is larger for F (kc) small19, it implies that when kc < keq, m

∗
+

under P (k) is greater than under P ′(k). In �gure 6, when γ = 1.5 we have that
keq = 6 and for γ = 2, keq = 8. On the other hand in �gure 5 kc = 4, such that
kc < keq, which proves the proposition. The reverse is also true for kc > keq

In Figure 6 there are two points for which k = keq, that is k
l
eq = 2 and kueq = 6

for γ = 1.6, and kleq = 2 and kueq = 8 for γ = 2, where the superscripts l and
u indicate lower and upper values of keq respectively. The two point of keq thus
split the relationship between F (k) and F ′(k) into three di�erent regions; kc < kleq,

kleq < kc < kueq and kc > kueq. In proposition 3 and Figure 5 we have considered

kleq < kc < kueq, where F (kc) < F ′(kc). Using the same argument, if kc < kleq we have
that F (kc) > F ′(kc), and proposition 3 implies that m∗+ under P ′(k) is greater than
m∗+ under P (k). Similarly if kc > kueq, we have that F (kc) > F ′(kc) and the result
follows. Consider a situation in which −1 is the dominant choice in the population,
and we (or a central planner in that matter) are interested in ensuring that 1 gets

19This relationship follows from the result in subsection 3.4.c
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Figure 6 The cumulative degree distribution functions for Poisson degree distribution with z =

3.6 and SF degree distribution with γ = 1.5, 2.

adopted by a larger fraction of the population. One way of achieving the desired
level of adoption of alternative 1 is by determining the existing interaction structure
and consider adjusting kc for the given model parameters, through incentives as
highlighted in section 3.4.c above. The other alternative would be to take kc and
the model parameters as given and then determine the interaction topology that
would best lead to the desired level of adoption for alternative 1. Proposition 3
then says that the scale-free degree (neighborhood sizes) distribution results to more
individuals adopting 1 relative to Poisson degree distribution if and only if kc < kleq
and kc > kueq

3.5 Model parameters

In Figure 7 we plot the combination of values of the strengths of local and global
interactions ηα and ηβ respectively, for which the equilibrium mean choice level is
m∗ = 0.9. That is the equilibrium outcome in which 90% of the population chooses
any one of the two alternative. For example given two competing technologies, or
products A and B, a policy maker or trader in that matter would like to estimate the
combination of the strength of local and global externalities that would minimally
lead to the greatest fraction of the population to adopt the desired among the two
alternatives. The values of ηα and ηβ are generated for kc = 2 in both the Poisson
and SF degree distributions.

For a given level of heterogeneity in intrinsic preference η, the combinations of α
and β vary between di�erent interaction topologies even for similar conditions of kc.
Since the SF networks is �a prototype� of the decentralized interaction structure in
which a few key �gures, the hubs, play a central role of connecting the greater fraction
of the population with lower degree, the result in Figure 7 highlights the conditions
under which decentralized interaction structures may be more e�cient in achieving
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full adoption when compared to other more uniform structures. We notice that for
lower values of kc the decentralized interaction structure may be more e�cient than
the random interaction topologies.
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Figure 7 The combination of values of ηα and ηβ for which 90% adoption is attained. kc = 2

and ηh = 0.

4 Welfare rankings

We would like to establish for a given P (k), which among the two stable equilibrium
mean choice levels (m∗− andm∗+) will provide an agent with a higher level of expected
utility conditional on the choices her neighbors make. Since the action are symmetric
in degree, and the agents are typi�ed by the degree, this is equivalent to computing
the expected utility for a degree k. To achieve this, we compute the agent's expected
utility prior to the realization of her random utility terms. We seek to characterize,

E(maxxiU(xi, x−i)|m∗−, k) = E[maxxi(hxi+ c+αxiEi[x
∗
ni ] +βxim

∗
−+ ε(xi))] (4.1)

and compare it to

E(maxxiU(xi, x−i)|m∗+, k) = E[maxxi(hxi+ c+αxiEi[x
∗
ni ] +βxim

∗
++ ε(xi))] (4.2)

where x∗ni is the action pro�le of the neighbor's that would correspond to root m∗.
Following from Small and Rosen [1981] and Anderson et al. [1992], equations (4.1)
and (4.2) become

E(maxxiU(xi, x−i)|m∗−, k)) = η−1
(
ln

[
exp(ηh+ ηc+ ηαEi[x

∗
ni ] + ηβm∗−)

+ exp(−ηh+ ηc− ηαEi[x∗ni ]− ηβm
∗
−)

])
(4.3)
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E(maxxiU(xi, x−i)|m∗+, k)) = η−1
(
ln

[
exp(ηh+ ηc+ ηαEi[x

∗
ni ] + ηβm∗+)

+ exp(−ηh+ ηc− ηαEi[x∗ni ]− ηβm
∗
+)

])
(4.4)

Consider �rst the case in which agents are indi�erent between the two choices, such
that h = 0, then |m∗+| > |m∗−| only if fkc < f ′kc , which yields Ei[x

∗
ni ] > 0. It follows

from (4.3) and (4.4) that the expected utility under m∗+ is higher than that under
m∗−. The reverse is true for fkc > f ′kc .

The case in which h 6= 0, we shall have four scenarios; the �rst is when h > 0
and Ei[x

∗
ni ] > 0, which will yield the expected utility under m∗+ to be higher than

that under m∗−. The second scenario is when h < 0 and Ei[x
∗
ni ] < 0; this yields the

expected utility under m∗− to be higher than that under m∗+. The last two scenarios
are symmetric, the one in which h > 0 and Ei[x

∗
ni ] < 0 and h < 0 and Ei[x

∗
ni ] > 0.

If h > 0 and Ei[x
∗
ni ] < 0 but h > Ei[x

∗
ni ], then m

∗
+ to be higher than that under m∗−.

The reverse is true for the opposite case and for the symmetric case. The result is
summarized in the following proposition.

Proposition 4 For a given interaction structure P (k), the welfare rankings for any
randomly chosen agent with degree k are as follows:

(i) If h = 0 and fkc < f ′kc , then the equilibrium associated with m∗+ yields a higher
level of expected utility for every agent than the equilibrium associated with m∗−.
The reverse is true for fkc > f ′kc.

(ii) If h > 0 and fkc < f ′kc , then the equilibrium associated with m∗+ yields a higher
level of expected utility for every agent than the equilibrium associated with m∗−.
The reverse is true for h < 0, and fkc > f ′kc

(iii) When h > 0, fkc > f ′kc but h > Ei[x
∗
ni ], then the equilibrium associated with

m∗+ yields a higher level of expected utility for every agent than the equilibrium
associated with m∗−. The reverse is also true for h < Ei[x

∗
ni ]

5 Conclusion

Social interactions play a great role in many socioeconomic environments, and since
the interactions are normally bounded within an individual's neighborhood, the sizes
and the distribution of sizes of neighborhoods act to shape the individual and aggre-
gate behavior. A large body of theoretical models have considered regular topolo-
gies, in which the sizes of neighborhoods is uniform across the population. Real
world networks on the other hand indicate that social environments are governed by
heterogeneous interaction topologies. In this paper, we de�ned the neighborhood at
individual level, that is the size of their ego-network or the degree. We then con-
sider the ego-networks to be heterogeneously distributed across the population, such
that we model two types of heterogeneities, that due to individual private taste and
that due to ego-networks. We consider two polar interaction structures, the Poisson
degree distribution as an approximation of the random degree distribution for large
number of agents, and the scale free degree distribution.
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We characterize the existence of equilibrium in such systems and explore the in-
�uence of various interaction topologies on individual expectations and equilibrium
aggregate outcome as measured by the mean choice level. We show that the topology
of interaction greatly determines the multiplicity of equilibria as well as the magni-
tude of the equilibrium mean choice levels. The presence of network externalities can
act to either reinforce the adoption of the superior alternative, or result in an equi-
librium in which the inferior alternative remains the most dominant but coexisting
with the superior alternative.

By considering a micro-macro approach, the model is very useful in predicting or
at least deriving insights on the macroscopic parameter levels that can be obtained
for a given interaction structure and distributions of microscopic characteristics. For
this reason, we claim that the model is applicable for deriving insights for policy
implications and optimal planning in general.

The model we have developed is general and can be applied to any interaction
environments in which agents can be identi�ed by types (not necessarily the degree)
and that the individual strategies are contingent on the type. It can also be applied
to cases where the interactions are governed by bipartite relations between di�erent
groups of actor, for example traders and consumers. Though we have considered
only the case of positive externalities, single threshold, summative local externality
and a binary choice set, several extensions in these directions are possible.
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