
#2009-045

Inertia, Interaction and Clustering in Demand

Zakaria Babutsidze and Robin Cowan

1

Working Paper Series

United Nations University - Maastricht Economic and social Research and training centre on Innovation and Technology
 Keizer Karelplein 19, 6211 TC Maastricht, The Netherlands

Tel: (31) (43) 388 4400, Fax: (31) (43) 388 4499, e-mail: info@merit.unu.edu, URL: http://www.merit.unu.edu



UNU-MERIT Working Papers
ISSN 1871-9872

Maastricht Economic and social Research and training centre on Innovation and Technology, 
UNU-MERIT

UNU-MERIT Working Papers intend to disseminate preliminary results of research carried

out at the Centre to stimulate discussion on the issues raised.

2



Inertia, Interaction and Clustering in Demand∗

Zakaria Babutsidze†‡ and Robin Cowan‡!

‡ UNU-MERIT - Maastricht University

! BETA - Université Louis Pasteur

October 26, 2009

Abstract

We present a discrete choice model of consumption that incorporates two empirically
validated aspects of consumer behaviour: inertia in consumption and interaction among
consumers. We specify the interaction structure as a regular lattice with consumers inter-
acting only with immediate neighbours. We investigate the equilibrium behaviour of the
resulting system and show analytically that for a large range of initial conditions clustering
in economic behaviour emerges and persists indefinitely. Short-run behaviour of the model
is investigated numerically. This exercise indicates that equilibrium properties of the system
can predict a short-run behaviour of the model quite accurately.
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Introduction

One of the challenges in modelling consumer behaviour lies on the observation that consumption
is in many ways a social activity. This has been observed both in the context of bandwagon
behaviour or conspicuous consumption (Liebenstein 1950; Smith 1776; Veblen 1899), but also in
the context of learning to consume (Witt 2001). Consumers often face incomplete information
both about what is available, and how to get the most out of the goods they consume. In
both cases agents rely on friends and neighbours as sources of information. In addition, though,
consumers appear to form habits (Guariglia and Rossi 2002), depending on rules of thumb and
past behaviour to guide future choices.

In this paper we model the dynamics of individual consumer behaviour and analyze its
implications for the distribution of the demand for goods over a social space. There are empirical
studies of this issue, reporting on the impact of social space on demand (e.g. Birke and Swann
2006), but those papers tend to explain their results entirely through network externalities.
In this paper we use more general constructs and show that the network structure of social
interactions can be reflected in demand. Key to the consumer’s decision-making, and thus to
the dynamics of demand, is the consumer’s on-going, or repeated evaluation of her alternatives.
In our model valuations are based on two things: the consumer’s own consumption history;
and the consumer’s neighbours’ consumption histories. Consumers repeatedly decide which
products to buy, and learning by consuming increases the future valuation of a product for a
consumer. Consumers also routinely interact with their neighbours and exchange information
about products on the market. Based on these two distinct information streams consumers
update their valuations for each product and in response (possibly) change their behaviour.

From this starting point we model two aspects of consumer behaviour: inertia in consump-
tion; and local influence of peers through interaction. The model can be interpreted in two
ways.1 One is to say that there is an imperfect informational structure in the economy and con-
sumers are aware of that fact. They try to reduce uncertainty in the decision process (Jacoby
et al. 1994) by using two sources of information. One is the information they receive through
own experience. As consumers have the better understanding of the value of the goods they
have already consumed, consuming the same good avoids possible disappointment. The other is
the information they receive from their social networks about the available goods. Information
gathered from “friends” can similarly reduce the risk of disappointment.

The second interpretation of the two parts of consumption dynamics would be that people
form habits for the goods they consume, but that there is also an interdependence in the utilities
of nearby consumers. With regard to habit formation, we assume that in the consumption
process a consumer forms some special skills for using the product and as a result receives higher
utility every time she consumes the same product. Interdependencies arise because people get
higher utility if their consumption bundles are similar to those of their neighbours. This is
similar to the effect of a “peer group” discussed by Bordieu (1984) and addressed in a formal
model of consumption by Cowan et al. (1997).

1Throughout the paper we use these two interpretations interchangeably.
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We analyze the long-run (equilibrium) dynamics of a population of consumers subject to
these two forces and show that spatial clustering in economic behaviour emerges as a stable,
long run equilibrium pattern for a large set of initial conditions. Additionally though, analysis
of the short-run behaviour indicates that equilibrium properties of present complex system can
predict the short-run dynamics of the model quite accurately.

The remainder of the paper is organized as follows. The first section briefly reviews related
literature. The second section presents the model. In the third section we present the analysis
of the long- and short-run behaviour of the model. The fourth section presents one particular
extension to the model. The last section of the paper concludes.

1 Literature

Of central interest here is information. Economists have long known that an assumption of
perfect information was a strong one, and it has been relaxed in a variety of contexts. Early
theoretical relaxations of the perfect information structure were applied to market organization
(see Rothschild 1973 for a survey), credit rationing (e.g. Jaffee and Russel 1976; Stiglitz and
Weiss 1981) as well as to a general consumer behaviour (e.g. Nelson 1970). But more recently,
the consumer’s lack of and need for different types of information have been studied more
closely. For example, uncertainty about prices is discussed by Galeotti (2004), who examines
the welfare implications of search costs when the distribution of prices is unknown. Similarly to
the model presented in this paper, Samuelson (2004) models interdependency among consumers.
There, consumers observe the actions of relatively successful consumers and use that information
to impute which actions are likely to be good for themselves. In that model consumers are
differentially successful, and information flow consists only of agents observing each others’
actions. By contrast, in the model we develop below, agents are successful in optimizing at
each step (given their current information), and have a richer information flow in that they pass
to each other opinions about the values of all goods. Another important distinction between
these two models is that Samuelson models the decision of “how much” to consume, while we
model the decision “what” to consume. Our consumers act in complex environment and use
information communicated to them in deciding on which product to buy, unlike Samuelson’s
consumers who are deciding on the consumption budget based on the information available to
them.

In any situation in which information is imperfect, information acquisition can be valuable.
Research in both marketing and psychology stresses the immense importance of information
collection for the consumer decision process (Bettman 1971), in that it permits consumers to
make better (in the sense of utility-increasing) choices. A large empirical literature shows that
people tend to collect information through many different sources, such as the media, sellers or
other consumers. However, in a seminal work, Hansen (1972) shows that information received
from peers through social networks, is the dominant source of knowledge about goods considering
both the information’s reliability and its ability to affect the receiver. Thus, if one wants to
understand the influence of external information on consumer decisions, it seems reasonable to
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concentrate on information coming from peers, rather than from any other external source. So,
while not denying the importance of other sources of more general external information, in this
paper we focus on socially localized peer effects.

The view that agents use both internal and external sources of information in making deci-
sions is not new in economics and has been applied to related fields. For example, information
cascade models (two canonical papers being Banerjee 1992; and Bikhchandani et al. 1992)
consider a population of agents, sequentially making decisions using both public and private
information. The interest there is the conditions under which public information can overwhelm
private, and the possibility of that creating a sub-optimal (aggregate) outcome. In a certain
sense, the model presented in this paper is also an information cascade model, but it differs
from the conventional models in two ways. First, consumers make repeated choices. This allows
us to study the effects of the change in internal information driven by the consumption process
itself. Second, cascade models agents receive information only about other agents’ actions. In
our model they receive (somewhat subjective, though higher bandwidth) information not only
about the current actions of others, but also about available options not chosen. Thus, informa-
tion about any particular option, even if it is not being taken by any agent, can form a cascade
as it flows within the population. Agents use information (which may or may not be cascading)
about each of the options to make a choice for one of them.

A second literature that relates closely has to do with habit formation. Habit formation in
consumption was discussed early by Duesenberry (1949) and Brown (1952). These approaches
are concerned with the formation of the general habit of consuming, meaning that people form
habits to consume in general, rather than the habit of consuming some particular good. More
recently, habit formation has been rigorously incorporated into consumer decision models by
Abel (1990), Constantinides (1990) and others. These models have been extensively used to
explain equity premium and risk-free rate puzzles (Constanides 1990; Otrok et. al. 2002) as
well as the stylized fact that higher growth rates lead to the higher savings rates (Carrol and
Weil 2000). By contrast to the formation of the general habit of consuming the present paper is
concerned with habit formation for isolated products. These are the habits that people develop
themselves through the consumption process.

One good, and well-studied example would be eating habits. Smith (2004), for example,
drawing on empirical literature from a wide variety of behavioural and hard sciences, shows that
people acquire very strong eating habits that persist for a long period. He refers here not to the
habit of eating generally, but to habits regarding particular foods. He also shows that people
are more likely to consume products that they see other people consuming, which is a basic
assumption of our model.

The marketing and psychology literatures referred to above have shown that friends and
neighbours are an important source of information. The “externalities in consumption” literature
has a similar feature in that externalities are often seen as (spatially or socially) limited in scope.
The possibility that interactions can be localized in various dimensions has been raised in other
contexts. Scheinkman and Woodford (1994), or Weisbuch and Battiston (2007), for example,
examine non-market interactions between consumers and producers; Eshel et al. 1996, and
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Cowan et al. (1997) look at interactions among consumers. In general, interactions generate
feedback loops that affect the decisions of the economic agents. But as noted by Glaeser and
Scheinkman (2000) the structure of those interactions can make a significant differences both
for the sorts of equilibria that emerge and for the dynamics leading to them. In particular, they
show that when interactions are local the economy generates richer dynamic possibilities, having
multiple equilibria and the possibility of moving from one equilibrium to another.

More contextualized work on interactions shows that they can explain certain interesting phe-
nomena in economics or other social sciences, such as the standardization process (e.g. Arthur
1989; Cowan 1991; Eshel et al.1998), waves in consumption across the population classes (Cowan
et al. 2004), or contagious justice (Alexander and Skyrms 1999).

2 The model

The model we develop here can be seen as a repeated discrete choice model in which consumers’
evaluations of goods are determined by internal and external information sources.

Consider an economy inhabited by a large, finite number (S) of agents, indexed by s. Each
is a single consumer faced with the same fixed, finite set of substitute goods, indexed by n. In
each period, each consumer consumers one unit of one good. The consumption choice is based
on the consumer’s “valuation” of the goods.

The valuation a consumer ascribes to a given good is the maximum price she is willing to
pay for it. Using very basic consumer theory, the utility a consumer derives from consuming a
good will be the difference between its valuation and price that she pays. We define vs

n;t at the
net valuation consumer s ascribes to good n at time period t.

We adopt a standard discrete choice approach (Andersen et. al. 1992) and assume that each
consumer buys one and only one product each time period. Under this assumption the utility
of individual agent can be written as

U s
t = vs

n∗,t, (1)

n∗ is the good consumed by consumer s in period t. We assume that consumers are unable to
deliberately manipulate the choices of their neighbours, and so do not choose “strategically”,
but rather simply maximize instantaneous utility. Under this setup, utility maximization implies
that in each period the consumer chooses ns∗

t = arg max(vs
n;t).

What we seek to model here is the dynamics of product purchases as they respond to changes
in the valuations of consumers of the goods available on the market. Following the discussion in
the introduction, we assume that valuation is derived from information of two types: internal
and external. So we can write:

vs
n;t = f(xs

n;t, y
s
n;t), (2)

where xs
n;t is determined by own consumption history, and ys

n;t by the consumption history of
other members of the same social group as consumer s.
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Both parts of the valuation are subject to change over time: xn;t is subject to change due to
habit formation (which results in inertia in consumption) and yn;t is subject to change due to
local interaction (because of information exchange or network externalities). Assume that f(·)
is additive, and write the dynamics of vs

n as2

∆vs
n = ∆xs

n + ∆ys
n. (3)

To model interaction among consumers we assume that every consumer has a fixed social
location and a fixed neighbourhood. A neighbourhood is the set (Hs) of other agents with
whom an agent (s) interacts directly. In this context, interaction is tantamount to information
exchange. Each information exchange consists of two agents revealing to each other their private
evaluations of each of the goods. The information revealed is assumed to be “convincing” in
the sense that the post-exchange valuations of each of the two agents partially converge. Hence,
this exchange process can be expressed simply in terms of the dynamics of beliefs of a single
agent, s, following her exchanges with all of her neighbours, i:

∆ys
n =

∑

i∈Hs

µ

|Hs|(v
i
n − vs

n), (4)

where |Hs| is the cardinality of the set Hs (number of neighbours of agent s), and µ (∈ [0, 1])
is the intensity of interaction. We assume that all products are substitutes and there are no ex
ante systematic differences among consumers, so interaction intensity is the same across all the
goods and agents.

For concreteness, assume that consumers are located on a one-dimensional, regular, periodic
lattice such that the distance between any two agents corresponds to the social distance between
them, and the distance between immediate neighbours is constant across all the population. In
this case we can define the neighbourhood of an agent (Hs) simply by specifying the number of
agents (Hs) with whom this consumer interacts on the left and on the right. Then |Hs| = 2Hs.

If we assume neighbourhood size to be equal across the population, that is Hs = H ∀s, we
can write

∆ys
n =

µ

2H

H∑

h=1

[
(vs+h

n − vs
n) + (vs−h

n − vs
n)

]
, (5)

where s can be interpreted as a “serial number” of an agent, or her address (consequently, s + 1
and s− 1 are her immediate neighbours to the right and left respectively).

Re-arranging, (5) can be rewritten as

∆ys
n =

µ

2H

[
H∑

h=1

(vs+h
n + vs−h

n )− 2Hvs
n

]
. (6)

Valuations are also influenced by habit formation.3 Habits are formed only for goods that
2From here on we drop the time subscript, but it should be borne in mind that the model is inherently dynamic

and it is implicitly present in all the variables used throughout the paper.
3We should once again make clear, that by habit formation we mean individual habit formation for a single
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are consumed. Thus, ∆xs
n is equal to zero for the goods that are not consumed in a given period

and is equal to some positive value for the good that has been consumed:

∆xs
n =

{
ζ if n = ns∗

t

0 otherwise,
(7)

where ζ (> 0) is a constant and ns∗
t is a product that agent s has purchased in period t.

To summarize the model we can make explicit the sequence of consumers’ actions. At the
start of each period every agent decides which good to consume. After purchase she consumes
it and forms habits for it. At the end of the period each agent meets all of her neighbours and
passes to them all the information (that is, her valuations of all goods) that she possesses. Based
on the information communicated to them by neighbours all agents adjust their valuations of
all goods.

We are interested in whether this kind of behaviour has implications for the social geography
of demand; more precisely, whether any specific patterns emerge in the long-run. Essentially
we ask whether one can determine anything about the consumption basket of a consumer by
looking at the consumption baskets of her neighbours.

3 Equilibrium analysis

In this section we analyse long-run equilibria of the model. It is not possible to solve the model
as presented in section 2, so in the process of solution we make two modifications. First, we
assume that the habit formation process can be well-approximated (at least in the region of
interest) by a linear function. Second, we re-write the model as continuous in time and space.

Linearization. Above, equation (7) shows habit formation: a consumer forms habits only
for the good he consumes, and the effect on her valuation takes place in discrete jumps. This
describes a path dependent process. This is problematic, as analysis of the system at any point
in time requires analyst’s knowledge of the whole history of the system. However, employing a
standard way of modeling expected product choices, allows us to approximate the dynamics of
(7) with a Markov process (Andersen et al. 1992). We model the choice of the consumers as
a conventional discrete choice, where it is based on probabilities: agent s chooses good n with
probability ps

n;t at time period t. In this case, the law of motion in equation (7) becomes:

∆xs
n =

{
ζ with probability ps

n;t

0 with probability 1− ps
n;t.

(8)

Further, ps
n;t will be a function of the vector of valuations for the agent s at period t. Thus

we can write ps
n;t = pn(Vs

t ), where Vs
t is the vector of valuations. Then the expected change in

valuation due to habit formation, xs
n;t, can be written as:

E (∆xs
n) = ζpn(Vs

t ). (9)

product, rather than formation of a general habit to consume.
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The choice probability for a product n depends on valuations of all the products. However,
it is reasonable to assume that the contribution of changes in valuations of products other than
n are of second order significance. This is easy to see if we consider the effects of an increase
in the valuation of good n. This will increase its purchase probability by ∆pn. This will also
decrease the purchase probabilities of all the other products, each by ∆pj . As probabilities are
normalized it should be the case that |∆pn| =

∑
j $=i

|∆pj |. If we have relatively large number of

products in the economy, it will in general be true that ∆pn % ∆pj , ∀j &= n. Thus a change
in the valuation of one good will cause the change in its purchase probability. It will also cause
the changes in purchase probabilities of other goods, but the size of each of these changes will
be considerably smaller. Therefore we impose a restriction on our probability function: it has
to satisfy the following relation ∣∣∣∣

∂pn

∂vn

∣∣∣∣%
∣∣∣∣
∂pn

∂vj

∣∣∣∣ , (10)

∀j &= n.
Consider the linearization of function pn(Vs

t ). If the requirement (10) is satisfied, as a first
approximation, we can disregard the effects of lower orders of magnitude and write a linearized
function as pn(Vs

t ) ≈ γvs
n;t. This permits us to write the expected change in xs

n;t as

∆xs
n = αvs

n, (11)

where α (= γζ) can be interpreted as the rate of habit formation.4

Substituting equation (11), allows us to write the system specified in section 2 as

∆vs
n = αvs

n +
µ

2H

[
H∑

h=1

(vs+h
n + vs−h

n )− 2Hvs
n

]
. (12)

From (12) it is clear that the law of motion of valuation for every good for any agent depends
on the agent’s own valuation of that good, and on the valuations of the agent’s neighbours of
that same good.

For the demonstration of the solution to the system, assume that each agent has exactly two
neighbours (H = 1), and that there are only two goods available on the market (N = 2).5 The
model reduces to a system of S pairs of equations of the form

∆vs
1 = αvs

1 +
µ

2
(
vs+1
1 + vs−1

1 − 2vs
1

)
(13)

∆vs
2 = αvs

2 +
µ

2
(
vs+1
2 + vs−1

2 − 2vs
2

)
, (14)

where s = 1, 2, 3, . . . , S.
4In what follows we drop the expectation sign, although it should be remembered that all the discussion in

this section is about the expected values of the variables.
5Both of these assumptions are relaxed at a later stage in propositions 5 and 6.
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Continuous time and space. We seek to obtain the solution to the system given by (13) -
(14). In the two-good system, what drives the dynamics at any point in time is the difference in
the probabilities that each of the goods is chosen (by each consumer). We can thus re-write the
system in terms of the difference in valuations of the two goods. Define the valuation difference
zs = vs

1 − vs
2 and rewrite the system (13)-(14) as

∆zs = αzs +
µ

2
(
zs+1 + zs−1 − 2zs

)
. (15)

Next step is to approximate the discrete system (15) with its continuous counterpart. To do
this we define a new variable δ which is the distance between two neighbouring consumers on
the circle. Using δ we can rewrite equation (15) in continuous time and space

∂z(s)
∂t

= αz(s) +
µ

2
(z(s + δ) + z(s− δ)− 2z(s)) . (16)

Then we can make a second order Taylor approximation in space around s for the terms
z(s + δ) and z(s− δ). This will result in

z(s + δ) ≈ z(s) + δ
∂z(s)
∂s

+
δ2

2
∂2z(s)
∂s2

(17)

and

z(s− δ) ≈ z(s)− δ
∂z(s)
∂s

+
δ2

2
∂2z(s)
∂s2

. (18)

Substituting equations (17) and (18) into equation (16) collapses our system into one partial
differential equation

∂z

∂t
= αz + µ̃

∂2z

∂s2
, (19)

where µ̃ = µδ2/2.
In the following section we investigate the long run equilibrium behaviour of the system (19).

Some insights to the behaviour of the model in the short-run will be provided in section 4.

3.1 Distribution of behaviour over space

It simplifies the analysis to separate the dynamics of z(s; t) into the dynamics of the average
over the population – z̄(t); and the dynamics of the deviations from this average – z̃(s; t) =
z(s; t)− z̄(t).

Proposition 1. The cross-agent average of valuation-differences (z̄t) evolves according to

z̄(t) = eαtz̄(0).

Proof. In the continuous case the average over space can be defined as z̄ = (1/S)
S∫

0
zds. This
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implies that

∂z̄

∂t
=

1
S

S∫

0

∂z

∂t
ds.

Then, using equation (19) we can write

∂z̄

∂t
= α

1
S

S∫

0

zds + µ̃
1
S

S∫

0

∂2z

∂s2
ds. (20)

As space in our system is a periodic lattice the second summand in equation (20) is zero.6

Then, using the definition of average again we can write equation (20) as

∂z̄

∂t
= αz̄. (21)

This is an ordinary differential equation with the solution described in the proposition.

Proposition 2. With time, deviations of valuation-differences (z̃s
t ) in system (19), converge to

z̃(s; t) = eσt cos
(

k
2π

l
s

)
z̃(0; 0),

where l is the length of the circle on which consumers are placed, while σ is the amplitude growth
rate and k(∈ Z+) is the frequency of the sinusoid z̃.7

The comprehensive proof of this proposition can be found in Turing (1952); here we give the
basic intuition. The general solution to differential equations of this type can be represented as
the (possibly infinite) sum of exponential functions of the form Aebt, where A and b are (possibly
complex) coefficients. The real part of each summand in the solution can be represented as the
dynamic sinusoid (in our case around the lattice on which consumers are located). The real part
of each b will be the growth rate of the amplitude of the corresponding sinusoid. As a result, as
t → ∞ one summand will dominate all the others. This will be the term with the largest real
part of b. Consequently the dynamics of the solution will converge to one sinusoid.

Proposition 3. The amplitude growth rate of the dominant sinusoid of system (19) is

σ = α− µ̃k2

(
2π

l

)2

.

Proof. From proposition 1 and 2, we know that z(s; t) = eαtz̄(0) + eσt cos
(
k 2π

l s
)
z̃(0; 0). Sub-

stituting this into equation (19) and noticing that ∂2 cos(βx)/∂x2 = −β2 cos(βx), allows us to
6To see more easily why the second summand is zero, one can discuss the discrete case and thus use equation

(15) instead of equation (19). In the discrete case the second summand is
P

s

`
(zs+1 − zs)− (zs − zs−1)

´
. As

consumers are indexed by s around a circle, it is obvious that this sum is zero.
7Note that as consumers are located on a periodic lattice, the identity of agent zero is arbitrary, and thus can be

placed anywhere on the circle. To write down proposition 2 we have set label 0 such that s0 = arg max
x∈[0, l

k ]
cos

`
k 2π

l x
´
,

which effectively means that we label agents such that the sinusoid identified in proposition 2 reaches its maximum
at the agent number zero.
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solve for σ.

Propositions 1 through 3 fully characterizes the solution to the system (19). Following
subsections investigate the implications of the solution.

3.2 Temporal stability of clustering

In order describe the behaviour of the model in equilibrium we have to combine the results of
propositions 1 and 2. For making interpretations of the results transparent, it is useful to go
back to the discrete space and time. Thus, we move back to treat s as the serial number of an
agent.8 This makes µ̃ = µ/2 and l = S. In this case we can write the complete solution to our
system as

zs
t = eαtz̄0 + eσt cos

(
k
2π

S
s

)
z̃0
0 . (22)

where

σ = α− 2µ
π2

S2
k2 (23)

Equation (22) determines the value of the difference in valuations (z) for every agent for
every t % 0. The distribution of z along the circle has the form of a wave in space around the
average, which points to the fact that in some neighbourhoods z̃ is positive, while in some other
neighbourhoods it is negative (this is easiest so see if we assume that z̄0 = 0). This means that
some neighbourhoods are more likely to buy one product, while some other neighbourhoods are
more likely to buy the other with a gradual transition between them. Thus the general result is
that the clustering in demand is an emergent property of our system.9

Our concern in this section is whether any observed clustering is persistent over time. Con-
sider the case where z̄t &= 0, ∃t ≥ 0. That is, at some point in time one of the products is
perceived as superior on average. In this case propositions 1 and 2 have an important corollary:

Corollary 1. If ∃t such that z̄t &= 0, then as t → ∞, vs
i > vs

j ∀s and thus in equilibrium there
will be one cluster of size S in the economy.

Proof. Consider the situation when z̄t > 0. Define zmin ≡ min
s

(zs) as the valuation difference
of an agent with the lowest z.

Case 1: zmin > 0. This implies that ∀s zs > 0, thus there is one cluster of size S. This is a
stable pattern as both forces (interaction and habit formation) work to reinforce it.

Case 2: zmin < 0. In this case some of the consumers prefer the relatively “inferior” product.
Case 2a: σ < 0. Proposition 2 tells us that if σ < 0, with time, the amplitude of the wave goes
to zero, which implies that ∀s zs = z̄. This, together with proposition 1, results in zs > 0 ∀s as
t→∞.

8This effectively means that we fix δ = 1. This move does not undermine the results of propositions 1 through
3. Moving back to consumer addresses is convenient for relating parameters in the solution to the parameters of
the model.

9Our model can be applied to any type of economic behaviour that involves the choice among exclusive options
at a constant cost. Thus clustering in this system will be a property of not only demand but of any similar economic
activity.

13



Case 2b: σ > 0. From proposition 2 we know that the amplitude of the wave around the average
increases at rate σ. At the same time, propsition 1 suggests that the average over agents of the
valuation-difference rises at the rate α. Therefore zmin is rising at the rate α−σ. Equation (23)
establishes that this rate is positive.10 α − σ > 0 ensures that as t → ∞, zmin > 0. zmin > 0
implies that ∀s zs > 0. Thus case 2b with certainty collapses into case 1 at some point in time.

These intuitions hold for the situation when z̄t < 0.11

In relation to market structure, we can have another corollary:

Corollary 2. If ∃t such that z̄t &= 0, as t → ∞, vs
i − vs

j → ∞ ∀s and in equilibrium everybody
will purchase only one of the products.

Proof. Proof of corollary 1 directly implies not only that vs
i > vs

j ∀s in equilibrium, but also
that vs

i − vs
j →∞, which on its own implies that as long as the choice probability function is a

positive monotonic mapping of valuations to choice probabilities, the probability of any agent
purchasing product i converges to 1.

Thus, z̄t &= 0 is a relatively trivial case, and implies that ultimately only one product is
consumed in the population, no matter the dynamics of the deviations from the average, and
that clustering is a stable pattern.

Far more interesting is the case in which ∀t z̄t = 0, which permits both products to co-exist
on the market indefinitely. Intuitively the stability of the cluster should depend on its size.
For example, if one individual constitutes a cluster she is susceptible to influence from both
her neighbours, both proponents of the choice contrary to hers. This cluster is less likely to
be stable than a larger cluster where most of the members of the cluster (the ones away from
its boundaries) receive information that reinforces their choices. Thus, there should be some
minimum cluster size for which clustering will be persistent. When ∀t z̄t = 0 we know that
behaviour of the system is governed by the pattern sine wave, which implies that all the clusters
are of an equal size in the equilibrium.

Proposition 4. In system (19), if ∀t z̄t = 0, clustering in demand is stable if and only if the
pattern wave of the system results in the clusters of size c ≥ c = π√

2

√
µ
α .

Proof. From equation (22) it can be readily seen that, when z̄t = 0 ∀t, temporal stability of
clustering depends on the sign of σ. If σ < 0, as t → ∞, zs → 0 ∀s, which implies that
vs
1 → vs

2 ∀s. This means that valuations of products converge, so in the case of probabilistic
purchases every agent decides on her purchase by tossing a (fair) coin. This, clearly, will result
in no clustering pattern.

However, if σ > 0 the amplitude of the pattern wave increases exponentially with time, thus
clustering becomes more and more pronounced. If σ = 0, the amplitude of the wave does not
change with time, and clustering is still stable.

10Unless µ = 0, which is not a very interesting case as it implies no social influence. In this case the existing
consumption pattern is reinforced indefinitely.

11This proof can be easily generalized to a multiproduct case.
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Given the parameters of the model, the sign of σ depends on the frequency of the wave in
the initial condition. We can pin down the critical frequency of the pattern wave (k), for which
clustering will be stable, by simply solving α − µk2 2π2

S2 = 0, for k. This results in k̄ = S
π

√
α
2µ .

And k ≤ k̄ ensures that σ ≥ 0. The inverse of the frequency is the wave length, and the size of
the cluster is half of the wave length. Since the size of the economy is S, the size of the cluster(s)
is S/(2k). Thus, given k̄, we can find the size of the smallest cluster that will persist over time:
c = π√

2

√
µ
α . Any pattern wave exhibiting clusters larger than c, would ensure σ ≥ 0, and thus

will result in stable clustering.

The important property of the minimum stable cluster size is that it does not depend on the
size of the economy. However, as σ depends on S, a larger economy (ceteris paribus) increases
the likelihood that the pattern wave of the system will support clusters of any given size c, thus
it also increases the likelihood of clustering. We also point out that the minimum stable cluster
size depends on the ratio of two parameters, habit formation and information transmission: µ/α.

The analysis so far has assumed that there were two goods (N = 2) and each agent has 2
neighbours (H = 1 on either side). It is also interesting whether these two variables have any
influence on minimum stable cluster size.

Proposition 5. In the case of arbitrary neighbourhood size 2H minimum sustainable cluster
size is

cH =
π

2
√

3

√
2H2 + 3H + 1

√
µ

α
.

Proposition 6. In the case of a multi-product environment, N being the number of products,
minimum sustainable cluster size is cN = c = π√

2

√
µ
α .

Proofs of propositions 5 and 6 can be found in the appendix.
From proposition 6, it is obvious that an increase in the number of products does not affect

the stability properties of the system. However, proposition 5 implies that as neighbourhoods
grow in size so does the minimum sustainable cluster. The intuition is that a larger neighbour-
hood facilitates the information diffusion process: each agent receives information from relatively
distant agents. This works to homogenize the information structure across the population, and
so works against small clusters.

We can analyze how minimum sustainable cluster size changes with enlargement of the
neighbourhood. It is obvious from proposition 5 that cH+1−cH is increasing with H. Moreover,
it turns out that

lim
H→∞

(
cH+1 − cH

)
=

π√
6

√
µ

α
. (24)

Equation 24 implies that for any value of µ/α, minimum sustainable cluster size increases linearly
with the size of the neighbourhood, as long as H is sufficiently high.

4 Short-run analysis

Analysis of the model in section 3 characterizes its long-run, equilibrium dynamics. However,
as those are asymptotic results, which might take a long time to emerge, short run behaviour of
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the system is also worth investigating. In particular how do clusters emerge and develop? What
is the relation between the average cluster size and the parameters of the model? In this section
we address these questions numerically.

Recall that the discrete nature of habit formation posed a problem for the mathematical
analysis of the model. To address issues of tractability we assumed probabilistic purchases,
and linearized the probability. With numerical simulations we are not so constrained and we
can directly analyze the original model. However in order to ensure that the simulation and
analytic results are in general agreement, initially we present the results for the linearized model
as analyzed in sections 3.1 and 3.2.

4.1 Linearized model

We set the number of goods to N = 10;12 and the population size to S = 100. The population is
located on a one-dimensional periodic lattice, so the neighbours of agent 1 are agents 2 and 100.
The specific parameters for habit formation, α and interaction µ are α = 0.0005 and µ = 0.01.
Finally, each agent has one neighbour on either side, H = 1.13 To read the figures below, agents
are arrayed along the abscissa, remembering that the axis is a circle, so the right-most and
left-most agent are neighbours. Time is read on the ordinate, from the initial period, t = 0 to
the final period, t = 2000. Each good is assigned a different shade of gray. The ordering of the
goods, and therefore the shades of gray, is arbitrary. At each point in time the choice (or the
good with the highest valuation) for each agent is shown by the colour corresponding to that
good.

For completeness, we show not only probabilistic purchases (driven by valuations), but also
actual purchaces. Thus we have to specify the function mapping valuation to the probability of
choice. Here we simply adopt the multinomial logit, from discrete choice theory:

pn(V s
t ) =

evs
n;t

∑
i∈N

evs
i;t

, (25)

where N is the set of available products. Note that ∂pn/∂vn = pn(1− pn) and that ∂pn/∂vj =
−pnpj , ∀j &= n. As in multi-product case |pn(1− pn)| % |−pnpj | (⇒ 1 − pn % pj) is true,
probability function (25) satisfies the requirement (10).

Figure 1 shows the dynamics of the most preferred products and actual purchases in a
representative run of the linearized model with random initial conditions: for each agent-product
pair a vs

n;0 is drawn from the uniform distribution over the interval [0, 20].14 As one can see
the clustering pattern in “most preferred goods” is clearly identifiable after just a few periods.
The same pattern is replicated (although with some noise) by the actual purchase. Actual
choices differ from the preferred good only due to the probabilistic choice function (equation

12We expand the number of goods for reasons of generality. According to proposition 6, this does not affect the
stability of the system.

13Note that for this constellation of the parameters k̄ ≈ 5.04 and c ≈ 9.93, as derived above.
14Changing the uniform distribution to other standard symmetric distributions does not change the numerical

results.
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Figure 1: Most preferred products (left), and actual purchases (right) in the linearized model.

(25)). This difference is especially marked near the borders of a region, since here agents receive
contradictory information about products, which tends to reduce the difference between their
valuations of the most preferred good and other goods. This makes the probability choice
function relatively flat for agents near the borders of clusters, and choices less correlated with
those of their neighbours.

We must point out that clustering patterns identified in Figure 1 are only meta-stable. The
reason is that stability of the multiple clusters requires z̄t = 0 ∀t (corollary 1), the multi-product
equivalent of which is v̄i;t = v̄j;t ∀i, j, t. Although this requirement can be imposed on the system
while simulating the linearized model, it can not be guaranteed for the original model. (In fact
there will always be some finite time at which mean valuations of two goods will differ: ∃t <∞
such that v̄i;t &= v̄j;t.) To make the examples comparable we do not impose the v̄i;t = v̄j;t ∀i, j, t
constraint on simulation of the linearized model either. Thus we know that the equilibrium of
all our runs is the state which results in only one cluster (corollary 1). However, our experiment
shows that in the short-run multiple clusters emerge and persist for relatively long periods.

4.2 Original model

Recall that there are two major differences between the linearized and the original model. One is
that in the original model there are no probabilistic purchases, thus utility maximization implies
that each consumer purchases her most preferred product in each period. Another is that in this
case we have a habit formation step ζ instead of a habit formation rate α. We know that ζ = α/γ

where γ is the constant coming from the linearization of the choice probabilities. Unfortunately
there is no way to pin down the value of γ. For this reason we cannot make a judgment about
the relative magnitudes of α and ζ (apart from the fact that they are proportional), and thus the
choice of the value of ζ is somehow arbitrary. We choose ζ = 0.01 and use the same values for
all other parameters as in the previous run. The result of the representative run of the original
model is presented in figure 2. As one can see the clustering in purchases is clearly visible and
relatively stable.

These numerical exercises also permit us to make a comment about what revealed preferences
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Figure 2: Most preferred products and actual purchases in the original model.

cannot reveal. Revealed preferences give us information only about the most preferred product,
namely which it is, and completely neglect the story that is going on in the background. By
this we refer to the fact that agents do have preferences over, and information about the goods
they do not in fact consume. Without acknowledging the importance of those “unexpressed”
preferences it is difficult to understand a sudden change in consumption which is not simply
imitating neighbours. This is something that is possible in our approach, and in fact is observed
in figure 2 as well as in figure 1.15 We observe several cases of an agent adopting a new good
which neither she nor her neighbours have consumed in the past. The explanation lies in the
fact that an agent close to the border of a cluster can receive contradictory signals. Consider the
following simple example. Agent s−1 ranks good 1 first and good 3 last; agent s+1 ranks good
3 first and good 1 last. Both agents, though, rank good 2 second. It is clear that agent s, based
on her external information, could easily rank good 2 before either 1 or 3. If the high rankings
of good 2 by s − 1 and s + 1 have emerged (due to information received by their neighbours)
at roughly the same time, agent s can then switch to good 2, regardless of what he was doing
in the past. This explains the emergence and growth of such neighbourhoods in our framework.
Thus, our model is consistent not only with shrinking and disapearance of smaller clusters, but
also with the emergence and growth of new ones.

As clustering in these simulations is only meta-stable, average cluster size should be steadily
increasing over time until it reaches the equilibrium size c̄ = S. It is interesting to see how
the rate of increase depends on the parameters of the model. As the amplitude growth rate,
σ, of the dominant wave controls the speed of convergence to the equilibrium, intuitively it
should also control the growth rate of the average cluster. Besides it’s partial dependency on
initial conditions (due to k, which is the frequency of the dominant wave as determined by initial
conditions), σ also depends on habit formation, α, interaction intensity, µ and population size, S.
Or in the case of the original model on ζ, µ and S. Figure 3 shows the dynamics of the average

15In the figure 2 the best example of this sort is agent 62 at period 70, who switches to consuming a product
never consumed in her neighbourhood before. In the left panel of figure 1 a similar pronounced example is agent
39 at period 50, who is the pioneer of a new product consumption in her neighbourhood. In both cases products
introduced survive and spread.
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 √ ( µ / ζ ) = 1          
 √ ( µ / ζ ) = 2
 √ ( µ / ζ ) = 3
 √ ( µ / ζ ) = 4

Figure 3: Dynamics of average cluster size for different parameter constellations in the original
model.

cluster size under different parameter constellations. As the effects of these parameters are
similar and it is only their joint effect which is important, we omit the size of the economy from
the analysis and report the results for the different values of

√
µ/ζ (for the sake of compatibility

with the later results presented in figure 4). Here we present the average cluster size further
averaged over 500 simulations. As expected16 higher

√
µ/ζ implies a higher rate of increase of

average cluster size.
But equilibrium analysis can also be exploited to predict the behaviour of the system in

the short-run. First we examine average cluster size in the equilibrium of linearized model. In
equilibrium we have either one cluster of size S (corollary 1), or we have many clusters of the
same size, with some minimum possible cluster size c (proposition 4). Thus the size of the
representative cluster is bounded by c and S. The realized cluster size depends of course on the
initial conditions, so we discuss expected cluster size given some distribution of initial conditions.

How expected cluster size scales with c (assuming a fixed population size S), depends on how
initial conditions map to equilibrium outcomes. Proposition 4 suggests that in the linear model
minimum sustainable cluster size will be c = π√

2

√
µ
α . Without a formal proof, the law of large

numbers suggests that expected cluster size should be roughly the average of the minimum and
maximum cluster sizes. Thus mean cluster size should scale linearly with c = π√

2

√
µ
α . Similarly,

in the original, non-linearlized, model, since ζ ∝ α, it would follow that the mean cluster size is
proportional to

√
µ/ζ.

To examine whether this intuition carries over to describe clustering behaviour in the short
run we make 500 runs of both the linearized and the original model for 200 equally spread
values of

√
µ/α and

√
µ/ζ in interval (0, 4] and show the results in figure 4. Here we present

the average cluster size at different points in time averaged over the 500 simulations. These are
essentially the same plots as in figure 3 but with a different abscissa. A sense of time in these
plots comes from the differences between curves along the ordinate for each point on abscissa.

The results indicate that average cluster size increases with time (which we have already seen

16Recall from equation 23 that σ = α− 2µ π2

S2 k2.
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√ ( µ / α ) √ ( µ / ζ )

Figure 4: Average neighbourhood size in the linearized model (left) and in the original model
(right).

in figure 3). They also indicate that the linear relationship predicted above for equilibrium state
is also present in the transition to equilibrium, at least in the linearized model. However, in the
original model, we observe a linear relationship during the early periods, but this disappears
as the system gets close to the equilibrium in which average (over agents) valuations of the
goods differ. We can conclude from this that the linearized version of the model is a very good
approximation of the original model except for the near-equilibrium dynamics.

The reason for this discrepancy between the original and linearized models close to equi-
librium is that the linear model exaggerates the effect of habit formation when valuations are
sufficiently high. To see this recall that in the original model habit formation parameter ζ is
additive to the valuation and is constant (equation 7). Consequently, as valuations increase the
relative habit formation effect will decrease. However, in the linear model, the contribution of
habit formation depends linearly on the level of valuation (equation 11). Thus the change in
valuations does not change the relative size of the habit formation effect. As valuations are
monotonically increasing in time, this is seen in the difference between the two panels of figure
4 at high values of t.

We have two effects in this model: habit formation, which drives the evolution of the average
valuations in the economy, and information exchange, which controls the idiosyncratic deviations
from this average. These effects are completely separable in the solution (22), and each dominates
the dynamics under different conditions. When the average difference between the valuations
of the two goods becomes large (infinity in the limit) the information exchange effect becomes
negligible (proposition 1), and habit formation dominates. However, if this difference is small
(zero in the limit), habit formation is weak, and the dynamics are driven by the information
exchange effect (proposition 2). Because we start from random initial conditions, ensuring that
v̄i;0 ≈ v̄j;0 ∀i, j, the effect of habit formation will initially be small, and the dynamics will be
driven by information exchange. In this case, the linear model provides a good approximation.
However, after a sufficiently long time, the dynamics come to be dominated by habit formation,
and as the linearized model exaggerates its effect, we get distortion in the picture: with the
linearized model predicting a linear relationship (left panel), while the original model shows
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a sub-linear relationship (right panel). This distortion persists until the system reaches the
equilibrium implied by the corollary 1.

5 An extension to the model

The model discussed in the previous section assumes a very specific structure for habit formation,
which governs the movement of the average of the valuation differences (z̄). This system implies
that consumers’ valuations increase without bound with consumers’ experience. Thus the av-
erage of the deviations either stays at zero forever or increases without bound (proposition 1).
Although mathematically convenient, this assumption is not very realistic. It is more plausible
that habits can be formed to a certain point, but no further. In this case the average of valuation
differences (z̄t) will be bounded. For understanding the implications of this extension we return
to the two good case of the linearized model, but the results generalize straight-forwardly.

Because the solution to our model is separable into the average and deviations from the
average, it is possible to incorporate a finite bound on the average valuation difference. Unfor-
tunately in this case it is not feasible to pin down the exact relation between σ and parameters
of the model. However, we can characterize the set of possible equilibrium states.

When we impose a bound on average valuations, the discrete version of the solution17 to the
system (19) becomes

zs
t = z̄ + eσt cos

(
k
2π

S
s

)
z̃0
0 . (26)

where z̄ (&= 0)18 is the equilibrium level of the average valuation difference. The solution here
differs from the unbounded case only in the first term: in the unbounded case, the first term
can grow without bound eventually dominating the solution, whereas when the valuations are
bounded, this term converges to a constant.

In the model with bounds on valuations, there are three regimes, characterised by the sign
of σ, the growth rate of the dominant sinusoid. The three regimes exhibit qualitatively different
behaviour with respect to clustering.

σ > 0 : In case when amplitude growth rate of the dominant sinusoid is positive (σ > 0),19

qualitative results with respect to clustering do not differ from the baseline model (proposition
4): distinct clusters emerge and are stable, with the share of consumers preferring a certain
product being equal across products.

For the other two cases adding bounds to average valuations changes the qualitative results
of the baseline model discussed in section 3.

17To recall, the discrete version of the solution to the unbounded model is zs
t = eαtz̄0 + eσt cos

`
k 2π

S s
´
z̃0
0 .

18The case z̄ = 0 is equivalent to the case z̄t = 0 ∀t, implying that the bounds make no difference to the
solution. This case was discussed above in section 3.2.

19Recall that with time the constant part of the solution (26), z̄, is dominated by one wave, as its amplitude
goes to infinity. The effect is that zs

t converges to eσt cos
`
k 2π

S s
´
z̃0
0 .
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Figure 5: Difference between the cases with one stable cluster (solid line) and multiple different
sized stable clusters (dashed line) when amplitude of the dominant sinusoid does not change.

σ < 0 : Where the amplitude growth rate of the dominant sinusoid is negative, we know that
even the dominant sinusoid vanishes in equilibrium. This implies that, in the limit, the second
term of (26) vanishes, and for each agent, valuation difference collapses to the average: zs

t → z̄.
In the baseline model this would imply either no clustering (if z̄0 = 0), or one cluster with
everybody purchasing the same product in equilibrium (if z̄0 &= 0).

However, in extended case no clustering is not an option (as z̄ &= 0). In this case every con-
sumer’s valuation difference converges to z̄, thus there will be one big cluster. But, again unlike
the baseline model, none of the products will attain 100 percent of the market in equilibrium,
as choice probability of the dominant product will be bounded by some value below 1.

σ = 0 : When the growth rate of the amplitude of the dominant sinusoid is zero, clustering is
stable, as it is in the baseline model, but here the bounds imply a richer set of possible outcomes.
In general there are two types of possibilities, illustrated in Figure 5. If the amplitude of the
dominant sinusoid is small relative to the average difference in valuations (|z̄|), then all agents
prefer one product over the other, though the strength of preference varies (solid line). A single
cluster emerges in preferences, but again, similar to the case when σ < 0, no product attains
100 percent of the market. If, however, the the amplitude is relatively large, we have stable
clustering with multiple clusters with different sizes (dashed line in Figure 5). The relationship
between the value of z̄/z̃0

0 , and the frequency of the wave, determines the size of the clusters
and share of the individuals preferring one product over another. More precisely, we can state

Proposition 7. If z̄ &= 0, σ = 0 and z̃0
0 < |z̄|, the share of consumers preferring one of the

products will be s1−s2
S k, where s1 and s2 are the solutions to

s =
S

2πk
arccos

(
− z̄

z̃0
0

)
,

such that s1 ≥ s2 and s1, s2 ∈ (0;S/k].

Proof. z̃0
0 < |z̄| guarantees that the equilibrium wave crosses the abscissa, thus for some con-

sumers zs > 0, while for others zs < 0. We have to find the share of one of these groups of
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consumers. For this we have to solve the equation

z̄ + cos
(

k
2π

S
s

)
z̃0
0 = 0 (27)

for s. This results in
s =

S

2πk
arccos

(
− z̄

z̃0
0

)
.

Denote the two solutions on one cycle of the wave with s1 and s2 (s1, s2 ∈ (0;S/k]) and order
them such that s1 ≥ s2. This implies that within each cycle, s1 − s2 agents have a valuation
difference of one sign (and comprise one cluster), S/k− (s1− s2) the other. Thus s1−s2

S k will be
the share of one kind of agents in the whole population.

This extension of the model results in richer equilibrium patterns which allow for stable
clustering patterns with clusters of different sizes co-existing in the equilibrium, whereas in
“unbounded” version of the model, all clusters were of the same size in equilibrium. This
extension could explain the existence of temporally stable geographical or social beighbourhoods
of different sizes engaging in similar activities (e.g. voting for the same party).

6 Concluding remarks

In this paper we have argued that interaction with peers over social networks can have important
effects on the social distribution of demand. This external force, together with internal forces
such as inertia, generate rich demand dynamics for markets containing goods that are close sub-
stitutes. Information diffusion through fixed social networks naturally generates clustering in
demand: some neighbourhoods collectively prefer one good over another, while other neighbour-
hoods do the reverse. But depending on the characteristics of the society, this pattern can be
either fragile or stable. In essence, several parallel informational cascades can result in persistent
spacial distributions, where clearly identified neighbourhoods have higher concentrations of one
particular type of information (information about one product), or to put it differently, where
the peaks of different positive informational cascades (Hirshleifer 1993) are located in different
places in social space.

It worth noting that stable clustering phenomena can also be obtained with simpler models.
For example one can model consumers as celular automata, who are basing their decisions on
purely neighbours’ current states (for example Greenberg and Hastings, 1978; or for an economics
application, Cowan and Miller, 1998). Our model differs from these specifications in two ways:
firstly, we can discuss the importance of communication intensity, which is impossible in celular
automata and secondly, in our model consumers exchange information about the merits of (all)
the products with their friends instead of just observing their consumption baskets. This is
particularly important as we can analyze deeper structures than revealed preferences.

In the present paper we model the dynamics of valuations through local interactions. There
has been an interest in the literature about the difference between local and global informa-
tion flows, or interaction more generally (Ellison 1993; Brock and Durlauf 2000; Glaeser and
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Scheinkman 2000). This issue can be addressed in our model by looking at its behaviour as
neighbourhoods become very large (H → S/2). Increasing the neighbourhood size (H) puts an
upward pressure on minimum stable cluster size c (see proposition 5), and for larger region of
parameter space pushes it above the threshold (c > S/2) beyond which clustering is unstable in
the long run (in case when the differences between average valuations are zero).20 Thus, in line
with Glaeser and Scheinkman (2000), our model demonstrates that local interactions result in
richer and more complex dynamics than do global interactions.

The model presented in this paper can be applied not only to choices between substitute
products, but also to any mutually exclusive decision. For example the valuations in this paper
can be easily interpreted as the level of satisfaction one gets from voting for a certain party.
Similarly, the difference between valuations (in case of the two product model) can be interpreted
as the satisfaction from various economic and social behaviour (e.g. bribery or other forms of
criminal activity). In this respect the present model which can not only explain the emergence
of the (geographical) clusters in which similar behaviours prevail but also provide the conditions
under which this phenomenon will be temporally stable.

Appendix

Appendix A. Proof of proposition 5.

Proof. Consider the case of arbitrary neighbourhood size of 2H. In this case after assuming
that the distance between two neighbouring consumers is δ and considering the two-good case,
continuous version of equation (12) can be rewritten as

∂z(s)
∂t

= αz(s) +
µ

2H




H∫

−H

z(s + δh)dh− 2Hz(s)



 . (28)

Using second order taylor approximation we can rewrite the part of (28) under the integral
as

H∫

−H

z(s)dh +
H∫

−H

δh
∂z(s)
∂s

dh +
H∫

−H

δ2h2

2
∂2z(s)
∂s2

dh.

Which, after integration of first two summands, is equal to

2Hz(s) + 0 +
δ2

2
∂2z(s)
∂s2

H∫

−H

h2dh.

To obtain more accurate values for smaller neighbourhood size, we go back to discrete space
and replace the integral in expression above with the sum of squares of integer values.

20For example, in the small economy that we have simulated (S = 100), H = 49 implies that the speed of
habituation, α, must be roughly 80 times higher than the influence of neighbours, µ, in order the system to be
stable for the largest possible cluster (c = S/2)
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Substituting this result back to (28) yields

∂z(s)
∂t

= αz(s) +
µδ2

4H

H∑

h=−H

h2 ∂2z(s)
∂s2

.

Thus, it follows that the only modification that this generalization brings to the system can
be captured by the definition of µ̃ in the text being changed to

µ̃ =
µδ2

4H

H∑

h=−H

h2. (29)

Going back to consumer addresses (δ = 1), using new definition of µ̃, and the identity
x∑

n=1
n2 = x3

3 + x2

2 + x
6 we can rewrite equation (23) as

σH = α− 2µ
(
k
π

l

)2
(

H2

3
+

H

2
+

1
6

)
, (30)

which results in

k̄H =
S

π

√

α/

(
2µ

(
H2

3
+

H

2
+

1
6

))
, (31)

and further in

cH =
π

2
√

3

√
2H2 + 3H + 1

√
µ

α
. (32)

Appendix B. Proof of proposition 6.

Proof. Consider the case of the arbitrary number of products (N) being available on the market,
but each consumer still communicating with only immediate neighbours (H = 1). Continuous
counterpart of equation (12) after applying a Taylor approximation procedure looks as follows

∂vn(s; t)
∂t

= αvn(s; t) + µ̃
∂2vn(s; t)

∂s2
. (33)

Define two N ×N dimensional diagonal matrices: one A with only α’s on the diagonal, the
other M̃ with µ̃’s on the diagonal, and three vectors, V which is the vector of vns, ∂V/∂t and
∂2V/∂s2 which contain first derivatives with time and second derivatives with space, the system
defined in (33) can be written in a matrix form

∂V
∂t

= AV + M̃
∂2V
∂s2

. (34)

The pattern wave solution to (34) is

V = eαtV̄0 + eσt+ik 2π
l sṼ0

0, (35)
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where V̄0 and Ṽ0
0 are vectors of initial values and just like in the paper agents are reindexed in

a way that the wave reaches maximum at agent zero. The real part of (35) can be written as

V = eαtV̄0 + eσt cos
(

k
2π

l
s

)
Ṽ0

0,

which is the same as the combination of propositions 1 and 2.
For the analysis of the stability of the system we again need to determine σ. Doing the same

trick as in the paper (taking the first derivative with time and the second derivative with space
and plugging back to the original equation), we get the following expression

(A−B)V0
0 = 0, (36)

where A is the same matrix of coefficients, while B is a new diagonal matrix, which has µ̃w2 +σ

terms everywhere on the main diagonal. So we get a new N ×N dimensional diagonal matrix
of a form





α− µ̃w2 − σ 0 · · · 0
0 α− µ̃w2 − σ · · · 0
...

... . . . ...
0 0 · · · α− µ̃w2 − σ




, (37)

determinant of which has to vanish for the nontrivial solution of the system. The determinant
of the matrix above is easy to calculate: the determinant of a diagonal matrix is the product of
its diagonal entries, so

Det = (α− µ̃w2 − σ)N . (38)

Equating the determinant to zero and plugging the definition of w gives the opportunity to
solve for σ

σ = α− µ̃k2

(
2π

l

)2

, (39)

which is the same as the solution obtained for the N = 2 case. Thus, this system, of course, has
N solutions but all of them are given by (39). As a result k̄N = k̄ and cN = c.
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