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Abstract

This paper presents an economic model of R&D network formation through the
creation of strategic alliances. Firms are randomly endowed with knowledge elements.
They base their alliance decisions purely on the technological fit of potential part-
ners, ignoring social capital considerations and indirect benefits on the network. This
is sufficient to generate equilibrium networks with the small world properties of ob-
served alliance networks, namely short pairwise distances and local clustering. The
equilibrium networks are more clustered than “comparable” random graphs, while
they have similar characteristic path length. Two extreme regimes of competition
are examined, to show that while the competition has a quantitative effect on the
equilibrium networks (density is lower with competition), the small world features of
the equilibrium networks are preserved.

1 Introduction

Interest in social and economic networks of various types has grown dramatically in the
last two decades. The manifold empirical studies emphasize that networks often share
two properties. First, they are small worlds — sparse networks with both short distances
between pairs of agents, and strong local clustering. Second, they have skewed link distri-
butions, often with a fat right tail. These properties have been observed in a wide variety
of networks.1 A challenge in the economic, mostly game theoretic literature on network
formation has been to capture these properties in a sound model. What incentives do (a

1Movie actors, power grids, neural networks (Watt and Strogatz 1998); food webs (Williams et al.
2002); academic co-authorship in many disciplines (Newman 2004; Goyal et al. 2006), strategic alliances
(Verspagen and Duysters 2004; Powell et al. 2005); patent co-invention (Balconi et al. 2004).
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few) agents have to form shortcuts, and why should they cluster locally? Why do a few
agents acquire many links while many others seem able to form only a few?

In this paper we develop a model of R&D networks in which firms seek to innovate,
combining theirs and their partners’ knowledge in order to produce new knowledge. The
key assumption is that the decision to forge a strategic alliance is based on the extent to
which the two participating firms’ endowments both resemble and complement each other.
Two aspects of the model combine to produce small world architectures.

First is the requirement that both similarities and complementarities are present for
an alliance to be profitable. The demands of absorptive capacity imply that partnering
firms must be similar to each other. As Granovetter (1976) points out, very often such
“similarity” is transitive, and thus in the larger network we should expect clusters of densely
interconnected firms. But the fact that firms must also complement each other implies
that similarity cannot be “identity”, and so is not perfectly transitive. The simultaneous
presence of common and distinct traits will induce correlation in the pairing decision,
yielding clustering at the local level. This tendency is strongest when similarities are much
more important than complementarities in the innovation process, that is, when what we
share matters more than how we differ.

Second is the fact that firms are located within a specific knowledge space. Thus links
between firms are implicitly links between points in that space. The interaction between
the decision rule, the structure and random location of firms in knowledge space will imply
short distances in network space. This creates the second feature of small worlds, namely
short pairwise distances.

Within the framework of this model we are able to derive analytically density, degree
distribution and clustering, and provide both asymptotic and numerical results on path
lengths. The results show that the search for partners with a good technological fit can
explain network architecture, and specifically small world properties. Although the search
for technological fit is the stated aim for strategic R&D alliance participants, it is often left
out of empirical studies. One contribution of this paper is thus to show that it is essential
that technological fit is included. We also contrast two extreme forms of competition. At
one extreme every alliance is aimed at a unique innovation, and so if successful gives a
positive value to its inventor. At the other extreme we invoke a patent race, in which all
alliances are aimed at the same, patentable, innovation, implying that only one success will
produce any revenue. We compare these extremes, showing that the strength of competition
affects the density of the network but that the basic structures, small worlds with skewed
link distributions, are preserved.

2 Small worlds

Mechanisms underlying a skewed degree distribution are thought to be reasonably well
understood. One argument is that in most industries firms’ size distribution itself is skewed.
This suggests that a larger firm has more resources with which to create or maintain costly
links than does a smaller one. Another popular argument is that skewness arises from a
preferential attachment mechanism (Barabasi and Albert 1999): a firm with many links
is often seen as an attractive partner to other firms either joining the network or revising
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their partnering decisions. This alone is enough to create a relatively “star-ish” network in
which a small number of firms acquire many links while most have a few.

A bigger challenge has been to understand the genesis of small worlds.
The first relevant literature approaches the problem from an algorithmic perspective.

Following the initial paper by Watts and Strogatz (1998), this literature is contributed to
mostly by computer scientists and physicists. It seeks to design algorithms to construct
small worlds, asks about the (often asymptotic) properties and functions of small world net-
works, and looks for them in large datasets (See Watts 1999; Amaral et al. 2000; Kleinberg
2000) Not surprisingly there are processes producing small worlds, and not surprisingly
their economic underpinnings, if any, are thin (but then, that was not their purpose).

A second literature that provides much more solid foundations is the strategic man-
agement literature. Here, network formation and network structure are often discussed
in terms of social capital. Clusters emerge through considerations of social control and
because link formation often rests on third party referrals. On the other hand, structural
hole arguments are used to explain how clique-spanning ties arise, initiated by firms aiming
at accessing resources in distant parts of the industry, and at occupying strong brokerage
positions. Together, these arguments explain the creation and maintenance of the small
world structures that are often observed empirically. (These ideas have been widely dis-
cussed: see Coleman 1988; Burt 1992; Kogut et al. 1992; Uzzi 1997; Walker et al. 1997;
Gulati and Gargiulo 1999; Ahuja 2000; Dyer and Nobeoka 2000; Rowley et al. 2000; Baum
et al. 2003.)

In the context of strategic R&D alliances between firms, these arguments seem correct,
but incomplete. Two parties to an alliance aimed at innovation of some kind must consider
not only social capital but also whether their knowledge and competence complement each
other. Indeed one of the standard explanations for why firms engage in (strategic, R&D)
alliances, is to access technology or competence that they need but do not possess in-
house.2 We can imagine a space of technological competence, where any firm is located at
a point representing its own expertise. If, in its choice of alliance partners, a firm looks
to complement its expertise, it will search for partners that are relatively distant in this
space. On the other hand though, considerations of absorptive capacity argue that partners
to an alliance cannot be too far apart. If they are, their respective absorptive capacities
will be too low, and the alliance will fail (Nooteboom 2000 or Grant 1996). This suggests
that alliance success should have an inverted-U relationship with distance between the
partners in the underlying knowledge space. There are now a small number of studies that
seem to support this hypothesis (Mowery et al. 1998 and 1996; Ahuja and Katila 2001;
Schoenmakers and Duysters 2006). This need for potential partnerships to achieve both
some degree of commonality and some degree of complementarity is a key feature of the
model we develop in this paper.

The third place where models for the formation of small worlds are provided is the
economic literature. There, short pairwise distances tend to arise because of the presence
of indirect benefits decaying with distance. And high clustering results from smaller costs
(if possibly smaller benefits) of connecting to similar (nearby) nodes. Variants of Jackson
and Wolinsky’s (1996) communication model all exploit, to some degree, this feature. A
network in which inter-node distances are, on average, long induces some value destruction,

2See for example Ahuja and Katila (2001), Mowerey et al. (1996) or Hagedoorn (1993).
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which the creation of a shortcut can prevent. Jackson and Rogers (2005) locate nodes on
islands. Costs of link formation are low if two nodes are on the same island, and high if
they are on different islands. Together with the truncation of benefits, this structure creates
arbitrarily dense islands with rare interconnections between islands at equilibrium. Carayol
and Roux (2009) explore a framework in which nodes are located on a circle, and the cost of
forming a link rises with geographic distance between nodes. Galleoti et al. (2004) also have
a connections model where players’ values and costs are heterogenous. In a world where
society has groups and intra-group link are cheaper to form that inter-group links, they
find that inter-connected stars are both socially efficient and stable, leading them to claim
that centrality, center-sponsorship and small diameter are robust features of networks. In
all of these models shortcuts (which bring down average inter-node distances) arise because
a node seeks access to a distant resource, the value of which decays in transmission.

In comparison with the models above, our approach has 2 important differences. First,
firms have richer properties. Each of them is defined as a set of attributes, drawn from
a fixed universe (for example firms forming strategic R&D alliances, where attributes are
pieces of knowledge, or competence in particular technologies). These attributes only cre-
ate economic values when combined in the right proportion. Second, we keep the simplest
structure with no indirect effects. Value (here, innovation) originates in links, and is not
transmitted beyond its inventors. So shortcuts in the equilibrium network generated in
our model will not result from firms’ desire to shorten their distance to a valuable re-
source. The combination of firms’ heterogeneity and their willingness to ally with similar
yet complementary partners is enough to induce the formation of small worlds.

3 Definitions

3.1 Networks

The industry consists of a finite population N = {1, . . . , n} of firms. A network is a set g of
ties (links) between unordered pairs of firms in N. Writing ij to represent the tie between
firms i and j, ij ∈ g indicates that i and j are linked in the network g. The network obtained
by adding ij to an existing network g is denoted g + ij, while the network obtained by
deleting ij from g is g − ij.

The neighbourhood of firm i consists of the firms to whom i is directly connected,
denoted N g

i = {j 6= i : ij ∈ g}. The size of the neighbourhood of i is the number of ties
held by firm i, also called its degree, and is denoted ng

i = #N g
i . The total number of links

in the network is Eg =
∑

i∈N ng
i /2, and thus the density of g is equal to 2Eg/n(n − 1). A

singleton is a firm i such that ng
i = 0, i.e. a firm with no partner.

3.2 Strategies and equilibrium

Firms play a simultaneous link formation game. A strategy for firm i is a list of (n − 1)
decisions (si,1, . . . , si,i−1, si,i+1, . . . , si,n), with si,j ∈ {0, 1}. If si,j = 1 then i proposes a
partnership to j, whereas no partnership is proposed when si,j = 0. Link formation is
bilateral, so in the network g(s) = g induced by the strategy profile s, ij ∈ g if and only if
si,jsj,i = 1, that is, both partners want the alliance and so propose to each other. Denote
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the payoff to firm i in network g as πg
i (defined below). The network g is pairwise stable

(Jackson and Wolinsky, 1996) if and only if

min{πg
i − πg−ij

i ; πg
j − πg−ij

j } ≥ 0,∀ij ∈ g

and
min{πg+ij

i − πg
i ; π

g+ij
j − πg

j } < 0,∀ij /∈ g.

Links part of a stable network g should yield non-negative value to both partners, whereas
links yielding negative value to at least one potential partner cannot be part of g.

3.3 Assessing small worlds

A small world is defined as a sparse network, displaying both local clustering and short
pairwise distances. A sparse network is one in which density is low, that is, the number
of edges divided by the number of possible edges is small. In empirical studies of small
worlds, densities are typically lower than 5 to 10 percent.

There are two classic measures of clustering (see Newman 2003). In the first, clustering
is measured by the proportion of neighbours of a node who are neighbours of each other.
Computing that proportion for each node and taking the average yields the clustering
coefficient. An alternative measure, which is more easily determined in our case, is the
fraction of transitive triples in the whole network. Transitivity is defined as∑

i #{jk ∈ g : j, k ∈ N g
i }∑

i #{jk : j, k ∈ N g
i }

=
3× Nb of closed triangles in g

Nb of connected triples in g
.

The factor 3 appears in the numerator because each triangle involves 3 connected triples. On
this definition, it is worth noting that the expected value of transitivity is the probability
that jk exists conditional on ij and ik existing, or put another way, the probability of
closing the connected triple formed by ij and ik by connecting j to k.

Contrasting with clustering, which is a local measure (of redundancy in ties), a measure
of global structure is provided by the distribution of pairwise distances between nodes. A
path of length ` + 1 in g connecting i and j is a set of distinct nodes {i1, . . . , i`} such that
ii1, i1i2, . . . , i`j ∈ g. The distance separating i from j in g is the length of the shortest path
in g between i and j. If no path exists between i and j, then by convention the distance
is defined as infinite. Averaging all finite pairwise distances yields the characteristic path
length. To cope with the issue of disconnected networks (which would introduce at least one
infinite distance in the calculation) we restrict attention to distances between “reachable
pairs”.

A network is identified as a small world when clustering significantly exceeds that of a
“comparable” random graph, whereas characteristic path length is of the same order. A
benchmark often used in practice is an Erdös and Rényi (1960) random graph (ER), in
which a tunable number of edges are allocated among randomly (and uniformly) selected
pairs of nodes. The ER benchmark is made “comparable” to the graph under scrutiny by
taking the same number of nodes and edges.
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3.4 Innovation

Firms are the carriers of knowledge which they bring together in order to discover new
knowledge. Knowledge is modelled as a set or list of discrete elements, where the set of all
possible facts is {1, . . . , w}. Firm i’s knowledge portfolio is a w-position binary vector vi,
where vz

i = 1 if i knows fact z and vz
i = 0 otherwise.

In the introduction we argued that for joint innovation, both commonality and difference
were important. Define vij as the commonality of i and j, i.e. the number of facts known
to both: vij = #{z : vz

i = vz
j = 1}. Also define sij as i’s complementing of j, i.e. the

number of facts known to i but not to j: sij = #{z : vz
i > vz

j}. For successful innovation,
i and j must both be similar to and complement each other. We model this by assuming
success requires a commonality of δ and reciprocal complementarity of γ. The probability
that the partnership ij innovates successfully is

rij =

{
1 if vij = δ and sij = sji = γ,
0 otherwise.

(1)

Successful partners must thus have the right technological fit, i.e. share competencies in δ
technologies and have their competencies complement each other in γ technologies.3

3.5 Payoffs

The model represents firms’ behaviour in a fast moving industry in which innovation
is the motivating goal of firms, and post-innovation competition in the market place is
parametrized in a simple manner. Innovative success is affected by the partner firms’ tech-
nological fit, whereas profits from innovation are affected by the nature of competition. In
what follows we examine two extremes of competition.

In the first, the benefits from each successful innovation are fully appropriated by its
2 inventors, regardless of the amount of R&D in the industry and the success of other
partnerships. The alliance decision is based entirely on technological fit, and we refer to
the resulting network as the knowledge or technology network: t. In the second case, the
benefits from each successful alliance have to be shared with all other successful alliances
(equivalently, only 1 alliance will succeed as in a standard patent race). Here market
considerations are essential and we refer to the resulting network as the market network:
m.

Profits in the two cases are written as

πg
i =

1

1 + α (Eg − 1)

∑
j∈Ng

i

rij − cng
i ,

3These are very strong conditions on alliance success. There are two obvious ways they can be relaxed.
Overlap could be “near” optimal overlap and still result in success. So the overlap rule could be changed
to δ − ρ ≤ vij ≤ δ + ρ. Similarly, since firms do not need to share every possible piece of knowledge, the
“reciprocal complements” rule could be changed to sij ≥ γ and sji ≥ γ. (Notice that this also relaxes
the strong reciprocity condition.) Both of these generalizations, when made individually, are relatively
straightforward, and involve summing the functions given here. Relaxing them simultaneously is more
intricate however.
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where g ∈ {t,m}, c > 0 is the cost of forming or maintaining an alliance, paid by each of
the partners to it, α ∈ {0, 1} captures the intensity of competition for innovative reward
(α = 0 for the knowledge case, and α = 1 for the market case).

4 Equilibrium networks

In this section we develop the model on the assumption that any second stage competition
is not relevant to the alliance decision-making process. In essence, every alliance is aimed
at a unique innovation which is not in any way a substitute for any other innovation. This
is a strong assumption, but one which is often implicitly made, both in theoretical and
empirical network studies.

The expected profit for firm i in a (technology-driven) network t is thus

πt
i =

∑
j∈Nt

i

rij − cnt
i. (2)

As links convey no indirect benefits, the marginal value of both an existing and a non-
existing link ij is simply πt

i −πt−ij
i = πt+ij

i −πt
i = rij − c. Technological fit being symmetric

(see Equation 1), if the incremental value of a link is positive to one partner, it is to the
other as well. Proposition 1 below states the results, omitting the straightforward proof.

Proposition 1 When c > 1 the empty network is (uniquely) stable. When c ≤ 1, for any
values of δ and γ there is a unique equilibrium network, in which all firms with overlap of
δ and reciprocal complementarity of γ form an alliance.

4.1 Discussion of general structures

Proposition 1 provides a minimal description of the equilibrium networks. Before turn-
ing to formal derivation of network statistics, we can describe heuristically how network
architectures might respond to parameter changes.

Consider the formation of a single link. It demands that each partner possesses exactly
δ +γ ideas: a partner with more or less knowledge simply cannot meet the technological fit
constraint. So it must be the case that δ + 2γ ≤ w for a partnership, which is the smallest
possible clique (complete subgraph) in a network, to form. A clique of size 3 (a triangle)
forms if and only if each firm has the right technological fit with the 2 others, which is
possible if and only if δ + 3γ ≤ w. More generally, cliques of size s can form if and only if
δ + sγ ≤ w. Obviously in that case cliques of smaller size are also possible (and actually
more frequent than cliques of size s). The important implication is that both γ and δ exert
a negative influence on the possibility of large cliques, the effect of γ being stronger than
that of δ. As a clique of size s embeds

(
s
3

)
triangles, δ and γ exert a direct, negative effect

on transitivity as defined in Section 3.3.
To see these effects more in detail, first assume an industry in which innovation is driven

by creation of novel combinations of existing knowledge. In this case, we might expect γ
the demand for reciprocal complementarities, to be high (in the extreme, γ = (w − δ)/2),
and thus smaller cliques in the industry. When (w − δ) /3 < γ ≤ (w − δ) /2, no triangle
can form: the partners of any firm are almost identical to each other, but identical firms
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bring no novelty to an alliance and so cannot innovate. In the extreme case γ = (w − δ) /2,
squares (cycles of period 4) can form: partners of i are mirror images of i and a mirror
image has a cycle of period 2.4 This could however be regarded as a curiosity, since firms
ally with partners who are identical to each other and thus redundant from the point of
view of innovation. The strong effect is that increasing the need for complementarity γ,
everything else equal, will decrease transitivity in the network.

At the other extreme, in an industry where innovation is not driven by creation of
novel combinations of existing knowledge, bringing novelty to a partnership may be less
important than having a good, easy working relationship. In this case commonality in
knowledge would dominate the decision and the demand for reciprocal complementarities
γ would be small relative to δ, implying the possibility of large cliques in the industry.
Focussing then on the effect of commonality, we see that a smaller δ permit the formation
of cliques of larger size (possibly the industry grand coalition if δ + nγ ≤ w). By contrast,
increasing δ again diminishes clique size and possibly induces the network to fracture into
small, isolated cliques (or dense components) of similar firms, each component representing
a sub-sector of the industry. Hence again increasing the need for commonality δ, everything
else equal, will decrease transitivity in the network.

We have modelled an industry in which there is a fixed total number w of relevant facts,
with the intention of characterizing industries by how much of the relevant knowledge is
necessary to innovate (the size of γ + δ relative to w). An interpretation is that in young
industries, the amount of (relevant) knowledge known to the firm is low relative to the
amount that can in principle be discovered. In the (δ, γ)-plane this means an industry
that lies close to the origin, where many partnerships are potentially interesting, cliques of
various sizes can form and a dense industry network emerges. In a more mature industry by
contrast, what remains to be discovered can be thought of as smaller, hence a higher δ + γ
relative to w. The industry has moved right and north along the axes in the (δ, γ)-plane:
large cliques become impossible, and it can become difficult even to find a single partner.

Obviously the effect of changes in (δ + γ) /w interacts with the relative importance of
commonality and complementarity. A heuristic way of seeing this is to start from the
fact that a match between i and j requires that i knows exactly δ of j’s δ + γ pieces
of knowledge. The probability of this occurring is highest when the probability that i
knows any particular fact is δ/(δ + γ). This would mean that i knows (in expected terms)
w · δ/(δ + γ) facts. But in the model firms know exactly δ + γ facts. So the probability
that i and j fit is highest when (δ + γ)/w = δ/(δ + γ), and falling away as we depart from
that equality. If complementarity demands dominate (δ/ (δ + γ) small), networks will be
dense when innovating firms have little knowledge ((δ + γ)/w also small) so that almost
any pair of firms complement each other. On the other hand, when commonality demands
are high (δ/ (δ + γ) large), dense networks emerge when total knowledge endowments are
high, so that firms get very similar to each other (a larger portion of the knowledge vector
is common).

4To be more precise, partners of i have δ facts in common with each other and with i, but in the
remaining w− δ places in their knowledge vectors, they are mirror-images of i and identical to each other.
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4.2 Density and degree distribution

From Proposition 1, we can derive the properties of the larger network of all alliances. Our
interest is in how these properties are affected by the relative importance of commonality
(δ) and complementarity (γ) in the innovative process.

The strict condition we place on alliance formation, namely that holding exactly δ + γ
ideas is necessary to be part of any alliance, implies that firms endowed with different
amounts of knowledge are doomed never to partner. In what follows we focus on a popula-
tion of firms all of which command the right amount of knowledge. This strategy has two
advantages. First, in an arbitrary population endowed with random amounts of knowledge,
one effect of changing the parameters γ and δ would be to change the proportion of firms
commanding γ + δ technologies. With a fixed total number of firms, this changes the num-
ber that can participate in the network. Thus the effects of complementarities and overlap
are confounded with changes in the effective, network-participating, population size. Fix-
ing the number of “alliance-ready” firms over the parameter space removes this effect. The
second advantage is that empirical analyses of alliances tend to consider as their population
only those firms who have ever had an alliance. Thus they exclude firms that, for whatever
reason (perhaps they are too young to have enough knowledge to be attractive; or they
command enough knowledge to be self-sufficient) have never had an alliance. We abstract
from these issues by considering a population of n firms commanding δ + γ technologies
and so which are, even if not participating in any alliances, at least “alliance-ready”.

The starting element to derive the properties of the network of alliances is the probability
q that two firms form a link. As each firms carries γ + δ ideas uniformly distributed over
w positions, the probability that i and j form a partnership is simply

Pr {ij ∈ t|ai = ajδ + γ} = q =

(
δ+γ

δ

)(
w−δ−γ

γ

)(
w

δ+γ

) . (3)

Thus we can state the following result.

Proposition 2 When all firms command δ+γ technologies and consider only technological
fit, q is the (expected) density of the equilibrium network t, and the degree distribution of
firms in the equilibrium network t is binomial with parameters n− 1 and q: Pr{nt

i = z} =(
n−1

z

)
qz(1− q)n−z.

Figure 1 shows how expected density (q) responds to changes in parameters. Following
the discussion in Section 4.1, density is presented as a function of the general knowledge level
(δ+γ)/w, and the relative importance of commonality versus complementarity, δ/(δ+γ). As
suggested earlier, we observe that density is highest along the ray defined by (δ + γ)/w =
δ/(δ + γ). It is worth noting that the probability of matching falls rapidly as we move
away, so even though all firms are a priori “alliance-ready”, density remains close to 0 over
significant portions of the parameter space.

4.3 Transitivity

On the definition given in Section 3.3, the expected value of transitivity (the expected
proportion of transitive triples in the equilibrium network) is simply Pr{jk|ij, ik}, the
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Figure 1: Density of the equilibrium network t as a function of (δ + γ)/ω and δ/(δ + γ),
all firms command δ + γ technologies. Contours: 0.01, thin line; 0.1, thick line.

probability that jk forms conditional on ij and ik existing. From then we want to know
whether the model produces excess transitivity compared to a random graph of the same
density. Noting that in a random graph edges form independently, the probability that the
third edge of a triangle forms conditional on two of its edges already existing is simply the
probability that an edge forms. This in turn is simply q, the density of the random graph.
So rescaled transitivity (the extent to which triangles occur relative to a “comparable”
random graph) is simply Pr{jk|ij, ik}/q, with q defined in Equation (3). A ratio larger
(smaller) than 1 indicates the presence (absence) of excess clustering, relative to a random
benchmark.

Proposition 3 When all firms command δ + γ technologies, re-scaled transitivity in the
equilibrium network is equal to ∑b

b=b

(
δ
b

)(
γ
b

)2(w−δ−2γ
γ−b

)(
w

δ+γ

)(
δ+γ

δ

)2(w−δ−γ
γ

)2 ,

where b = max{0; 3γ + δ − w} and b = min{γ; δ}. Rescaled transitivity is significantly
greater than one over much of the (δ, γ) space, and is larger for smaller values of the
complementarity parameter γ.

Proof Obtaining Pr {ij, ik} is straightforward: it is the probability of 2 independent events,
Pr {ij, ik} = q2. The numerator Pr {ij|ik, jk} is slightly less direct to compute. This time,
write firms i, j and k’s knowledge portfolios as a w × 3 matrix (firm i is the first column,
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etc.) and suppose there are δ− b rows in the matrix written 111, with 0 ≤ b ≤ δ. Then the
rest of the matrix is perfectly defined. There must be b rows of 110, b rows of 101 and b
rows of 011 to ensure the right overlap between all pairs of firms. Then γ − b rows of 001,
γ − b rows of 010 and γ − b rows of 100 so that the right complementarities between pairs
are obtained. The remaining rows (of which there are w − δ − 3γ + b) must be written
000. How many ways there are to array the 1s held by all 3 firms so that δ − b rows of the
matrix are written 111 is a product of binomial coefficients, i.e.

w!

(δ − b)!b!3 (γ − b)!3 (w − δ − 3γ + b)!
.

As the 1s held by all 3 firms can be arrayed in
(

w
δ+γ

)3
ways, the probability that the

knowledge matrix has δ − b rows of 111 is written

(δ + γ)!3 (w − δ − γ)!3

(δ − b)!b!3 (γ − b)!3 (w − δ − 3γ + b)!w!2
.

Rearranging the factorials, representing them as binomial coefficients and invoking the law
of total probability (the knowledge matrix can have from 0 to δ rows written 111) the final
result obtains as

Pr {ij, ik, jk} =

(
δ+γ

δ

)(
w−δ−γ

γ

)(
w

δ+γ

)2

b∑
b=b

(
δ

b

)(
γ

b

)2(
w − δ − 2γ

γ − b

)
,

where b = max{0; 3γ + δ − w} and b = min{γ; δ}, so that all binomial coefficients are well
defined. Finally the expected value of transitivity is

Pr {jk|ij, ik} =

∑b
b=b

(
δ
b

)(
γ
b

)2(w−δ−2γ
γ−b

)(
δ+γ

δ

)(
w−δ−γ

γ

) .

From there, rescaled transitivity obtains directly by computing the ratio of Pr {jk|ij, ik}
to q, the density of the graph. �

Figure 2 displays how transitivity (left panel) and the logarithm of rescaled expected
transitivity (right panel) respond to changes in the general knowledge level (δ + γ)/w, and
the relative importance of commonality versus complementarity, δ/(δ + γ). One contour
of density (density=0.01) is superimposed on the two images, to show the parts of the
parameter space where networks are both reasonably dense and clustered.

t
The results visible in Figure 2 are consistent with the intuitions developed in Section

4.1, about the role played by the magnitude and relative importance of commonality and
complementarity. First, small values of δ and γ sustain transitivity, as evidenced by the dark
region close to the origin in the left panel of Figure 2. A move up in the ((δ+γ)/w, δ/(δ+γ))-
plane implies an increase in δ and a simultaneous decrease in γ, yielding a decline of
transitivity. A move down along the vertical axis yields a stronger response in the same
direction of falling transitivity. These effects however interact with changes in density, and
so it is interesting to look at the right panel in Figure 2, which presents rescaled transitivity.
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Figure 2: Left panel: Expected transitivity; white contour 0.25, black contour 0.1. Right
panel: Logarithm of rescaled expected transitivity: thick contour line is rescaled transi-
tivity=1; thin contour line is density=0.01. In the white area to the right of the figures,
parameter values are such that triangles cannot form, and transitivity is not defined.

Here the main observation is that rescaled transitivity is monotonically increasing with
δ/(δ + γ). So once we disentangle changes in network density from changes in transitivity,
the picture is modified. When the dominant consideration in partnering is commonality
of knowledge rather than complementarity, the networks that arise are much more locally
coherent than equivalent random networks. Rescaled transitivity is greater than one, and
often much greater than one.

4.4 Distances

The second defining feature of a small world is a short characteristic path length, possibly
approaching that of a random graph. The analytical derivation of the distance distribution
is not possible in the model, however we are able to provide the following asymptotic result.

Proposition 4 As the number of firms in the industry increases, the diameter of the indus-
try network approaches bδ/γc+ 2. When the network is connected, the limit is approached
from above.

Proof Each firm in the industry is located at one point in a discrete knowledge space of size(
w

δ+γ

)
. All possible knowledge configurations are equally likely, so as the number of firms

increases, the proportion of occupied nodes in the knowledge space approaches 1. Consider
the limiting case of each point in knowledge space being occupied by at least one firm. We
can construct a longest shortest path. Consider a source node that has all its knowledge
in the first δ + γ positions, and a target node that has its knowledge in the final δ + γ
positions. Reserve the first δ +γ positions, then divide the remaining w− (δ + γ) positions
in sets of length γ starting from the right end, letting ξ(< γ) denote the remainder of the
integer division. In Table 1 we record the number of 1s in each group of cells as we move
from the source node to the target node through the nodes on the path. The movement
down the table can be seen as moving δ + γ 1s from the beginning of the vector to the end
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Number of ordered positions δ+γ ξ γ ··· γ γ ··· γ γ γ

Source firm δ + γ 0 · · · · · · 0 0 · · · 0 0 0
Firm 2 δ 0 · · · · · · 0 0 · · · 0 0 γ
Firm 3 δ − γ 0 · · · · · · 0 0 · · · 0 γ γ
· · · continue until δ−vγ<γ, then

Firm v + 2 δ − vγ 0 · · · · · · 0 γ · · · γ γ γ
Target firm 0 0 · · · 0 γ δ − vγ · · · γ γ γ

Table 1: Constructing a longest shortest path.

of it, moving at most γ at a time. Moving exactly γ will permit link formation between
adjacent rows of the table.

As a result, the path from source to target has length v+2, where v is the largest integer
such that δ − vγ < γ, i.e. v = bδ/γc , hence the result. The longest pairwise distance is
obtained as the integer part of the ratio of knowledge commonality to complementarity
increased by 2. This is the limiting case in which there is at least one firm at every point
in knowledge space. As population size falls, points in the knowledge space are vacated.
Considering any source-target pair, if a point on the constructed path is vacated, the path
will be impossible to implement. If this does not disconnect the graph, the shortest path
between source and target will increase. �

What we observe here is that the short characteristic path lengths arise from the inter-
action of the knowledge space with the alliance-formation rule. In contrast to much of the
literature, it does not arise from the effects of indirect benefits. In Jackson and Wolinsky’s
(1996) connections model and its descendants, nodes receive benefits from nodes at all finite
distances in the graph, but benefits that decay with distance. This provides in incentive
for each node to ensure that it has short paths to all other nodes, implying incentives for at
least some nodes to create shortcuts. In our model, there are no indirect benefits: benefits
to a firm arise only from innovation taking place along a single link.

For the finite case we treat the issue numerically. At each point in the (δ, γ)-(integer)plane,
we generate 100 random networks and record the average distance among reachable pairs.
Values of δ and γ such that there are no reachable pairs (i.e. when the graph is empty) do
not contribute to the set of observations. Using the average density of those 100 networks,
we also generate 100 random networks of that expected density, and record for them the
average distance among reachable pairs. Re-scaled path length at each point in the (δ, γ)-
plane is the ratio of those two path lengths. We then pool the data and build a frequency
histogram, as shown in Figure 3.

The bulk of the distribution is concentrated around 1, indicating a structure with dis-
tances very similar to those of an equivalent random graph over the entire relevant param-
eter space.

It is worth emphasizing that the asymptotic result predicts a diameter which does not
depend on w, the total number of pieces of knowledge in the industry, or n the industry
size, but solely on the relative importance of commonality and complementarity. The fact
that the asymptotic diameter does not scale with n but rather has a finite limit makes
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Figure 3: Frequency distribution of re-scaled distance between reachable pairs over the
(δ, γ) plane, all firms command δ + γ technologies.

the network a small world in a very strong sense. Finally, the asymptotic results also
emphasize that rescaled transitivity and diameter (and so presumably characteristic path
length) respond similarly to changes in δ and γ. We have seen in the previous section that
increasing δ and simultaneously decreasing γ increases rescaled transitivity. We have just
seen now that γ negatively influences characteristic path length, while δ has a positive
influence. The same will happen to rescaled characteristic path length. So there might be
a mild tension between the two measures, at least in the asymptotic case, when it comes
to assessing the presence of a small world.

4.5 Small worlds?

While there is no consensus regarding a statistical definition of a small world, a commonly
used statistic is the ratio of re-scaled transitivity to re-scaled characteristic path length.
Ratios significantly larger than one indicate the presence of a small world. In Figure 4 we
plot the values of this ratio against network density for all relevant (δ, γ) combinations.
In addition, we use different markers depending on whether the point lies above or below
diagonal in the (δ/ (δ + γ) , (δ + γ) /w)-plane. We can observe two things from this fig-
ure. First, small worlds are only present when the network is not dense. This is in fact
consistent with the general observation that small worlds (and many empirically observed
networks) are quite sparse. Second we observe here the importance of complementarity
versus commonality in determining network structure. When strong complementarity in
partners’ knowledge stocks is necessary for an alliance to succeed (δ/(γ + δ) is small) few
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triangles form and transitivity is low: small worlds are not present. At the other extreme,
when commonality in knowledge is necessary for success (δ/(γ + δ) is large) small worlds
do form, again provided the network is not too dense.
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Figure 4: Ratio of re-scaled transitivity to re-scaled average path length as a function of
network density, partitioned on δ/(δ + γ) ≶ (δ + γ)/w.

We observe that focussing the alliance decision on technological fit produces networks
which are highly clustered relative to equivalent random graphs. These networks also have
path lengths that are close to those in equivalent random graphs. The degree distribution
does not display power law properties: it is binomial and so is skewed to the right, but with
an exponential tail. All together, these results permit us to state that technological fit,
which is the stated aim for strategic alliance participants, is a strong explanatory factor for
observed, small world, network architectures. More sophisticated network motives, which
would involve indirect effects and attempts by firms to manipulate the larger network
beyond their immediate set of alliances are unnecessary.

5 Equilibrium networks with competition

The model just developed assumed no competition. Partner choice and equilibrium net-
works were restricted only by knowledge constraints. Now we turn to a case in which
market considerations play a role. We examine a situation of extreme competition, in
which one and only one alliance will be profitable ex post. All firms compete for the same
discovery, and the first partnership that innovates obtains a patent and receives monopoly
profits, while other firms get nothing. The essential issue in this section is how competition
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affects the equilibrium network, using the no-competition case as a benchmark. In effect,
competition will add partner selection constraints, and we examine how they interact with
the knowledge constraints discussed earlier, i.e. the relative importance of commonality
(δ) versus complementarity (γ) in the innovative process.

5.1 Competition in networks

Actors in any alliance network are not only part of a network, they are also part of an
industry which may involve inter-firm competition. This observation, while widely ac-
knowledged, seldom appears in the empirical literature on alliances. In some industries,
such as pharmaceuticals, the competition between partners in many alliances is quite at-
tenuated (for example an alliance between a dedicated biotech firm and a big pharma firm
may involve no competition on any market at all) while in others, such as micro-electronics
or automobiles, partners in an alliance are often very direct competitors, even in the mar-
ket for the outputs of the alliance. Theoretical papers tend to include a post network
formation stage of competition. It is so in the literatures on coalition formation (see Bloch
1995; Joshi 2008 and references therein) and on more general R&D networks (Goyal and
Joshi 2003 and 2006). Typically these papers find that the degree of competition is cen-
tral in determining which network architectures are observed at equilibrium. Goyal and
Joshi (2003) find that dominant group architectures (the equilibrium network consists of a
complete sub-component plus singletons) are often stable structures. Small world features
were not the object of their study though. Goyal and Joshi (2006) mention patent races as
examples of “playing-the-field” network games (games with specific externalities across the
links of a given player, and across links of different players). Our model however is quite
different due to the constraints imposed by technological fit, in addition to those stemming
from pairwise stability.

5.2 Strategies and equilibrium

We assume that firms are engaged in a patent race with no discounting. In essence, any
innovation project will succeed so the project that has a positive return is merely the first
one to succeed. We assume that projects undertaken are in every relevant respect identical,
so the probability that any particular project is the first to succeed is simply one over the
number of projects. Thus the expected profit function for firm i in the (market) network
m is simply

πm
i =

nm
i

Em
− cnm

i .

Recall that there are no indirect benefits in the model, thus a link between misfits will never
be observed in equilibrium as it creates no value and carries a cost. So πm

i = (1/Em − c) nm
i ,

with the understanding that a link only forms between technologically fit players. Denoting
Ai the number of alliances not involving i, Am

i = Em − nm
i in the network m, we have

πm
i = f (nm

i , Am
i ) − cnm

i , which depends only on the number of the firm’s links and the
(halved) aggregate number of links of other firms in the industry. In Goyal and Joshi’s
(2006) terminology, the game is a playing-the-field game. As they point out, the classical
patent race is also a playing-the-field game. The difference between the game here and the
example they consider is that in their case firms are the locus of innovation, whereas in our
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case it is the partnerships themselves. The aggregate revenue f (z, A) is concave in own
links, i.e. f (z + 1, A)− f (z, A) is decreasing with z, and satisfies the strategic substitutes
property that f (z + 1, A′) − f (z, A′) < f (z + 1, A) − f (z, A) when A′ > A. The game
thus represents a situation in which there is a positive externality across the links of a given
firm, and a negative externality across the links of different firms.

If technological fit is not an issue, i.e. firms can form all the partnerships they wish
to form, then (as in Goyal and Joshi, Proposition 3, p. 329) a symmetric network5 with
degree d∗ ∈ {1, . . . , n− 2} is pairwise stable if

2 (n− 2)

n (nd∗ + 2)
< c <

2 (n− 2)

n (nd∗ − 2)
. (4)

In general, however, other pairwise stable structures can exist for c in the right interval,
and not all values of c fall in an interval which can take the form required by Condition
4. We do not attempt an exhaustive characterization of the equilibrium networks, and
will turn instead to numerical experiments. We can however observe that in the full setup
in which firms are both constrained by knowledge fit and pairwise stability, the following
result obtains readily.

Proposition 5 The equilibrium market network m is always less dense than the technology
network t. In addition, if Condition 4 holds so that there exists a symmetric equilibrium
network of degree d∗, then (a) if max{nt

i; i ∈ N} ≤ d∗ then the technology network t is
a market equilibrium network; (b) if min{nt

i; i ∈ N} ≥ d∗ then one (of possibly many)
equilibrium market networks is symmetric with each firm having exactly d∗ alliances.

Proof All potential links are in the technology network t. Either all are pairwise stable, or
there are firms forced by profit maximization to drop a subset of their links in t, in which
case there can only be fewer links in total.

Suppose c satisfies Condition 4, and nt
i ≤ d∗,∀i ∈ N . No pair of firms can add a link.

Does a firm want to sever a subset of its links? For any i ∈ N, Ai = (
∑

j 6=i n
t
j − nt

i)/2 <
(n− 2) d∗/2 = A. Using the strategic substitutes property and concavity in own links,
γ (nt

i, A
t
i) − γ (nt

i − 1, At
i) ≥ γ (nt

i, A) − γ (nt
i − 1, A) ≥ γ (d∗, A) − γ (d∗ − 1, A) > c, i.e. no

firm is willing to drop links.
Suppose c satisfies Condition 4, and nt

i ≥ d∗,∀i ∈ N . The technology constraints are
not binding and so the symmetric equilibrium of degree d∗, which we know to be stable,
can be formed by firms. �

Integrating the constraints of pairwise stability and knowledge fit makes the problem
very complicated to solve mathematically. The reason is that some firms are bound by
the pairwise stability constraint (those who have many partners in the knowledge network
t) and some are bound by the knowledge matching constraint (those with few partners in
the knowledge network t). We thus resort to a simple, edge-by-edge addition algorithm
to randomly generate equilibrium networks starting from the technology network t. An
equilibrium market network m will obtain as a subset of the set t of potential links.

5Note that for a symmetric network g of any degree d∗ to be possible, the number of players n cannot
be odd: Eg = nd∗/2 is guaranteed to be an integer number for all integer value of d∗ only if n is even.
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Starting with an empty network m0 = {∅},we draw links at random from the technology
network t and incrementally add them to the market network. At step s, since ms−1 only
contains links between fit partners, we pick a random link in t − ms−1, check that it is
marginally profitable and add it to ms−1 to form ms, the current market network. We
then recalculate Ams

i ,∀i ∈ N. At this stage, we make use of the strict quasi-concavity of
the profit function to informally define the “best-response” of firm i as bms

i = bms
i (Ams

i ) =
−Ams

i +
√

Ams
i /c. As either bbms

i c or dbms
i e is the optimal number of partners for firm i in

ms, we check that no firm exceeds it best response. If such a firm is found, one of its links
is randomly deleted to remove the violation. We repeat this process until no more links
can be added. This creates a network that satisfies the constraints of knowledge fit and
pairwise stability.

5.3 Density and degree distribution

Using the algorithm described above, or each (δ, γ) pair, we generate equilibrium networks
and pool the observations to construct our estimated distribution. Industry size is set to
n = 100, while the knowledge universe has size w = 100.

Figure 5 displays the degree distributions of the technology network and of the market
network in 4 different environments. In each of them, we provide the degree distribution
in the technology network t, and 3 degree distributions obtained for 3 different values of
c, to illustrate the influence of cost on the properties of the equilibrium networks. Each
distribution represents the average behaviour of 200 instances of the technology network
and its attendant market network.

The upper panels of Figure 5 correspond to areas of (δ, γ)-plane where the network is
dense: δ/ (δ + γ) ≈ (δ + γ) /w. The left panel corresponds to (δ, γ) = (25, 25) , a context
in which firms know much of the relevant knowledge in the industry, the demand on both
commonality and complementarity. The right panel corresponds to (δ, γ) = (9, 21) , a
situation in which knowledge is more scarce and the demand on complementarity is strong
relative to that on similarity.

The lower panels in Figure 5 correspond to off-diagonal situations and thus sparse
industry networks. The lower left panel is a situation in which δ/ (δ + γ) < (δ + γ) /w,
with (δ, γ) = (25, 27) while the right panel depicts a situation on the other side of the
diagonal, with (δ, γ) = (9, 17).

In each of the panel we observe in principle three types of distributions: those whose
mass is highly concentrated around a single value; those which mimic the technology dis-
tribution almost exactly; and those which mimic the technology distribution (less exactly)
up to a certain value, and then concentrate mass at that value. The explanation is that
there are in principle two types of firms: those whose networking behaviour is constrained
by knowledge, and those whose behaviour is constrained by profit maximization. If the
technology network is dense, most of the firms will be constrained by profit maximization,
and so we will see the mass of the distribution concentrated around the profit-maximizing
degree (in many of the 200 realizations, the symmetric equilibrium emerges). If the technol-
ogy network is sparse, it provides the constraint, and in the extreme case, the competition
network is the technology network, and so the degree distributions lie on top of each other.
In the intermediate case, in the same network, some firms are constrained by knowledge
fit, and others are constrained by profit maximization. Here we see a combination of the
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Figure 5: Degree distributions for different parameter values. Curves that cannot be seen
lie on top of the technology network distribution.

two effects.
The effect of c, the cost per alliance, is to change where the profit maximization con-

straint binds. That is, higher values of c imply that the optimal number of alliances will
fall, so we see a departure from the technology degree distribution at lower values. When c
is low, the profit-maximizing number of partnerships is high, so all firms will “take all the
partners they can get”, and so the degree network is identical to the technology network.

5.4 Small worlds

The technology network showed small world properties over significant parts of the pa-
rameter space. Adding competition does not destroy this result. Small worlds remain,
and more specifically, small worlds remain in the parts of the parameter space where they
emerged when competition was absent. To facilitate comparison with our benchmark case,
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we show ratios for the statistics in the technology case to those in the network case. For
each point in the parameter space we compute the technology to competition ratio, and
plot histograms of that ratio. We do this for raw and rescaled transitivity and average
pairwise distance, as well as for the small world ratio itself.
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Figure 6: Comparing competition with no competition: ratios of path length and transi-
tivity over the parameter space.

The upper right panel of Figure 6 shows a frequency distribution of the ratio of tran-
sitivity in the two regimes, over the entire (δ, γ)-plane. Most values of this ratio are very
close to one, as expected. The removal of some links drives transitivity down in a relatively
mechanical way. The same obtains when rescaled transitivity is considered in the lower
right panel, the ratio of the competition to no competition cases being centered around 1,
though more dispersed than the ratio of raw measures.

Turning to pairwise distances, we can observe in the upper left panel of the figure
that competition also has essentially no effect on average path lengths. The explanation
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here is that there are many shortest paths between any pair of nodes. Thus the effect of
introducing competition, which is to remove edges relative to the no-competition case, does
not, except in relatively rare instances, remove all of the shortest paths. Thus competition
has essentially no effect on average path length, and any effect it has is to increase path
length. The effect would be marked only if competition brought density way below that
the technology network. The same picture obtains when rescaled average pairwise distance
is considered in the lower left panel, most of the mass of the distribution lying close to 1.
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Figure 7: Comparing competition to no competition case: ratio of the small world ratio
over the parameter space.

From this we can conclude that competition, even at its most punishing, does not have
a big effect on network architecture insofar as small-world aspects are concerned. Density
is smaller always, but clustering and short distances are preserved. And this in turn is
preserved in Figure 7 which computes the ratio of small-world ratios in the competition to
no-competition cases: again the mass lies mostly around 1.

6 Conclusion

In this paper we have proposed and analyzed a simple model of alliance formation and
joint innovation in which we have assumed that firms must reach a precise balance between
commonality and complementarity in order to jointly innovate. Small worlds arise because
firms have two essential characteristics. First, firms are heterogenous. They hold different
technological endowments, and seek partners with whom to assemble these technologies in
the right portfolio. This will imply random graph features, and specifically short distances,
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for the equilibrium network. But this is not enough yet. In addition to holding random
knowledge endowments, firms act strategically. They take into account the cost and benefits
from each potential alliance, and the behaviour of other firms in the network when it is
relevant. This behaviour will create local correlation in the alliance decisions, and thus
a tendency for the equilibrium to display excess clustering or transitivity. This tendency
is strongest when similarities are much more important than complementarities in the
innovation process, that is, when what we share matters more than where we differ. It
is this combination of a random process of knowledge assignment and thus location in a
knowledge space, and firms’ strategic decision to ally only with profitable — here meaning
relatively more similar than dissimilar — partners which creates small worlds in equilibrium.

It is worth emphasizing that we obtain small world results without assuming spillovers
or any other indirect, possibly long-distance effect. So the mechanism at work to lower the
diameter of equilibrium networks is fundamentally different from the more “traditional”
incentive to create a shortcut to capture value created far away in the graph. Also the reason
why there is clustering is a very simple and general one of “transitivity of attractions”, a
feature suggested but not formalized in Granovetter’s (1976) seminal paper.

With this model we capture the idea that when a firm makes a strategic alliance it is
interested in technological fit with its partners. With respect to the strategic management
literature, it is worth emphasizing that we recover the properties of observed alliance net-
works — small worlds with skewed link distributions — ignoring entirely issues of social
capital. This suggests that models of link formation (and hence network emergence) that
ignore technology may be missing something important. Again, one thing we observe,
though, is that the high values of clustering characteristic of small worlds are not present
when γ is high. That is, when the requirement for reciprocal complementarities is very
strong, clustered networks do not emerge. One conclusion to draw here is that in em-
pirically observed networks, which tend to have high clustering, the need for this type of
complementarity must be weak.

The second part of the model introduces competition following innovation. The basic
idea is that of a patent race in which all alliances compete for the patent on a unique
innovation. Introducing this aspect, which tends not to be present in empirical studies of
network formation, has predictable effects, the most important one being to lower network
density. By and large, though, the introduction of competition does not have a big effect
on network structure. Here we can conclude that it may be safe to leave this feature out
of our investigations without doing much damage to our understanding.

References

[1] Ahuja, G. (2000) “Collaboration networks, structural holes and innovation: A longi-
tudinal study” Administrative Science Quarterly, 45, 425-455.

[2] Ahuja, G. and R. Katila (2001) “Technological acquisitions and the innovation perfor-
mance of acquiring firms: A longitudinal study” Strategic Management Journal, 22,
197-220.

[3] Amaral, L.A., A. Scala, M. Bartelemy and H.E. Stanley (2000) “Classes of Small-
World Networks” Proceedings of the National Academy of Science, 111, 49-52.

22



[4] Balconi, M., S. Breschi and F. Lissoni (2004) “Networks of inventors and the role of
academia: An exploration of Italian patent data”, Research Policy, 33, 127-145.

[5] Barabasi, A.L. and R. Albert (1999) “Emergence of Scaling in Random Networks”,
Science, 286, 509-512.

[6] Baum, J.A., A.V. Shipilov and T.J. Rowley (2003) “Where Do Small Worlds Come
from?” Industrial and Corporate Change, 12, 697-725.

[7] Bloch, F. (1995) “Endogenous Structures of Association in Oligopolies”, Rand Journal
of Economics, 26, 537-556.

[8] Burt, R. S. (1992), Structural Holes: The Social Structure of Competition, Harvard
University Press, Cambridge, Mass.

[9] Carayol and Roux (2009) “Knowledge flows and the geography of networks. A strategic
model of small world formation”, Journal of Economic Behavior and Organization, 71,
414-427.

[10] Coleman, J.A. (1988) “Social Capital in the Creation of Human Capital” American
Journal of Sociology, 94, S95-S120.

[11] Cowan, R. and N. Jonard (2009) “Knowledge Portfolios and the Organization of In-
novation Networks”, Academy of Management Review, 34, 320-342.

[12] Dyer, J.H. and K. Nobeoka (2000) “Creating and Managing a High Performance
Knowledge Sharing Network: The Toyota Case” Strategic Management Journal, 21,
345-367.
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