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Abstract

An obstacle to the widespread adoption of enviramai®y friendly energy technologies such
as stationary and mobile fuel cells is their higtfirant costs. While much lower prices seem
to be attainable in the future due to learning euwrgst reductions that increase rapidly with
the scale of diffusion of the technology, thera ishicken and egg problem, even when some
consumers may be willing to pay more for greenriettgies. Drawing on recent percolation
models of diffusion by Solomon et al. [7], Frenkenal. [8] and Hbhnisch et al. [9], we
develop a network model of new technology diffusithrat combines contagion among
consumers with heterogeneity of agent charactesisthgents adopt when the price falls
below their random reservation price drawn fronrognbrmal distribution, but only when one
of their neighbors has already adopted. Combiniity & learning curve for the price as a
function of the cumulative number of adopters, thasy lead to delayed adoption for a certain
range of initial conditions. Using agent-based s$ations we explore when a limited subsidy
policy can trigger diffusion that would otherwisetrhappen. The introduction of a subsidy
policy seems to be highly effective for a given hipitial price level only for learning
economies in a certain range. Outside this rarge diffusion of a new technology either
never takes off despite the subsidies, or the digdssiare unnecessary. Perhaps not
coincidentally, this range seems to corresponchévalues observed for many successful
innovations.
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I. Introduction

The diffusion of new technologies often dependsnuih® interrelations between social and
technical aspects [1]. On the one hand, communicathannels and social networks play a
central role in the widespread adoption of innaa{2]. Information contagion and imitation
effects are widely recognized as crucial factorthim process of diffusion of innovations. In
the particular case of energy technologies, aneéaalty in the case of hydrogen and fuel
cells technologies, demonstration effects and am&d confidence play a significant role. On
the other hand, technical factors such as the degfreomplexity, compatibility and special
features [3] directly influence the initial coswvéds of innovations. High upfront costs are
among the main factors that prevent the widespd#asion of new technologies, and this is
especially true for environmental energy techn@sgiThe degree of learning economies is of
primary importance in this context. New technolsg@haracterized by high learning cost
curve reductions will have a greater chance to ket mainstream markets. If a new
technology has the chance to develop first in niofekets one could then exploit cost
reductions in these markets due to learning cufects when it is introduced into the
mainstream market. For instance, in the case af@mmentally friendly energy technologies,
a potential niche for market entry might be credigdhe willingness of some particularly
environmentally conscious and high-income consunb@rpay more for products that are
perceived to be green (an example is the ToyotasPhybrid car in the US, called
“Hollywood'’s latest politically correct status symibby the Washington Pa$t

However, even if much lower prices seem to beratae in the future due to learning
curve cost reductions that increase rapidly withgbale of diffusion of the technology, there
is a chicken and egg problem. It is not clear wadarchnology will pass the threshold that
permits widespread adoption and competitive mapkieing, and when it will fail. The latter
seems too often to be the case without long-tetsidies.

There exist a wide variety of policy options avhitato decision makers to influence
this process. They may be roughly divided in twtegaries: demand-pull and technology-
push policies. Even if a mix of the two is actuafigcessary, especially in the case of
renewable energy sources [4], we will analyze tifiece of one particular policy option that
belongs to the first category: adoption subsidmscbnsumers. According to Turkenbusg,

the innovation diffusion process can be split o parts: early deployment in which costs

! The Washington Paslune 2, 2002, p. CO1.



decline, and widespread dissemination in whichitutginal barriers are overcome and
investments increase. A potential policy strateghated to the first phase of diffusion is
represented by temporary subsidies followed by a@sipig-out policy during the period of
pervasive diffusion. In practice, however, espégiaiith regard to environmentally friendly
energy technologies, we often find permanent sybsdadicies because the diffusion of such
innovations is frequently not self-sustainable. Flmme can ask what policy actions may be
implemented to support the diffusion of a new epdeghnology to market maturity that are
socially profitable? In other words, which kinds sfibsidy policies can trigger a self-
sustained diffusion of these particular technolsdteat ultimately justifies the upfront social
expenditures?

Drawing on recent percolation models [6, 7, 8, Bdiffusion, which combine the
contagion aspect (e.g., epidemic models) with #terdogeneity of agent characteristics (e.g.,
Probit or heterogeneous threshold models), we dpvehd analyze a network model of new
technology diffusion. Agents adopt when the prigkésfbelow their random reservation price
drawn from a lognormal distribution, but only whene of their neighbors has already
adopted. Combining with a learning curve for thé&ceras a function of the cumulative
number of adopters, this may lead to delayed adotir a certain range of initial conditions.
Using agent-based simulations (ABS) we explore wadimited subsidy policy can trigger
diffusion that would otherwise not happen. As amasult we find that subsidies are not
helpful both when learning economies are too lomd(thus reasonable temporary subsidies
fail to trigger diffusion), and when learning ecames are too high, (and diffusion would
take-off anyway). However, for a certain range edrhing coefficients a temporary subsidy
policy may indeed trigger self-sustained diffuspmovided that the level of subsidies is high
enough.

The article is organized as follows. Section tweegia brief overview of the existing
literature on percolation diffusion models, leamicurves and subsidies. The details of the
model and the methodology are discussed in sethime. In section four we present the

results. Interpretations and conclusions are dgsaish section five.

Il. Extending standard models of diffusion by introducing percolation, learning curves

and subsidies

Innovation diffusion has been investigated usirfgetént approaches [10]. In particular, the

S-shaped diffusion models and the epidemic modtm from two lines of research



originating in Griliches’ empirical investigatiod]] and Mansfield’s contributions [12, 13].
In general, diffusion models can be classified@demic models, Probit models, legitimation
and competition models, and information cascadedeisd14]. In what follows we focus in
the first two categories: epidemic and Probit med@lhile the former emphasizes the effects
of information contagion, it usually presupposesrdaghomogeneity. The latter is especially
relevant in stressing the effects of agent hetereige but it neglects a description of the
interrelations among individuals. The percolatiomdal developed in the present paper
incorporates both information contagion and ageetefdogeneity. Agents interact on a
specific network structure called th&ing network [2]. According to Stauffer and Aharony
[15], percolation was originally applied by Flormda Stockmayer during the Second World
War to describe critical phenomena for the proc#sgelation. Broadbent and Hammersley
introduced the name percolation theory in 1957 c®ation explains, for example, how a
fluid can traverse a porous material. But it hagrbepplied to other cases, like the
investigation of forest fires or stock market budshlAs a simple example we explain the
simple case of an atemporal site-percolation mobfela two-dimensional square lattice,
assign randomly either O or 1 to each site. Thaeshre stochastically independent &hds

the probability for the realization of value 1P1for value 0. Percolation is said to occur if
there exist at least one unbounded cluster of sitésvalue 1. It can be shown that there is a

critical value P,, such that forP < P, percolation will not occur. On the contrary, #f> P,
percolation will occur with probability 1 B =0. 5927343 Percolation theory has been

applied to social science [7] as well as to theneatics of technology diffusion [8, 9].

The process of diffusion of new products and tetdgies often occurs on different
time scales. It often starts with a few early adogt followed by an increasing cumulative
number as time passes. Moreover, it often followsSeahaped path of diffusion. The market
price may have to fall below some threshold letielwvever, before this process of diffusion
can take off.

Hohnisch et al. [9] have used percolation theorgxplain what determines delayed
take-offs in the diffusion of new products and whappens to the price’s threshold level:
macroscopic effects either on the demand side dhersupply side or both can trigger the
process of diffusion even for price levels inityalligher than the threshold. What they call
macroscopic effects may be interpreted as intertigrecy among potential buyers’ choices
on the one hand and learning curve cost reductartie other. The notion of learning curves

is well known in the literature [16] and refersttee unit cost reductions due to increasing



production. Thus costs and price decrease witlinitreasing number of new adopters. In [9]
the model assumes that consumers’ willingness yoigdrawn from a uniform distribution
on the interval [0, 1]. In order to incorporate somers’ aptitude to “greenness”, we assume
that the reservation price is distributed accordmghe highly skewed lognormal distribution
such is characteristic of many other economic R such as personal income and wealth.
We then develop a model that combines both the or&twffect and the heterogeneity of
agents. While the present version adoptddttece type network structure, in principle it can
easily be generalized to other network topologiest tbetter reflect the communication
channels influencing consumer behavior at botHdbal and global levels.

The approach in [9] can be enriched by introduginlicy actions intended to trigger
widespread adoption of a new product such as sylpgiticies. We modify their model in
order to explore when subsidies may trigger thegss of diffusion of eco-innovations. In
particular, we investigate when diffusion can beeasrlf-sustaining after an initial policy of
temporary subsidies. In the next section we spdbigydetails of the model’s structure and

equations.

I1l. The Model

Consider a finite number of consumers distributecadwo-dimensional lattice with periodic
boundary conditions (i.e., a torus). Each consuméiced with the choice of whether of not
to buy a new technology available in the market.ethiar she will buy it depends on two
factors: her neighbors’ choices and her willingnispay for that new product. She will first
consider purchasing the product if it has alreaglgrbbought by at least one of her neighbors.
If this condition is fulfilled she will then compaithe market price of the new technology to
her reservation price: she will buy it if the latie higher than the former.

The model explains diffusion as a process of spngagews or “keeping up with the
Jones’s”. This reflects the fact that the adoptddmew products may often be the result of
imitation behaviors (in the particular case of fogkn and fuel cells technology, a testimony
of reliability and safety may be fundamental). lartpthis may simply result from status
considerations, but it may also be an essentiahehé in reducing informational uncertainty
about product characteristics and suitability. tdidon, the model analyzes diffusion as
resulting from the interaction of heterogeneousab&rs. Consumers’ initial willingness to
pay for the new product is drawn from a lognormatrébution at the beginning of the

simulation. It might reasonably be argued that &geiith a high income are characterized by



a higher reservation price (e.g. they are moraniadito pay for the environmental quality of
a product).

A schematic representation of such a network negdidnd is presented in Figure 1.
Consumei is of type 0—she has not yet acquired the teclgyol®ype 1 consumers such as
the ones on the left and above have already adapéetéchnology in previous periods. She
knows about the availability of the new produgtg. at least one of her neighbors has already
bought it). Her reservation price &5, 6, D[O,oo], where @ = LogN(/,z,a) with 020 and
4>0 (u and o are parameters of the model corresponding to tkanmand standard

deviation of the underlying normal distribution).séandard learning curve will be applied to

the price of the new technology at timn&ccording to equatiofi} :

2 We assume in this model that consumers collecotimétion at zero costs.



a {1}
!

where N, is the initial number of adopters\( is a parameter of the model) and
t-1

N, = Zni is the cumulative number of adopters (s the number of adopters in
i=0

periodi). The initial pricep, D[O,+oo] and a =0 are parameters of the model. The

subsidy rate on the price i5,0<s< . In contrast to [9], the only macro effect

modeled in our analysis is represented by the ilegrrurve. We do not assume that
the consumers’ reservation prices will decreasé e number of adopters. In the

basic percolation model, percolation occurs whengfobability thatd, is greater
than the market pricep, is less than the critical valu®, (for a square lattice
P. = 0.593). With a lognormal distribution, the integral dietdensity function ap,

must be less thad—-P,. In that case product diffusion will take off. taf the

occurrence of percolation we know that a certaimiper of agents, depending on the
path of diffusion of percolation, have bought theduct. According to the Probit
model, if the reservation price is log-normallytdizuted then the probability to buy

Prob{y > 0} in the static case is:
Prob{6 > 6"} = Prob{y > 0} =1~ F(p), {2}

where F(p) is the cumulative probability function pt the market price of the new

product. In the case with learning this leads toadgic equations of the form:

Problg > 6'},,, = Prob{y >0} =1-F(p,), {3}

where p, = p{%} and N, :NEIProb{6?>6?*}t. N is the total number of

t

potential adoptersN, is the initial number of buyersl, is the cumulative number
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of adopters at time, and p, is the market price of the new technology that is
dependent on the initial price, and on the number of initial adopters at titrees

specified in equation 1. In the following we wibbmpare the cumulative percentage
of adopters at the percolation threshold with #heel predicted by the Probit model
both without and with learning (respectively callexmiver and upper bounds of
diffusion). The percentage of buyers from a pertxmtamodel will never exceed the
value attained by the corresponding Probit modad,itowill when subsidies will be
introduced. The cumulative percentage of adoptenspuited by a Probit model with
constant price provides a lower bound for it talls the maximum number of

consumers willing to buy the product in the absesfdearning economies.
V. Results and interpretation

The following figures show the results obtained dignulating the model on a
100x100 square lattice. The results for each paemo®nfiguration are averaged
over ten simulation runs to minimize the effectsstétistical variation. Consumers’

reservation priceg¢, are drawn from a lognormal distributidd = LogN(CD), where
o= N(,u,a)is normally distributed with parametegs=1 and o =2. The number
of initial adopters isN, = 100(that is, 1% of the total number of potential
consumers). In an environment with learning ecomsmihe initial level of price is
p, = 6. According to the theory, for these numerical ealpercolation occurs with
probability 1 for values ofp, <1. 698Hence, for an initial pricgp, = ,6wne should

not see any rapid diffusion of the new technoldgyroducing price dynamics due to
the learning curve may change this, however, duehéo possibility of delayed
takeoff [9].

In an environment without learning economie& £0), the ultimate
percentage of adopters decreases with the exogéeeelsof prices (Figure 2). In
addition, it can be seen how much the differencéhim computed percentage of

adopters between the Probit model and the peroalatiodel increases with the price
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level: for p = 0.2 the results of the two models are almost the s&® increases,

the difference becomes increasingly large. Findlig, percolation model describes a
delayed diffusion of the new technology even withéearning economies: the
percentage of adopters increases slowly over timdetlze path is S-shaped.

Figure 3 illustrates the relationship between teecentage of adopters in
both Probit and percolation models versus pricelgun the percolation model there
exists a more non-linear relationship between plesel and diffusion. There is a
threshold level ofp (1.69 for the assumed parameters of the lognodmsaibution)
at which percolation takes place. We see that tduas of price lower than the
threshold the percentage of adopters in the pdronlanodel rapidly approaches the
results given by the Probit, which forms an uppzurid.

Figure 4 presents the results from the simulationan environment with

learning economies but no subsidies, with an ingrece level p, = 6and learning

coefficientsa = 0, 0.2 and 0.4. With the increase of the learniogfftcient the
percentage of adopters rises. The percolation ntaaeboth a more delayed path of
diffusion and a higher sensitivity to learning econes than the Probit model. The
difference is lower for higher levels af : for a = 04 the results are almost the
same.

The results for simulations in a world with learniegonomies and the
introduction of subsidies are illustrated in Figufe11, where we jointly vary the
level of subsidie$=[ O;O.];O.2;O.3;O.4;O.5] and the length of subsidies in simulation
time stepgMax = [412;20].

Direct subsidy policies by governments for eco-watmns are rare. An
exception is the Japanese policy for promoting gmitaic [17]. Often policy
actions in favor of environmentally friendly techogies are a portfolio of different
approaches implemented to encourage the emergemtetha diffusion of the
technology on both the supply and the demand sidethe present paper we will
only model direct subsidies to consumers.

When will a subsidy policy trigger a self-sustaim@dcess of diffusion? This

depends upon the dynamics of adoption after theipbaut of subsidies. In order to
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analyze the latter issue we differentiate betwoeeet different policy options. Let us
define as short-term, medium-term and long-ternolecy that respectively lasts for
4, 12, 20 simulation timesteps. Figures 5-8 illatrthe cumulative percentage of
adopters over time for different values of the pseterss, a andtMax. Short-term
subsidies 0.2<s< 05 andtMax=4) trigger a self-sustained process of diffusion
when the learning coefficient is in the interv@l<a <03. The cumulative
percentage of adopters is higher than in the cag®ww subsidies $=0) and the
process of diffusion also continues to increaseratfie phasing-out of subsidies.
Figure 5 illustrates the case in whigh= 0.1. The long-term effect of subsidies
disappears as the level of increases beyond 0.3 (see Figure 9 and Figure théo
casar = 04, where it is also apparent that the rate of diffimsncreases somewhat
with s, even if the ultimate level does not). As the kangf the subsidy period
increases, the effect of subsidies is more strikiewen for higher levels of the

learning coefficient (see Figures 7 and 8 far=04 and tMax:[12; 20]

respectively, as well as Figures 10 and 11 forrmpdete overview). However only
medium-term subsidies trigger a self-sustained ggsof diffusion: the cumulative
percentage of adopters increases after the phasingf subsidies, even if to a lower
extent than in the former short-term case. Longiteubsidies do not trigger a self-
sustained diffusion: the process of adoption siadsl before the phasing-out of
subsidies at every level of both the learning doeffit and the level of subsidies.
Adoption takes place entirely at a subsidized piesel, but the level of diffusion is
considerably higher than in the short-term subsise.

Whether a policy is a valuable option depends uphen desired level of
diffusion. Let us take the Probit level of adoptias a benchmark. The new
technology is adopted and diffuses widely evenitial price levels higher than the

threshold (p=1.698). However, there exists a threshold level for tharning

coefficient such that forr lower than this threshold diffusion does not takete.g.,
it does not exceed the lower bound representetidietvel of diffusion given by the

Probit model without learning).
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In Figure 9, where the length of subsidies tMafoisr simulation time steps
(the short-term subsidy case), the critical valierodecreases from 0.27 (with no
subsidies,s=0) to 0.24 (for the highest value of subsidies; 05). If the level of
diffusion from the Probit model without learningasnsidered as the policy target,
then a short-term policy may trigger a self-sustdirdiffusion to that target for
values of the learning coefficient lower than théical one but only to a certain
extent (or, in other words, only in the intervBR4< a < 027). As the length of
subsidies increases, the policy influences diffudimr ever larger intervals of : a
medium-term policy {Max =12) triggers diffusion for013< a < 027 (Figure 10),
whereas a long-term policy influences the cumuéafpercentage of adopters for
009< a < 027 (Figure 11).

The introduction of subsidies affects the threshi@del of the learning
coefficient: as we include a subsidy policy thetical value of a is likely to
decrease. A subsidy policy may spur a self-sustiagifusion but the success of
such policy actions strongly depends on the vafub® learning coefficient as well
as on the level and length of subsidies. If fornegke government would want to
support the diffusion of new technology characetizy relatively low learning
economies (saya = 015) a medium to long-term subsidy policy should be
introduced: a short-term policy would not triggéffision to the target (Probit lower
bound) fora = 015(see Figure 9), while both a medium-term (Figube 4= 05)
and a long-term subsidy would (Figure 31=,[O.4;0.5]).

In summary, short-term subsidies (Figure 9) do sighificantly enhance
diffusion except for rather restricted values oé tlearning coefficient, whemr
belongs to the interval [0.24-0.27]. When is too low 0< a < 024) the process
does not take off even with a high subsidy=( )0&nd whena is high (@ = 027)
diffusion takes off anyway. Especially for very hilgvels of the learning coefficient
(a = 04), the difference between the path of diffusionhwéind without subsidies
disappears. This is less true the more the lengiulodidies increases: medium-term
subsidies (Figure 10) affect the percentage of @spas do long-term subsidies

(Figure 11), but only when the level of subsidesigh enough (that i93< s< 05
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in the medium-term and0.2<s< 05in the long-term). Low subsidies do not
guarantee a significant change in the degree &fgiiin, even if we see a stronger
effect when we switch from a medium-term to a Ieegn policy. However, the
introduction of a subsidy policy is only sensible conjunction with learning
economies if the initial price is well above theqmation threshold.

We have seen that subsidies are only effectivdefaming parameters in a
certain range (0.2-0.4). Subsidies on the dematelagie in some sense dual to R&D
expenditures on the supply side, which also sem&ipport developments efforts in
a technology in the pre-commercial stage untilgbent where the technology “can
stand on its own two feet”. Empirical studies halieven that learning parameters of
successful technologies are indeed, ex post, i thnge [18]. This remarkable
coincidence is perhaps not so surprising since dmbge technologies for which
demand-side or R&D subsidies had been successfasiments will show up in the

statistics on learning curves as other technoldggesng been selected out.

V. Conclusions and Directionsfor Further Research

In this article we analyze the relationship betwtendiffusion of a new technology,
learning economies, and subsidies. The aim of theareh is to investigate the path
of diffusion of a new energy technology when somesumers are willing to pay
more for goods that are perceived as “green” aachlag economies may reduce the
price as a function of the extent of previous amwptAn obstacle to the widespread
adoption of environmentally friendly energy techogies such as stationary fuel
cells and the use of hydrogen is their high upfromgts. While much lower prices
seem to be attainable in the future due to learourge cost reductions that increase
rapidly with the scale of diffusion of the techngyo there is a chicken and egg
problem, even when some consumers may be willingpdg more for green
technologies. Policy actions devoted to spurring tiffusion of these kinds of
technologies may help overcome initial barrierst buorder to be worthwhile,
governmental interventions should trigger a sefitamed process. It is not clear

when a technology will pass a threshold to widesgradoption and competitive

15



market pricing, and when it will fail. The lattereses too often to be the case
without long-term subsidies.

Among others approaches, epidemic and Probit mddele been separately
used to analyze the process of technology diffusidfe have developed a
percolation model in which both information contagiand agent heterogeneity are
taken into account and interact in nontrivial waybe percolation model is then
extended to allow for the introduction of learniegonomies, which then explain the
delayed take off of new technologies. This resuits imore non-linear relationship
between price levels and the extent of diffusioantlin a standard heterogeneous
threshold (Probit) model. The percolation model hath a more delayed path of
diffusion and a higher sensitivity to learning econes than the Probit model. The
new technology is adopted and diffuses even focepilevels higher than the
threshold. But there exists a threshold level fur tearning coefficienty below
which diffusion does not take off.

Whether a policy triggers a self-sustained procdgiffusion depends upon
the dynamics of adoption after the phasing-out wisgdies. Short-term subsidies
(02<s< 05 andtMax=4) trigger a self-sustained process of diffusion wliiee
learning coefficient falls in the intervad < a < 0.3. Diffusion continues strongly
even after the phasing-out of subsidies. But tifecebf subsidies diminishes as the
level of a increases. As the length of the subsidy periotemses, the model shows
that policy remains effective even for higher leokthe learning coefficient.

However, whether a policy is a valuable option aejseupon the desired
level of diffusion. Let us take the Probit lowerumal as the policy target. The
introduction of subsidies affects the thresholclexf the learning coefficient: as we
include a subsidy policy the critical value af is likely to decrease. A subsidy
policy may spur diffusion but the success of sualicyg actions strongly depends on
the value of the learning coefficient as well astloa level and length of subsidies.
Given the target, short-term subsidies are of énhiutility in two cases: when the
learning coefficient is too low((< a < 024) the process only takes off for very high
levels of subsidies = )1 and whenga is high (@ = 027 diffusion takes off

anyway. Especially for very high levels of the laaghcoefficient @ = 04), the
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difference between the path of diffusion with anithaut subsidies disappears. This
is less true the more the length of subsidies am®e: medium-term subsidies
significantly affect the ultimate level of adopteas do long-term subsidies. But this
is true only when the level of subsidies is higlg(e= 05): low level of subsidies
(s:[O.L'O.Z]) do not guarantee a relevant change in the degrdéfusion, even if

we see a stronger effect when we switch from a umederm to a long-term policy.

To more fully evaluate the appropriateness of sybpdalicies it is necessary
to formulate some kind of cost-benefit analysisnieasure the returns to subsidized
adoption in terms of additional environmental goodsregone pollution, for
example, due to a wider and earlier diffusion of emvironmentally friendly
technology) vs. the subsidy costs to the taxpa@er. intuition says that there must
be a “sweet spot” in parameter space and subsiigmspace at which subsidies are
maximally effective in triggering adoption and wageead diffusion without wasting
money on adopters who would have adopted anywagalge the system is so
nonlinear, the existence of such a “sweet spotmsedikely, although whether
policymakers could always find it in practice, givéhe uncertainties surrounding the
learning parameter and consumers’ propensitieddptaremains to be seen. We are
currently working on simulation experiments in tHisection.

Additional realism would be added by allowing for partfolio of new
technologies to be present instead of the stanalssdmption of just one innovation
competing against an incumbent. A simple modifaratof the present model could
address this question by using a multinomial denignechanism to model each

adopter’s choice.
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Figures

p,, price of the new product at tinhe

Figure 1: A neighborhood of an agent on the lattice, where O represents non-adoption and 1

adoption of the technology by a neighbor. @; isthe reservation price of agent i.
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Figure 2: Percentage of adoptersover timefor different values of the product price p, assumed
time constant.
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Figure 3: A comparison between the per centage of adoptersfor Probit and percolation models

for different values of the time-independent product price p.
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Figure 4: Percentage of adoptersover time. A comparison between Probit and percolation
modelswith learning for different values of the lear ning par ameter a.
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Figure5: Cumulative per centage of adoptersover timefor ¢ = 0.1 and tMax = 4 for different

value of the subsidy rate.
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Figure 6: Cumulative per centage of adoptersover timefor « = 0.4 and tMax = 4 for different

values of the subsidy rate.
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Figure 7: Cumulative Per centage of adoptersover timefor a = 0.4 and tMax = 12 for different

values of the subsidy rate.
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Figure 8: Cumulative per centage of adoptersover timefor ¢ = 0.4 and tMax = 20 for different

values of the subsidy rate.
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Figure 9: Short-term subsidy policy and ultimate level of diffusion for tMax = 4 asa function of

thelear ning exponent a for different subsidy rates.
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Figure 10: Medium-term subsidy policy and ultimate level of diffusion for tMax =12 asa
function of the learning exponent a for different subsidy rates.
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Figure 11: L ong-term subsidy policy and ultimate level of diffusion for tMax = 20 as a function
of thelearning exponent a for different subsidy rates.
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