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for social and economic policy research. Howevénitéd research has been
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Evaluating Alignment M ethods in Dynamic Microsimulation Models
I INTRODUCTION

Microsimulation is a technique used to model comptal life events by simulating
the actions and the impact of policy change oninldévidual micro unit. (Harding,
2007) Microsimulation models are usually categatiseto “static” or “dynamic”.
Static models, e.g. EUROMOD (Mantovani et al., 20@re often arithmetic models
that evaluate the immediate distributional impapbru individuals/households of
possible policy changes. Dynamic models, e.g. DR, PENSIM, SESIM
(Bardaji et al., 2003, Curry, 1996, Flood, 200&tead the static model by allowing
the individuals to change their characteristica assult of endogenous factors within
the model (O’'Donoghue, 2001). Using this methods ipossible to generate new
simulated populations that can be used for policy scenario analysis.

Dynamic microsimulation models typically simulatehavioural processes such as
demographic (e.g. marriage), labour market (e.gempioyment) and income
characteristics (e.g. wage). The method uses tatatiestimates of these systems of
equations and then applies Monte Carlo simulateohniques to generate the new
populations, typically over time, both into thedtg¢ and when creating histories with
partial data, into the past.

As statistical models are typically estimated ostdrical datasets with specific
characteristics and period effects, projectiontheffuture may therefore contain error
or may not correspond to exogenous expectatiorfsitafe events. In addition, the
complexity of micro behaviour may mean that simolatmodels may over or under
predict the occurrence of a certain event, evemwell-specified model (Duncan and
Weeks, 1998). Because of these issues, methodalibfation known as alignment
have been developed within the microsimulationditiere to correct for issues related
to the adequacy of micro projections.

Scott (2001) defines alignment as “a process o$ttaming model output to conform

more closely to externally derived macro-data &#s’).” There are both arguments
for and against alignment procedures (Baekgaard,2802). Concerns directed

towards alignment mainly focus on the consistessyé within the estimates and the
level of disaggregation at which this should ocdtris suggested that equations
should be reformulated rather than constrainedosxk Clearly, in an ideal world, one

would try to estimate a system of equations thaticcaeplicate reality and have

effective future projections without the need fdigmment. However, as Winder

(2000) stated, “microsimulation models usually fail simulate known time-series

data. By aligning the model, goodness of fit to @iserved time series can be
guaranteed.” Some modellers suggest that alignimemt effective pragmatic solution

for highly complex models. (O’Donoghue, 2010)

Over the past decade, aligning the output of a asiorulation model to exogenous
assumptions has become standard despite this gergyo In order to meet the need
of alignment, various methods, e.g. multiplicatsealing, sidewalk, sorting based
algorithm etc., have been experimented along witle tdevelopment of
microsimulation (See Morrison, 2006). Microsimuteti models using historical
datasets, e.g. CORSIM, align the output to histdrdata to create a more credible
profile (SOA, 1997). Models that work prospectivedyg. APPSIM, also utilise the



technique to align their simulation with externabjections (Kelly and Percival,
2009).

Nonetheless, the understanding of the simulatioopgnties of alignment in
microsimulation models is very limited. Literatusa this topic are scarce, with a few
exceptions such as Anderson (1990), Caldwell €1898), Neufeld (2000), Chénard
(2000a, 2000b), Johnson (2001), Baekgaard (2002)yriddn (2006), Kelly and
Percival (2009) and O’Donoghue (2010). Although sonew alignment methods
were developed in an attempt to address some tiedrand empirical deficiencies
of earlier methods, discussions on empirical sitma properties of different
alignment algorithms are almost non-existent.

This paper aims to fill this gap and better undgerdtthe simulation properties of

alignment algorithms in microsimulation. It evalestall major binary alignment

methods using a simple microsimulation model witketiof synthetic datasets and a
real life dataset. It compares the alignment praegsprobability transformations, and
the statistical properties of alignment outputsramsparent and controlled setups. In
addition, a real life panel dataset, Living in &edl (LII), is used together with a

simplified microsimulation model to evaluate thégament performances in typical

microsimulation project setup. Alignment performasicare tested using various
evaluation criteria, including the ones outlinedMarrison (2006).

The present paper is divided into 6 sections. énrtaxt section, we will review the
background to the alignment methodology used irnrasimulation and summarizes
the existing algorithms used in various modelstiBe discusses the objectives of
alignment and the method of algorithm evaluatioect®n 4 describes the detail of
the datasets used in the evaluation process anel lseyrstatistics. We will present the
results of the evaluation in section 5, and corelmdthe last section.

Il.  ALIGNMENT IN MICROSIMULATION

This section discusses the purpose of alignmeat nmicrosimulation model and the
common practise of their statistical implementatiBaekgaard (2000) suggests two
broad categories for alignment: parameter alignment

. whereby the distribution function is changed byuatipent of its parameters;
andex post alignment,

. whereby alignment is performed on the basis of jusaeld predictions or
interim output from a simulation.

This paper primarily focuses on tke post alignment methods, as they are the most
common form of alignments in microsimulation.

Models of continuous events such as the level ohiegs or investment income
utilise statistical regressions with continuous efggent variables and produce a
distribution of continuous values. However, thedicgon of the statistical model may
deviate from the expectation for example due texgected change in the distribution
or productivity or may need to be adjusted for scEnanalysis. This raises the need
for alignment, which is often may be an adjustmeht multiplicative applied
continuous variables or via adjusting the errotritistion (Chénard, 2000a).



For binary variables however, one cannot not apgply same method, as binary
variable simulation uses discrete choice model& sisclogit, probit or multinomial
logit models and the outputs cannot be adjustedisnway like continuous variables.
As the majority of processes, e.g. in-work, emplewin health, retirement, etc., in
dynamic microsimulation models are binary choicenature, this paper focus its
attention on the alignment of binary choice models.

Models of discrete events such as in-work, employnsgéatus, disability status etc.
are typically produce probabilities of the eventurting as output. These models can
be expressed in the following generic form:

f(p)=a+pBx +¢ &)

As seen, equation 1 can be divided into a detestitncomponenta +8X, and a
stochastic componeat. In a simple Monte Carlo simulation, we generagerandom
numbek; , adjust the model for endogenous changes in theaextory variables to

produce a new deterministic componemt- 32X, and simulate a new dependent
variable.

In the case of a binary choice we produce
fp)=a+Bx +e )

The dependent variable is predicted to have a \/}aliﬂef(p;) >0and 0 otherwise

In most cases, a microsimulation model applies thiediction process to all

observations individually without interaction. Hoves, this may lead to a potential
side effect: The output of the predication, althougmay look reasonable at each
individual level, may not meet the modeller's exjpéion at the aggregate level. For
instance, the simulated average earning might dieehior lower than the assumption,
or the in-work rate is beyond the expectation. €f@e, alignment is introduced as
the step after the initial prediction in order twrect this “error”.

Although the theoretical debate of alignment is oxr, alignment isle facto widely
adopted in the models built or updated within lasicade, e.g. DYANACAN
(Neufeld, 2000), CORSIM (SOA, 1997), APPSIM (Bac@009). Many papers, e.g.
Baekgaard (2002), Bacon (2009) and O’'Donoghue (R0ifve discussed the main
reasons for alignment, and summarise them as fsilow

. Alignment may be used to ‘repair’ the unfortunat@gequences of insufficient
estimation data by incorporating additional infotima in the simulations.
Since no country has an ideal dataset for estigatihthe parameters needed
for microsimulation, modellers often make compraesis which adversely
affects the output quality. Alignment can be usetix some of these errors.

“ Note f ( p:) in the case of a logit model is defined ﬁs( p,) =In (1 P -
Y

> A more detailed description of logit based diseretodel in microsimulation can be found in

O’Donoghue (2010)



. Alignment can be used to adjust for poor predicpieeformance of the micro
model or its misspecification. Even with perfecttajarelationships between
dependent variables and explanatory variables nienge considerably in
countries where substantial structural changestakeng place. Alignment
allows one to correct for these issues and makesithalation consistent with
holistic projection assumptions.

. Alignment provides an opportunity for producing sagos based on different
assumptions. Examples include the simulation @fradtive recession scenarios
on employment with different impacts on differemcisl groups (e.g. sex,
education or occupation)

. Alignment is instrumental in establishing linksWween microsimulation models
of the household sector and the macro models. dt ¢sucial step to reach a
consistent Micro-Macro simulation model (see Dadég4).

. Alignment can be used to reduce Monte Carlo vdiigbithough its
deterministic calculation (Neufeld, 2000). Thisparticularly useful for small
samples to confine the variability of aggregat¢isias.

Alignment Methods

In order to calibrate a simulation of a binary abie, we need a method that can
adjust the outcome of a logit or probit model todarce outcomes that are consistent
with the external total. At the moment, there is standardised method for
implementing alignment in microsimulation. Giverathifferent modellers may have
different views or needs, it is not surprising thatious binary alignment methods
have appeared.

Papers by Neufeld (2000), Morrison (2006) and O’'dghue (2010) provide
descriptions on some popular options for alignmesed in the literature. Existing
documented alignment methods include

* Multiplicative Scaling

» Sidewalk Shuffle, Sidewalk Hybrid and their derivas
» Central Limit Theorem Approach

» Alignment by Sorting (with different sorting variais)

Multiplicative scaling, which was described in Neldf (2000), involves undertaking
an unaligned simulation using Monte Carlo technsq@ad then comparing the
proportion of transitions with the external contiaial. The ratio between the desired
transition rate and the actual transition is catad and applied in a second pass to
the simulated probabilities. The method, howewcriticized by Morrison (2006) as
probabilities are not limited to the range 0-lhaitgh the problem is rare in practice
as the multiplicative ratio tends to be small. Ndadif 2000) suggests solutions to this
may include using nonlinear adjustment.

The sidewalk method was first introduced in Neuf@@00) as a variance reduction
technique, which was also used as an alternatiymite Monte Carlo simulation. It
reduces the possibility of unlikely simulated ounes because of the use of random
numbers. The original method, however, does nanathe simulated data to an
external control. It simply involves accumulating ranning total of predicted
probabilities. Once the accumulation exceeds 1lramsition occurs. Therefore, it



eliminates the use of random numbers as a variamokiction technique.
Nevertheless, the method has some difficultiesutput replications when the order
observations changes. The order of the observatiaysbe altered due to the deletion
of an observation (e.g. deaths) or other changa®alSorrelation within families (or
other clustering unit) is also an issue as peopthinvthe cluster are simulated in
order. It is therefore unlikely for two people witra family to be simulated to make a
transition in one year if the transitional probdias are low.

Neufeld (2000) further developed an alignment mettttat he characterized as a
hybrid of independent Monte Carlo simulation ane sidewalk method. DYNACAN
adopted this method with non-linear adjustment twe tequation-generated
probabilities, combined with a minor tweaking ofetlresulting probabilities
depending on whether the simulated rate is ahead bé&hind the target rate for the
pool during the progress and some randomisatidvierrison, 2006). The method
calibrates the probabilities through the logit sfammation instead using probabilities
directly in order to assure the values are bourgetsveen 0 and 1. (SOA, 1998)
Sidewalk Hybrid method requires two key parametetsch decides how similar the
output is to standard Monte Carlo or standard sadlevwethod.

The Central Limit Theorem approach is describeiorrison (2006). It utilises the
assumption that the mean simulated probabilitydsecto the expected mean when N
is large. It manipulates the probabilities of eautlividual observation on the fly so
that the simulated mean matches the expectatianofe detailed description of the
method can be found in Morrison (2006). As all thethods we have discussed so
far, this method does not need any sorting routine.

Alignment by sorting was first documented by O’Dghae (2001) and Johnson
(2001). It involves sorting of the predicted proitip adjusted with a stochastic
component, and selects desired number of eventsding to the sorting order. It is
seen as a more “transparent” method (O’Donoghug&QR8lthough computationally
more intensive due to the sorting procedure. Maajations of the methods have
been used in the past years and we will discussnibsly used three algorithms in
this paper:

. Sort by predicted probability (SBP),

. Sort by the difference between predicted probgbiihd random number
(SBD), and

. Sort by the difference between logistic adjusteddmted probability and
random number (SBDL).

Sort by predicted probability (SBP)
Assuming that the predicted probability from a tagbdel can be defined as:

_ exp(a+ﬁX;)
a 1+exp(a’+,8X;)

®)

. is the predicted probability, bottr and g are estimated coefficients. This method
essential picks up the observations with highgstin each alignment pool. One



consequence, however, is that those with the higisésare always being selected for
transition. In the example of in-work, the higheueated, all other things being equal
would be selected to have a job. In reality thogé tine highest risk will on average

be selected more than those with lower risk, butaiways be selected. As a result
some variability needs to be introduced. Kelly &etcival (2009) propose a variant
of this method, where a proportion (typically 10¥dlee desired number) are selected
when the sorting order is inverted, so as to almwrisk units to make a transition.

Sort by the difference between predicted probability and random number (SBD)

Given the shortcoming of the simple probability tsw, Baekgaard (2002) uses
another method, which sorts by differences betwpmdicted probability and a

random number. Instead of sorting the probabifitglirectly, it sortsz,, which equals

to the difference betweep, and a random number,, a number that is uniformly

distributed between 0 and 1. Mathematically, thigisg variable can be defined as
follows:

7, = logit™ (C”,BXZ-) —y = eXP(CJ’+,6’XI.)

= —u. 4
" 1+exp(a+BX,) “ @

A concern about this method is that the range aiide sorting values is not the
same for each point. In other words, because thelora numberu, 00[0,1] is

subtracted from the deterministically predigied and the sorting value takes the
ranger, J[-1,1]. For each individual, r will only take a possibénger, O[u,—1,u,].
As a result, wherp*, is small say 0.1, the range of possible sortingesis [-0.9,
0.1]. At the other extreme if*, is large say = 0.9, then the range of possiblangpr

values is [-0.1, 0.9]. Thus because there is ongmall overlap for these extreme
points, an individual with a smapi*. will have a very low chance of being selected

even if a low value random number is paired with dbhservation. Ideally the range of
possible sorting values should be the same, sddhatch individualy, O[4,b], with

individuals with a lowp*, being clustered towards the bottom and those avitigh
p*, being clustered towards the top.

Sort by the difference between logistic adjusted predicted probability and random
number (SBDL)

An alternative method described in Flood et al. 080 Morrison (2006) and
O’Donoghue et al. (2008) mitigates the range pmoblef SBD by using logistic
transformation. This method takes a predicted tagigariable from a logit model,
logit(p,) =a+ BX,combined with a random numbeythat is drawn from a logistic

distribution to produce a randomised variable:
o =logit” (a+ BX, +¢,) (5)

2, is then used to sort individuals and similarly tbe »;, of households are selected.
The sorting variable can therefore be describddlbmsvs:



exp(a + X, +¢&,)

- =logit(a+BX, +&)=
7 =logic (@ + X, +£) l+exp(a+BX, +¢,)

(6)

£, is a logistically distributed random number withanevalue 0 and a standard error

of 77/+/3 .Since the random number is not uniformly distrdzliasz, in the previous
method, it produces a different sorting order.

I1l. METHODSOF EVALUATING ALIGNMENT ALGORITHM

In order to evaluate the simulation properties bf alignment algorithms, it is
important to define what we need to compare, andtwie criteria are. Although
different alignment methods have been briefly doeated in a few papers, there is
little discussion on the actual performance diffiees among these methods.
Implementations vary from model to model, but nggraso far validates the
alignment methods. This paper tries to evaluateerdint algorithms and compares
how they perform under different scenarios.

Objectives of Alignment

The objectives of alignment, discussed in Morrigd@06) and O’Donoghue (2010)
serve as the basis of our evaluation criteria. Faopmactical point of view, a “good”
alignment algorithm should be able to

a) Replicate as close as possible the external cowtiaks for the alignment totals.
This is one of the main reasons why alignment isplémented in
microsimulation and the common goal of all alignterethods as discussed
virtually all alignment papers, e.g. Neufeld (200@prrison (2006)

b) Retain the relationship between the deterministid explanatory variables in
the deterministic component of the model (O’'DonagR010). In achieving the
external totals, the alignment process should rast the underlying relationship
between the dependent and explanatory variables.

c) Retain the shape of distributions in different g and inter-relations unless
there is a reason not to do it. Morrison (2006)gasis that alignment is about
implementing the right numbers of events in thétrigroportions for a pool’s
prospective events, as opposed to simply gettiagitiht expected numbers of
events. Although alignment processes focus on gleegated output, it should
not significantly distort the relative distributiawithin different sub-groups. For
instance, if we want to align the number of peaple/ork, we not only want to
get the numbers right at the aggregate level, lzat at the micro/meso level,
e.g. the labour participation rate for 30 yearssiiduld be higher than the rate
for the 80 years old. This relative distributioroshld not be changed, at least
substantially, by the alignment method. A highlgtdited alignment process
would adversely affect the distributional analysia, typical usage of
microsimulation models.

d) Compute efficiently. There is no doubt that todagtsnputing resources have
been more much more abundant that ever. Howeveenwiandling large
dataset, e.g. full population dataset, computatior@nstraint is still an



important issue. Some projects, e.g. LIAM2/MiDaliggeois, 2010), redesign
the entire framework in order to achieve fasterespand accommodate larger
datasets.

Indicators of alignment performance

In order to assess the alignment algorithms witly déferent designs, the paper uses
a set of quantitative indicators that can measwesimulation properties according to
the criteria discussed earlier. The indicatorsudel

* A general fit measure: a false positive r&ig¢y =1|0) and a false negative
rate Pr(Y =0|1), which reflect how well the prediction fit the aat data in
general.

* A target deviation index (TDI), which measures th#erence between the
external control and the simulation outcome. Thididgator is directly linked
to the first criterion.

« A distribution deviation index (DDI), which measar¢he distortion of the
relationship between different variables and im&dations, as discussed in
criteria two and three.

* And a computational efficiency measurement: The Imemof seconds it takes
to execute one round of alignment as outlined iter@on four.

Target Deviation Index (TDI)

Assuming amongN observations, the ideal number of eventd iand the actual
simulated number of events after alignmenSisTarget Deviation Index (TDI) is
defined as

-

TDI = ()

It is a percentage number ranged 0 to 1, and showsthe alignment replicates the
external control. Higher values imply the outcormdurther away from the external
control. It is a straightforward indicator to evale the first criterion.

Distribution deviation index (DDI)

In order to evaluate the second and the third raaitat is necessary to find an
indicator that can reflect how well the relatioqshiare preserved and how different
the new distribution is from the old one.

A first method could be to compare the original fliornts with re-estimated
coefficients from aligned data. Statistically ideat coefficients indicate that the
relationship remains the same, at least mathenfigti¢dowever, this might not be
applied to alignment tests as alignment itself, dgfinition, distorts the original
probabilities. The coefficients, as a result, avaridl to change even under an optimal
alignment, and in most cases, the “correct” aligoeefficients are not available.

A second method to compare the relationships seéwhether the distribution of key
variables have changed after alignment, e.g. whelbigeproportion of male workers
and females workers have changed substantiallyhifsQuare test could be useful for



this scenario, as it is frequently used to testthérethe observed distribution follows
the theoretical distribution. It is defined as

~(0,~-E)
)(2=Z—( — L ®)

Nevertheless, the test itself is not designed foady values and requires "no more
than 20% of the expected counts to be less thardsh individual expected counts
are 1 or greater" (Yates, Moore & McCabe, 1999)isThequirement might not be
always fulfilled in microsimulation depending oretlscenario assumptions and the
way groups are defined. As a result, an adaptaioaquired in order to best measure
the deviation between two distributions for the gmse of binary variables and
possibly low or zero expected counts.

This paper proposes a self-defined distributioniat@n index (DDI) to evaluate the
second and third criteria in choosing an alignnmeathod. Assuming we are going to
evaluate the distribution distortion in a singlegament pool via a grouping variable
X . Xcould be anything like age, gender, or age genderaction etc. N

Observations are divided among X) cells. S, is the mean value of events

occurrence after alignment in group and O is the observed value in the base

dataset. If we defin® as the alignment ratio used in the aligning prec&sk would

represent the expected value after alignment. Aildigion deviation index (DDI),
therefore, can be defined as

DDI = W(X)%((Si —o,.R)Z) ©)

i=1

This indicator describes how well the micro-simathtdata retain the relationships
between dependent variable and variablelt is a minimum distance estimation
tailored for binary variable outcome in a simulatio

Essentially, DDI calculates the sum of squaresiftér@nces weighted by the number
of observations. It measures the differences betwhstributions before and after
alignment in multiple dimensions, depending on theetorX . When X is an
independent variable, it measures the distortioroduced between the independent
variable and the dependent by alignment. WhHénis the dependent variable, DDI
reports the degree of nonlinearity in the probgbdistortion of alignment. Wherk

is a variable outside of the equation, DDI assegseevel of distortion in an implicit
relationship. In shortX could be a vector consisting of any variable ardraction
terms.

The indicator is positively correlated with thegalinent deviation, it increases when
the aligned distribution departs from the origiaatl decreases when the distributions
are getting alike. The scale of the indicator @ejpendent to the choice of variabte
and the number of groups th&t may produce. Sincé, and O, are both probabilities
between 0 and 1. DDI has a range of O to 1. Wherd#iaset preserves the shape of
distribution perfectly, the index has a value oftGncreases when the difference of
two redistributions grows, with a maximum valuelof

10



Computation efficiency

The most intuitive indicator for the computationefficiency of an alignment

algorithm is the execution time: the length of time alignment method takes to
execute one round of alignment with input in rand®d order. In order to have
comparable inputs and outputs, all methods areinegjtio retain the initial order of

inputs. This makes the algorithm ready as a modulde microsimulation model.

However, this extra requirement penalizes the speethe methods that require
randomly shuffling, as the observations need tadisorted before the end of the
execution.

The evaluation of the computational efficiency exfprmed in Stata because of its
easy integration of estimation and simulation. @itleat the computer speed varies
much, the results presented in this paper may ehahmgmatically on a different

platform although we would expect the relative iagkto remain stable in most

cases.

Alignment algorithms evaluated
This paper evaluates all alignment algorithms dised earlier, which includes,

* Multiplicative scaling

» Sidewalk Hybrid with Nonlinear Adjustment

» Central Limit Theorem Approach

» Sort by predicted probability (SBP)

* Sort by the difference between predicted probabidihd random number
(SBD)

» Sort by the difference between logistic adjusteddpmted probability and
random number. (SBDL)

When implementingSdewalk Hybrid with Nonlinear Adjustment, there are two
important parameters requiregandi. n is the maximum allowed difference between
the actual number of events and the expected nunfberents befor@ is added or
subtracted from predicted probability. In this papeis set to 0.5 andl is set to 0.03,
which are the same values that DYANCAN model ugiéufeld, 2000) The order of
initial input is shuffled in order to get rid of desired serial correlation.

IV. DATASETSAND SCENARIOSIN ALIGNMENT ALGORITHM EVALUATION

In order to understand the simulation propertiegl@nment algorithms, this paper
evaluates the performances of various methods umdersettings, a “lab setting”,
where synthetic dataset is used, and a “real-wsetting”, where the algorithms are
applied to a real world dataset. This setup makepossible to examine the
performances of the alignment methods under difteseenarios.

This paper starts the evaluation by using synthagitasets in a controlled setting.
Alignments are used to correct some artificial 8est in the outcome of the statistical
model. Since it is possible to control the exaatrse of the error in a synthetic
dataset, we could analyse the simulation propediedifferent alignment algorithms

and the probabilities transformation in a fullyrtsparent setup.

11



Synthetic dataset based evaluation tests the afighrperformances of different
models in four different scenarios. Each scenajweasents a potential statistical error
that alignment methods try to address or compemsatenicrosimulation model. The
quality of the alignment is measured by the tad®tiation index (TDI), and the
distribution deviation index (DDI), where the grang variableX is the percentile of
the correct probabilities. Computation cost is meas by the number of seconds the
algorithm takes to execute one run.

Baseline scenario

Assuming there is a binary model expressed asioilp
y, =logit™(a + Bx, + &) (10)

a , B are the parameters in the equation, anig an error term which follows a

logistic distribution with zero mean and a variaoter/+/3 .To simplify the
calculation in the evaluation, we assigr=0, 8=1. x is randomly drawn from a
standard normal distributio®v(0,1) . The number of observation in the synthetic
dataset is 100,000. Table 1 lists all the keyia$ in the baseline scenario and
Figure 1 illustrates the distribution of the baselprobabilities.

First scenario: Sample bias

In the first synthetic test scenario, we try toliegie an error that commonly exists in
survey datasets: sample bias. Sample bias exidsywamong survey datasets and it
is most commonly corrected by the implementatiooldervation weights. Unbiased
estimations of behaviour equations depend on atweights. Nonetheless, despite
all efforts, survey datasets may still suffer frearious sample bias, particularly the
selection bias and the attrition bias in panelskttesuch as ECHP (Vandecasteele and
Debels, 2007). Sample bias leads to a non-repsentdataset, which affects the
guality of simulation output. Alignment is sometisnesed to compensate to the error
of sample bias.

In our test, a simple sample bias is recreated.réifeove 50% of the observations
with positive responsey >0) randomly from the baseline dataset. This produces
non-representative sample with the size equivatei®% of the original one. In other
words, the observations with negative response<()) weigh twice as much as they
should in the dataset. In addition, the error stmec(€,) have a different distribution
than the baseline scenario as a consequence biashetroduced.

Second scenario: Biased alpha (intercept)

The second synthetic scenario aims to replicat®m@otonic shift of the probabilities.
This is commonly used in scenario analysis, wherertain ratio, e.g. unemployment
rate, is required to be increased or decreasece &b the scenario assumptions.

By manipulating the intercept of the equationss ipossible to shift the probabilities
across all observations. In this scenands changed to -1 while everything else is
constant. The result is a monotonic, but non-umfahange in the probabilities. A
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non-uniform transformation is required to make stne probabilities are still

bounded within the range of [0,1]. Figure 2 demuiss the transformation

graphically. As seen, the probabilities transfolioratcurve for the second scenario
stays below 45-degree line and has a varying sldpges indicates that the

transformation is monotonic but non-uniform. Contrto the previous scenario, the
error structure and the number of observations #taysame in this setup. Table 1
highlights the statistical differences between fuasnario and the other ones.

Third scenario: Biased beta

The third synthetic test scenario introduces addaslope in the equation. This

represents a change in the behaviour pattern wduahd not be captured at the time
of estimation (e.g. the evolution of fertility path). In this scenario, one may assume
that the behaviour pattern shifts over time. Thétipular setup tests on how
alignment works as a correction mechanism for bielapattern correction.

The simulated dataset in this scenario is genexaittdd3 = 0.5 , half of its value in the
baseline, and therefore creates a different digioh of probability. Since has a
mean value of 0, the change does not affect thel gsmple mean ofyat the

aggregate level. The transformation would yieldiffeent distribution but with an
unchanged sample mean. Figure 1 graphically itssrthe difference in probability
distribution. As seen, the standard deviation afbpbilities in scenario 3 is much
lower than the baseline scenario while the meamevedmains the same.

Unlike the first and second scenarios, the transébion in this scenario causes a non-
monotonic change in probabilities. Observationshwdw probability (» <0.5) in
baseline scenario have increased probability dimeie x have negative values, while
the observations with high probability & 0.5) have a lower probabilities compared
with the baseline scenario.

Forth scenario: Biased intercept and beta

The last synthetic test scenario combines botltiiamge in intercept and the shift in
slope. The new transformed dataset hagra-1 and S=0.5. This scenario
represents a relatively complex change. The chaegelts in a lowered aggregate
mean of y and a non- monotonic change in the individual pbaiiges.

Table 1 Overview of the Synthetic Data Scenarios

Scenario

Synthetic Scenario Basdine 1 2 3 4

Number of observations in estimatior 100,000 75,000 100,000 100,000 100,000

Number of observation in simulation 100,000 100,000100,000 100,000 100,000

Mean value of outcome variable 0.500 0.330 0.303 50@m. 0.277

a 0.000 -0.695 -1.000 0.000 -1.000
(0.008)

B 1.000 0.998 1.000 0.500 0.500
(0.010)

Target Ratio for Alignment 0.5 0.5 0.5 0.5
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N.B.: Coefficients in the first scenario are estimated using logit model. Standard
errors are included in the brackets.

As an overview, table 1 summarise the changespbiaadnd beta in different scenario
and compares the key statistics. As seen, all scsnhave the same number of
observation except the first one. The mean valueuttome variable ranges from
0.277 to 0.5, and the target for alignment (extevatue) is 0.5 across all scenarios.
Figure 1 gives a visualised picture of probabildistributions in the different
scenarios. We see that all probability distribusionith the exception of baseline and
third scenario, exhibit a right skewed pattern ulrég2 further compares the difference
between “correct” probability and the transformedolabilities in the above
scenarios.

Figure 1 Overview of Probability Distribution in Different Scenarios
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Figure 2 Overview of Probability Transfor mation in Different Scenarios
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NB. Probability transformation curve records howlmbilities change due to
the artificial errors introduced in the scenario.

Evaluation using a real world dataset

There is no doubt that synthetic evaluation cooteb to the understanding of
alignment methods thanks to its complete transpgreAn alignment algorithm,
however, is only useful when applied to a real-dathtaset. Therefore, this paper
also analyses the performance of different aligriratgorithms using a real dataset.

In this real-world evaluation, we use the 1994-208ng in Ireland Survey (ECHP-
LIl) dataset for a simple exercise of labour pgwation simulation. The LIl survey
constitutes the Irish component of the European i@onity Household Panel
(ECHP). 1t is a representative household panel esurgonducted on the lIrish
population annually for eight waves until 2001. Td&ta contains information on
demographic, employment, and other social econ@macacteristics of around 3500
households in each wave. In 2000, additional 158@séholds were brought into the
dataset to compensate for the attrition since 198. dataset has been cleaned and
adjusted to ensure the consistency as describgadamd O’Donoghue (2010).

Labour participation simulation is selected becaitsés one of the popular
components in dynamic microsimulation models. Tiheukation uses a reduced form

equation for labour participation. Assuming thewiark statusy, is derived from
following specification

9, =logit" (a + BX,) (11)
WhereasX is a vector that covers lagged in-work status, atioe, gender, age, age

squared, interaction term between gender and hawingw-born, interaction term
between marriage and gender. In the estimationjnalede individuals age 15-69
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with known previous working status. Table 2 progid®me basic summary statistics
of the variables included and estimation resulsraported in appendix .

Table 2 Overview of variablesincluded in in-work estimation

Variable (Mean value) In-work Out-work

Mean Sandard Mean Sandard

Deviation Deviation

Lagged inwork status 0.86 0.32 0.14 0.31
Gender (female=1) 0.38 0.49 0.62 0.49
Age 37.18 13.18 37.60 17.79
Age squared 1555.98 1053.01 1730.53 1447.02
Having a new-born 0.03 0.17 0.02 0.12
Marriage 0.54 0.50 0.44 0.50
Secondary education 0.24 0.43 0.19 0.39
University education 0.31 0.46 0.15 0.35
Interaction term: new-born and gender 0.01 0.10 0.01 0.11
Interaction term: marriage and gender 0.18 0.39 0.33 0.47
Number of observations in the category 31784 29448
Total number of observations 61232

In the previous literature of microsimulation valitbn, Caldwell and Morrison
(2000) suggest using in-sample validation, outsofiple validation and multiple-
module validation to evaluate simulation output.isTipaper follows a similar
approach for algorithm evaluation except that ther@mo multi-module evaluation
since alignment is usually an integrated part wfase complex model.

In-sample evaluation assesses the predictive pointée model in describing the data
on which it was estimated. In this scenario, we besv well the model replicates the
labour participation rate in year 1998 with knowteenal control (observed number
of workers) using different alignment methods. 1¥98elected because it is in the
middle of period data covers. Equation coefficiesuts estimated from whole panel
with the exception of first wave where lagged inFkastatus is not available.

Alignment performance indicators are calculatedhim same way as in the synthetic
dataset evaluation.

An in-sample evaluation test is useful but it ifedent than the real microsimulation
exercise where the values are predicted out of Eamm out-of-sample evaluation
attempts to measure the predictive power of theahimdexplaining data of a similar
type which were not used in the estimation of thedeh (Caldwell, 1996). In this
particular test, we use year 1995-1998 data toigréue period 1999-2001 with the
known external control (the observed number of wmskand analyse the differences
in alignment methods performances. The benchmatkilalition for DDI is the actual
observed distribution in year 1999-2001.

V. EVALUATION RESULTS

This section reports the evaluation results ofdifferent alignment algorithms and
compares their performances under different scesdnirough false positive/negative
rate, two self-defined indices (TDI, DDI) and cortgtional time.
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Evaluation Results using Synthetic Datasets
Table 3 lists four key indicators obtained whenleating using synthetic datasets,

. Target deviation index (TDI),

. False positive rate,

. False negative rate and,

. Distribution deviation index (DDI). The DDI in thsynthetic dataset based test
uses the percentile of dependent variable as gnguriable X.

Table 3 Properties of Different Alignment Methodsin Synthetic Dataset Test

Method TDI False False DDI
Positive  Negative

Scenario 1: Selection Bias

s . -0.43% 19.33% 19.76%  0.40%
Multiplicative scaling

Sidewalk hybrid with nonlinear adjustment 0.00% 20.63% 20.63% 0.03%
Central limit theorem approach 0.00% 19.65% 19.65% 0.43%
Sort by predicted probability (SBP) 0.00% 16.31% 16.31% 11.50%

Sort by the difference between predicted
probability and random number (SBD)

Sort by the difference between logistic adjusted
predicted probability and random numbSBDL)

0.00% 21.09% 21.09% 0.15%
0.00%  20.69% 20.69%  0.03%

Scenario 2: Biased Alpha (lintercept)

L . -1.41%  18.74% 20.15% 0.61%
Multiplicative scaling

Sidewalk hybrid with nonlinear adjustment 0.00% 20.69% 20.69% 0.03%
Central limit theorem approach 0.00% 19.29% 19.29% 0.65%
Sort by predicted probability (SBP) 0.00% 16.31% 16.31% 11.50%

Sort by the difference between predicted
probability and random number (SBD)

Sort by the difference between logistic adjusted
predicted probability and random number (SBDL)

0.00% 21.31% 21.31% 0.30%
0.00%  20.70% 20.70%  0.03%

Scenario 3: Biased beta coefficients

s . -0.18% 22.58% 22.76%  0.90%
Multiplicative scaling

Sidewalk hybrid with nonlinear adjustment -0.01% 2259% 22.60% 0.84%
Central limit theorem approach 0.00% 22.69% 22.69% 0.91%
Sort by predicted probability (SBP) 0.00% 16.31% 16.31% 11.50%

Sort by the difference between predicted
probability and random number (SBD)

Sort by the difference between logistic adjusted
predicted probability and random number (SBDL)

0.00%  22.54% 22.54% 0.87%

0.00%  22.56% 22.56% 0.88%

Scenario 4: Biased alpha and beta (all coefficients)
s . 0.18% 21.57% 21.39% 0.26%
Multiplicative scaling

Sidewalk hybrid with nonlinear adjustment 0.00% 22.45% 22.44% 0.85%
Central limit theorem approach 0.00% 21.54% 21.54% 0.28%
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Sort by predicted probability (SBP) 0.00% 16.31% 16.31% 11.50%

Sort by the difference between predicted 0.00% 2297% 2297%  1.33%

probability and random number (SBD)
Sort by the difference between logistic adjusted o o o o
predicted probability and random number (SBDL) 0.00%  2267% 2267% 0.92%

Average Performances

s . -0.46% 20.55% 21.02% 0.54%
Multiplicative scaling

Sidewalk hybrid with nonlinear adjustment 0.00% 21.59% 21.59% 0.44%
Central limit theorem approach 0.00% 20.79% 20.79% 0.57%
Sort by predicted probability (SBP) 0.00% 16.31% 16.31% 11.50%

Sort by the difference between predicted
probability and random number (SBD)

Sort by the difference between logistic adjusted
predicted probability and random number (SBDL)

0.00% 21.98% 21.98% 0.66%

0.00% 21.66% 21.66% 0.46%

As seen in table 3, all alignment methods excepttiplicative scaling, in all
scenarios, have less than 0.01% deviation fromiaitgeet number of event occurrence
while multiplicative scaling shows a deviation up to 1.41% from the targetrduthe
evaluation. The result is largely driven by the igesof the algorithm, as
multiplicative scaling cannot guarantee a perfect alignment ratio althotite
expected deviation is zer@dewalk hybrid sometimes has a slight deviation (less
than 0.01%), as the non-linear transformation may lme always perfect under
existing implementatich Central limit theorem methods have built-in counters that
prevent the events from manifesting when the tasyatet. Sorting based algorithms
only pick the exact number of observations requiretiich is why their target
deviation index (TDI) is always zero.

In terms of false positive and false negative rathen compared with the “correct”
values, alignment metho8BP yields the best result, which is on average 4 to 6
percentage points lower than other algorithms, fasve in the tablesSdewalk
Hybrid, together witfSBD, SBDL, have the highest false positive/ false negativesra
on average. It seems that the false positive asd feegative rates are closely related
to the complexity of the algorithms. The “nonline@ansformation” inSdewalk
Hybrid and “differencing” operations inSBD and SBDL are both more
computationally complicated than the other methddiss pattern is consistent across
all scenarios, though absolute numbers fluctuatesadifferent scenarios.

Whilst false positive and false negative is a usefdicator when the correct value is
known, it is a less critical indicator for simulati as microsimulation exercises tend
to focus more on the distributions. Therefore,distribution deviation index (DDI) is
particularly important in judging how well the réig relations between variables are
preserved after alignment. Appendix 2 visualises thfference between actual
probabilities and aligned probabilities in all dyetic tests.

® The process usually requires several iteratiomsiwis computationally expensive (Neufeld, 2000).
Our test model used in this paper stops its cdidmwavhen the iteration only improves the average
probability by no more than This increases the calculation speed but somstimesults in
imperfectly aligned probabilities. Details of tbalibration steps can be found in the book pubtiding
Society of Actuaries (SOA, 1998).
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The results show the8BP method heavily distorts the original distribution the
probabilities across all scenarios using percegti®iping. This is also reflected by
distributional deviation index (DDI), which is effvely calculating a weighted size
of the gap in this case. It seems that there isnathod consistently outperforming
across all scenarios. In the first two scenaricdgvalk hybrid and SBDL method
gives the best result; In the third scenario, whbee synthetic dataset modifies the
slope of x;, all methods have similar DDI values except SBPtHe last scenario,

multiplicative scaling andcentral limit methods generally perform much better than
the rest. Compared with other methods, methodshwimeolves “differencing” and
“logistic transformation” (incl. sidewalk hybrid i non-linear transformation, SBD
and SBDL) seem to be more sensitive to the changhe beta coefficient. Their
performances are much better when beta remainkestaly. scenario 1 and 2. This
may be due to the nature of these algorithms as“difeerencing” and “logit
transformation” operations assume monotonic chaimgthe probabilities.

Evaluation Results using a Real-world Dataset

The synthetic dataset based evaluation offers amvimw of the performances of
different algorithms under particular source ofsegibut the performance with real-
world dataset is more interesting for empirical eltets. Table 4 reports all the key
indicators calculated when applying alignment ireal life dataset with the example
of estimating in-work population. DDI is calculatedsed on independent variables,
including sex, education, marriage status with diiith interaction, and external
variable, nationalities. It reflects an overall fshof the distribution in multi-
dimensions.

Table 4 Properties of Different Alignment Methodswith a Real World Dataset (LI1)

Method TDI False False DDI
Positive  Negative

In-Sample Evaluation

Multiplicative scaling 0.24% 10.00% 9.76%  0.62%
Sidewalk hybrid with nonlinear adjustment 0.01% 9047% 945% 0.64%
Central limit theorem approach 0.00% 957% 957%  0.62%
Sort by predicted probability (SBP) 0.00% 586% 5.86% 0.62%
Sort by the difference between predicted

probability and random number (SBD) 0.00% 9.64% 9.64%  0.62%

Sort by the difference between logistic adjusted
predicted probability and random numbSBDL) 0.00% 9.60% 9.60% 0.67%

Out-of-Sample Evaluation

Multiplicative scaling 0.10% 11.24% 11.14% 0.75%
Sidewalk hybrid with nonlinear adjustment 0.00% 11.04% 11.04% 0.68%
Central limit theorem approach 0.00% 11.12% 11.12% 0.74%
Sort by predicted probability (SBP) 0.00% 763% 7.63% 1.47%
Sort by the difference between predicted

probability and random number (SBD) 0.00% 11.14941.14% 0.66%

Sort by the difference between logistic adjusted
predicted probability and random number (SBDL) 000 11.03% 11.03% 0.76%
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N.B.: In-sample evaluation predicts 1998 in-workngsl995-2001 data
Out-of-Sample evaluation predicts 1999-2001 in-waskg 1995-1998 data

Similar to the results from synthetic datasedltiplicative scaling is the only method
with a TDI greater than 0.01% and t88P method outperforms all other methods in
terms of false positive and false negative rates aignificant margin. All other
evaluated methods have similar false positive awhtive rates.

As to the DDI, there is no dramatic difference kesw different methods in in-sample
evaluation. We notice that th&8BP method has a much more comparable DDI
performance in the real life dataset than in thathstic dataset. In facEBP has one

of the best results in in-sample evaluation. Indbeof-sample exercise, we find that
the SBD, a method with average performance with synthddi@msets, has the lowest
DDI value, whileSBP has the worst result. Besides the algorithm desfgn change
of grouping variables also affects the observed p&ttern in this evaluation. With
the synthetic datasets, groups are divided basedhenpercentile value of the
dependent variable while in the real-world datasleservations were grouped using a
realistic setting, using different characteristriesiables, like age, gender etc.

Computing Performance and Scalability

Computational efficiency is another main criteridor evaluating alignment

algorithm. Given the increasing availability ofderscale datasets in microsimulation
and the model complexity, alignment may consumesicenable resources in the
computation processes. Nonetheless, the study eofctimputational efficiency is

rather scarce in the field of microsimulation ahdre is no paper so far analysing
how the number of observations affect the algorghperformance. This section

compares different alignment algorithms in termscomputation efficiency and

discusses the issue of scalability of the algorithm

Table 5 shows an overview of the computation tireguired during the synthetic
scenario test and real-world data test. The conipatd premium is timed on an Intel
i5-520m processor when only single core is usedndigated, the method that takes
least computation resourcesmsltiplicative scaling method. This is not surprising, as
multiplicative scaling involves only a single calculation for each obaginn. Sorting-
based alignment methods seem to be in the nextwildch consume up to 5 times
more resources compared withultiplicative scaling. The variations in sorting
method does not change the execution time mucbuwgththe last sorting variation,
SBDL, consumes around 10% more resources than the suhérg based algorithms
due to its higher computation complexity.

Sdewalk Hybrid with nonlinear transformation seems to be on the bottom list in
terms of the efficiency. It takes about 80 timesenGPU time than what the fastest
method,multiplicative scaling, requires, and 15-20 more CPU time than the gprtin
based algorithms. There are three reasons foeldasively poor performances. Firstly,
the nonlinear transformation may take many itersticand it is computational
expensive (Neufeld, 2000). Secondly, the methadfiwuffers from serial correlation
in the original design, as the calculation is dejg on the result of the last
observation. In order to mitigate this effect, atir& randomisation via sorting is
implemented. This is accompanied by a reverse psyaghich restores the original
order of the input at the end of the alignment.rdlgi the Sidewalk method requires
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iterating through observations. Stata, which is gleform of our evaluation, is not
particular efficient at individual observation ##ion compared with the batch
processing for which Stata optimiée3his is also the primary reason wigntral
limit theorem approach has a relatively long running time. We speculatanf a
theoretical point of view, that the performancestitdé Sdewalk method and the
Central limit theorem approach could be significantly improved when implemented
correctly as native code in C/C++ as compiled cddes not re-interpret the syntax
over the iterations. Nonethelessjewalk method may still be slower than the other
algorithms when nonlinear probability transformatis applied.

Table 5 Computational Costsfor Different Alignment Methods

Synthetic Dataset Scenario Real-world Dataset

Method 1 2 3 4 In- Out-
Sample Sample

Multiplicative scaling 007 007 007 007 004 0.13
Sidewalk hybrid with nonlinear
adjustment 571 588 549 5.78 1.30 4.22
Central limit theorem approach 334 340 350 355 063 2.12
Sort by predicted probability (SBP) 032 033 033 035 017 0.58

Sort by the difference between

predicted probability and random

number (SBD) 034 034 034 0.34 0.18 0.61
Sort by the difference between

logistic adjusted predicted probability

and random number (SBDL) 0.36 036 0.36 0.38 0.18 .630

When increasing the number of observations, ize. sf input, all algorithms exhibit a

mostly linear growth rate of the execution timeSiata (See figure 3 to figure 5) for a
dataset under 15 million observations. The run-ts@ems to be directly proportional
to its input size. All alignments are using the sanput dataset, which is a randomly
generated pool of uniformly distributed probal#igi The linear growth rate indicates
that Stata might use a non-comparison sorting #kgor e.g. Radix sort, in its default

implementation.

" Observation iteration, a necessary step for thesealgorithms, tends to be very slow in Stata
because loops are reinterpreted at each iteraiata recommends using compiled plug-in for the bes
performance for this type of scenarios (Stata, 20B®wever, algorithm specific optimization using
compiled code is beyond the scope of this papeiitamduld make the comparison difficult.
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Figure 3 Computational Time Curve of Multiplicative Scaling Alignment
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Figure 4 Computational Time Curve of Sidewalk and Central limit theorem approach
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Figure 5 Computational Time Curve of Sorting Based Alignment Algorithms
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Due to the actual implementation in different earment may vary, the results do
not reflect the performance in real projects onfer@nt platform, but do provide a

reference to illustrate the potential computatiostclt is important to note that since
the sorting algorithm and most calculations areapsalated in Stata, the actual
performance is the mixed result of Stata perforreamadgorithm design quality, and
implementation quality. The actual performance niy very different in other

implementation settings (e.g. C/C++). Results ared with the internal timer from

Stata on a windows box.

VI. CONCLUSION

Calibrating results of a statistical forecastingd®lp which is known as alignment, is
de facto widely adopted over the past decade irfi¢he of microsimulation despite
its controversy. Microsimulation models uses aligminfor various purposes, e.g.
historical data alignment in CORSIM, forecastinggmament in APPSIM etc.
Although alignment cannot be used as a replacemwienat well-specified statistical
model, it is an effective pragmatic solution to artdking analyses of complex
phenomena such as the performance of pension sysistiin a highly complex
context of evolving social and economic change. yaitignment methods have
appeared in the literature as the development mduatyc microsimulation progressed.

This paper fills a gap in the literature in relatito the evaluation of different
alignment algorithms. Although pervious literatyresy. Johnson (2001), Morrison
(2006), and O’Donoghue (2010) have listed a fewedd that a “good” alignment
method should meet, and analysed some theoretqpEctation of the alignment
simulation properties and their performances, #lgrrison (2006), there was no
direct or quantitative comparison of various method
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In this paper, we have reviewed and evaluated nbasary model alignment

techniques, including multiplicative scaling, hybrsidewalk method, central limit
theorem approach and sorting based algorithmsu@imay its variations). The paper
compares different algorithms through a set ofdattirs including false positive rate,
false negative rate, self-defined target deviatimtex (TDI), distribution deviation

index (DDI), and computation time. Target deviatimex (TDI), gives a scale
independent view on how well an alignment methqgicates the external control.
The false positive, false negative rate, give aenaew on the general quality of the
output after alignment. The preservation of interrelations is measured by the
distribution deviation index (DDI), an indicatornged O to 1. It calculates the
distance between the ideal distribution and theadistributions after the alignment.

The evaluations report a mixed result of alignmeatformances. It shows that the
selecting the “best” alignment method is not oridp@ the algorithm design, but also
the requirements and reasoning in a particularagezn

Overall speakingmultiplicative scaling is the easiest to implement, and fastest to
compute method for alignment. It could align mdrart 3 million observations in less
than 1 second on a laptop computer in 2010. Notestheit cannot perfectly align to
external control as the events are calculated pubeglsed on the calculated
probabilities. Moreover, due to lack of restricgoin the algorithm design, the
outcome produced by the multiplicative scaling medthis subject to higher
fluctuations than by other methods.

Sdewalk hybrid with nonlinear adjustment is a very computationally expensive
method due to its nonlinear adjustment. Howevee,ritethod has an above average
performance in all scenarios. It exhibits a simifmttern with one sorting based
method, sort by the difference between logistic adjusted predicted probability and
random number (SBDL). Because of the logistic transformation appliedbioth
algorithms, both methods are good at handling tireg ef intercept in logit model.

Central limit theorem approach tends to have similar statistical patterns with
multiplicative scaling method except it can match the alignment targerpeecisely.
The method exhibits an above average performandeeirevaluations with the real
world dataset, although it performs poorly in thestfscenario with synthetic data,
where the intercept in the equation is shifted. &baless, the algorithm is very slow
when implemented in Stata due to the need of observiteration.

As to the sorting based algorithms, soet by probabilities (SBP) method yields the
best result in terms of false positive and falsgatige whilst it distorts the internal
distributions heavily in most cases. This is du¢h® nature of the algorithm, which
over-predicts the observations with higher probitdsl and under-predicts the
observations with lower probabilities. However, thethod is easy to implement and
does not involve random number sorting. Its simoiaproperties suggest thaBP is

a good method in imputation, but not ideal for fard/or backward simulation.

Sort by the difference between predicted probability and random number (SBD) and
Sort by the difference between logistic adjusted predicted probability and random
number (SBDL) are similar in terms of computation steps, butytpeoduce very
different distributions of probabilitySBDL works better with logit model, especially
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when the intercept is used for alignment calibrati®BD seems to have below
average performances when looking at all indicaaows scenarios.

As the results show, the selection of alignmenthoes$ is a more complicated than
previously thought. Each algorithm has its own atlages and disadvantages. For a
microsimulation project that is speed orientadytiplicative scaling seems to be a
good choice.Central limit theorem approach could also be considered when
implemented in a compiled language, like C/C++alproject where speed is not the
major concern, the choice might depend on the reémoalignment. For instance, if
alignment is used to create a shift in intercé@PL or sidewalk hybrid with
nonlinear transformation may be the best choice. In addition, for microsemioh
analysis with the focus on distributional analySBP may not be the ideal because of
its distortion of distributions.

Understanding the simulation properties is not asygob as there are many implicit
and explicit assumptions in every simulation proj@dhe evaluation method used in
this paper also has its own limits. In the synthdfitaset based tests, the evaluations
only cover the most common scenarios. However,sihierces of errors in a real
simulation are more complex than what has beestilited and the distribution of
independent variables, e.g. normal distributiony mat be always true. Further work
is required to understand the simulation propertiésdifferent methods under
different assumptions and more complicated ernarctires. In addition, algorithms
should also be evaluated on more panel datasdisswipped-down microsimulation
models in order to understand the impact of aligmsén real-life projects.
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APPENDI X

1. ESTIMATION RESULTSFOR IN-WORK VARIABLE INLII

Variables Estimation using 1995-2001 Estimation using 1995-1998
(for in-sample evaluation) (for out-of-sample evaluation)
Coefficients Coefficients
(Standard Error) (standard error)
Lagged inwork status 3.86 4.00
(0.03) (0.04)
Gender (female=1) -0.36 -0.46
(0.03) (0.04)
Age 0.15 0.19
(0.01) (0.01)
Age squared 0.002 0.002
(0.00) (0.00)
Secondary education 0.96 1.01
(0.03) (0.05)
University education 1.20 1.24
(0.03) (0.05)
Interaction term: new- -0.33 -0.25
born and gender (0.12) (0.15)
Interaction term: -0.44 -0.51
marriage and gender (0.04) (0.06)
Constant -4.58 -5.26
(0.1) (0.14)
Number of 61232 36053
Observations

N.B. Models were estimated using standard Logit.
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2. ACTUAL VS. ALIGNED PROBABILITIESWITH SYNTHETIC DATASETS

Synthetic Dataset Scenario 1: Sample bias
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BP: Sort by predicted probability
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Synthetic Dataset Scenario 2: Biased Alpha (Intercept)

Simulated probabilities after alignment

Simulated probabilities after alignment
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Synthetic Dataset Scenario 3: Biased Sope (Beta)
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Synthetic Dataset Scenario 4: All coefficients biased
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3. COMPUTATION EFFICIENCY AND SCALABILITY

Computation time for N observations*

Method N= N= N= Average
65536 524288 4194304 Computational
2y @% (2%  Time per 1
million
observations
(seconds)
Multiplicative scaling 0.02 0.15 1.19 0.28
Sidewalk hybrid with nonlinear
adjustmer 3.64 29.2( 233.8! 55.61
Central limit theorem approach 203 1821 132.27 31.55
Sort by predicted probability (SBP) 0.12 1.2¢ 14.9¢ 3.1¢
Sort by the difference between predicted
probability and random numbeSBD) 0.1z 1.2¢ 14.6¢ 3.1t

Sort by the difference between logistic
adjusted predicted probability and random
number (SBDL) 0.15 1.42 16.60

3.55

* Results obtained using Stata 11 SE on a Windows 7 box with Intel i5-520M CPU
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4. NATURAL DISTRIBUTION DEVIATION INLII DATASET

Year

DDI using last year distribution as benchmark value

1995
1996
1997
1998
1999
2000
2001

0.60%
0.46%
0.76%
0.69%
0.92%
1.11%
0.65%
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