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Abstract 
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1 INTRODUCTION 

Empirical studies in the social sciences often rely on data and models where a number of 

individuals born at different dates are observed at several points in time, and interest 

centers on the identification of age, cohort, and time or period effects in the relationship of 

interest. However, modeling and identification of such relationships has proved to be 

problematic, largely because of the obvious impossibility of observing two individuals at 

the same point in time that have the same age but were born at different dates. The 

identification problem is further aggravated if one uses standard panel data estimators in 

which one takes first differences (or within individual differences) of the variables, in 

order to control for unobserved individual effects. In this case, the cohort effect disappears 

completely (because it is collinear with the individual effects), which obscures but does 

not eliminate the problem of identifying year and age effects simultaneously.  

 

A number of “solutions” to this identification problem have been offered in the literature 

in different contexts (e.g., R. E. Hall 1971, Mason et al. 1973, Rodgers 1982a,b, Mason 

and Fienberg 1985, Berndt and Griliches 1991), all of which assume restrictions on the 

specification of the general underlying model, usually by imposing some sort of functional 

form assumption on the way the three effects enter. R. E. Hall (1971) was concerned with 

disentangling depreciation (the age effect), embodied technical change (the cohort effect), 

and disembodied technical change (the period effect) in a vintage capital model applied to 

trucks, in which he imposed the constraint that the two most recent vintages were identical 

in order to identify the model. Berndt and Griliches (1991) were interested in a problem 

similar to that confronting Hall: the construction of a hedonic pricing model of personal 

computers that incorporates technical change, vintage, and age effects. Unlike Hall, they 
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explored and exposited the full range of assumptions available for identification of the 

additive dummy variable model.  

 

At the same time that this economic research was being undertaken, the problem had not 

gone unnoticed in the sociological literature, especially as it related to the interpretation of 

cohort effects. In a series of papers William Mason and his co-authors proposed estimating 

cohort-age-period models using identification assumptions similar to the one used by Hall 

(1971). This work culminated in a conference volume published in 1985 (Mason and 

Fienberg 1985) that provides an excellent overview of the state of the art and the views of 

sociologists, statisticians, and economists on the problems associated with this kind of 

modeling, both conceptual and methodological.  

 

One of the many domains in which this identification problem is prevalent is the study of 

the scientific productivity of researchers, where we would like simultaneously to take 

account of differing productivity over time, as a function of age, and as a function of the 

vintage of the researcher. Scholars in the sociology of science, and more recently 

economists, have tried to measure the age-related productivity curve, and to purge it of 

effects due to the vintage of the researchers and the periods in which they are being 

observed. A major problem in such analysis is the need to take into account two major 

tendencies: the exogenous increase of publications with time and with cohort. Descriptive 

statistics on scientific publications suggest that they tend to increase over time more or less 

rapidly in many scientific fields, overall but also per researcher. A way to capture such 

time effects, as well as any general changes in the state of art and work environment is 

simply to introduce period (year) indicators in the model. In the same manner, it seems that 

younger cohorts tend to publish more than older ones when they were the same age, which 
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may be related to the fact that there are increased incentives and competition for the 

younger generations, and/or they are more motivated and better trained, and/or that the 

cost of publishing is less (with the use of computers and internet, and growing numbers of 

journals, etc.). However, including cohort indicators (or for that matter individual effects) 

together with period indicators in the model introduces the aforementioned identification 

problem with the age variable. 

 

In this paper we give an overview of the general identification problem of age, cohort, and 

period effects in a panel data regression model, of the estimation and interpretation 

difficulties it raises, and propose what we think a practical approach to deal with them 

(second section); we illustrate these difficulties and the suggested solutions on simulated 

data (third section), and on a rich longitudinal database of the publications over 20 years 

(1980-2002) of about 500 French condensed matter physicists (fourth section). We have 

three goals in undertaking this work: 1) to illustrate the potential for such data to lead to 

misleading inference if the identification problem is overlooked or not confronted; 2) to 

discuss the estimation and interpretation of cohort-age-period models when there are 

individual effects; 3) to apply our methods to a panel of real data in order to draw some 

conclusions about the evolution of scientific research productivity over time and age.  

 

We want to emphasize that we do not break new statistical ground on these questions here. 

Instead we outline how to apply the methods proposed by previous researchers to the 

problem of scientist productivity and we explore the implications of the resulting estimates 

for substantive research questions, in particular to highlight the ambiguous nature of some 

of the previous results in this area. To put it another way, we want to underline the 

importance of a priori assumptions in interpreting results from a cohort-age-period 
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regression. Our research questions are the following: How do we interpret results when 

there is more than one way to achieve identification? What happens when we remove the 

individual effects (effectively removing the cohort information) and how do we interpret 

the results in this case? 

 

2 THE AGE, COHORT AND PERIOD IDENTIFICATION 

PROBLEM 

2.1 Problem statement 

It is well-known that the identity age = year (period) - year of birth (cohort) implies that 

all three effects cannot be identified in a linear model. It is somewhat less well-known that 

identification can be achieved in a dummy variable model by dropping a small number of 

variables (e.g., see Berndt and Griliches 1991). In fact, no experiment can be devised to 

identify a completely general model with cohort (C), age (A), and period (P) effects. Given 

the identity A = P-C that exists in the data, it is obvious that any function f(C, P, A) can be 

written as f(C, P, P-C) = f(C,P), so that it does not depend on the value of A. It will 

therefore always be necessary to impose some constraints or prior information on f(.) if we 

wish to identify an age effect that is parsimonious and not simply derived from the cohort-

period behavior. 

 

The requirement for parsimony is another way of saying that we expect the age effect to be 

rather smooth and slow to change and that we would like to impose that belief on the 

model. Conceptually if it were not for our a priori belief that things change slowly with 

age, we could simply derive the age effect from the observed cohort and period effects via 

the identity. In fact, some scholars (notably Rodgers, cited below) would argue that, in any 
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case, this is the only solution available without external prior information such as the 

macroeconomic environment. That is, the identification problem is fundamental, given the 

impossibility of observing A such that P-C ≠ A. Or alternatively, one could argue that the 

age effect is whatever we obtain from the interaction of period and cohort effects, and 

therefore is identified simply from the combination of those two effects. Unfortunately, an 

age effect identified in this way is not stationary from cohort to cohort and cannot be 

presumed to apply when we look at a different time period. So we might prefer to find a 

way to identify a more parsimonious age effect via reasonable assumptions on the cohort 

and period effects.  

 

There exists a large body of prior research and debate in sociology, demography, and 

economics over the question of exactly how to identify all three effects using suitable 

constraints on the functional form of the relationship or other prior information. In 

sociology a rather heated debate over identification between William Mason and his co-

authors and Willard Rodgers was conducted in the pages of the American Sociological 

Review in 1982 (Mason et al. 1973; Rodgers 1982a,b; Smith et al 1982). Mason et al. 

(1973) had proposed a method of identifying a model with three sets of dummy variables 

for age, period, and birth by constraining some of the coefficients, and Rodgers critiqued 

their approach strongly because of its ad hoc nature, arguing that a better method of 

identification was to replace one of the sets of dummy variables with ‘real” variables that 

were correlated with that particular aspect of the relationship (i.e., replacing period 

dummies with variables describing the macro-economy during the period). Part of his 

critique was based on the argument that modeling the effects as additively separable 

already imposed too many constraints on the model and did not allow for interactions 

between, for example, cohort and changes over time.  
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Nevertheless, most researchers who are interested in identifying three separate effects do 

begin by assuming that they are additive, that is, that 

 

 ( , , ) ( ) ( ) ( )C P Af C P A f C f P f A= + +  (1) 

 

Clearly when the {fJ , J = C, P, A} are linear we have the well-known case that one of the 

three functions is not identified. However, Heckman and Robb (1985) show more 

generally that when the fJ are polynomials of order J, only 
1J

J

+ 
 
 

 combinations of the 

2J

J

+ 
 
 

 coefficients on the terms of order J are identified. That is, for the linear model, 

only 2 of the 3 linear coefficients are identified. For a quadratic model, only 3 of the 6 

quadratic coefficients are identified, and so forth. So although low-order polynomials seem 

an attractive way to model these effects because of their smoothness, in practice they have 

not been much used because the lack of identification is so obvious.  

 

Given additivity, the most general semi-parametric model is a model that simply includes 

dummy variables for all three effects. However, if we do not impose additivity, a more 

general model is available, one which is simply the means of the dependent variable for 

each cohort-period combination. If there are no covariates other than cohort, age, and 

period, these means are the sufficient statistics for the data.
5
 In the next section of the 

paper we begin with this model as our baseline and then present a series of models that are 

nested within it.  

                                                 

5
 Strictly speaking, we would also need the total and within variances of the dependent variable and an 

assumption of normality and conditional homoskedasticity for these means to be sufficient.  
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2.2 Model with age, cohort, and year dummies 

Suppose that we have data on a variable of interest Yit on N individuals from C cohorts, 

observed for P periods. If we have no prior information on the relationship of Y to cohort 

and period other than assuming that it is multiplicative in levels (and therefore additive in 

logarithms), the natural semiparametric regression model simply includes a dummy 

variable for each cohort-period combination. Such a method uses all the information 

available from the means of the data by cohort and period (and therefore age), and 

exhausts the degrees of freedom.  

 

Using lower case y to denote the logarithm of Y, this model can be written as 

 

 saturated:               it ct ity a ε= +  (2) 

 

where i = 1,…,N individuals; t = 1,…,P periods; and c = 1,…,C cohorts. We are implicitly 

assuming that the data are balanced across P and C (although not necessarily across N). 

That is, for each cohort we observe a complete set of P periods.
6
 Given the assumption of 

balance in the P and C dimension, when we observe PxC cells, we are observing A = 

P+C-1 ages. This model, which we call the saturated model, allows us to identify PC 

means of y, one for each cohort-period combination. However writing the model this way 

does not provide estimates of age, cohort, or period effects separately, nor does it impose 

constancy on these effects.  

 

                                                 

6 Symmetrical treatments where the data are balanced for C and A (we observe the same number of ages for 

each cohort, and therefore periods are unbalanced), or where the data are balanced for P and A (we observe 

the same number of ages in each period, and therefore cohorts are unbalanced) are possible. We present the 

C and P case here because that is the way our data is organized: the changes necessary to estimate with data 

balanced for C and A or P and A are obvious but tedious.  
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As the saturated model is the most general model that can be estimated using this type of 

data, it is a useful starting point, but most researchers prefer to impose constancy of the 

coefficients across the same ages, cohorts, and periods, which leads to a model that we call 

the three-way or CAP model:  

 

 CAP:     it c t a ity µ α β γ ε= + + + +  (3) 

 

We know that one cannot estimate equation (3) directly: the coefficients of the different 

indicators can only be estimated relative to a reference value for each of the three 

dimensions. Therefore one imposes (for example) nullity on the coefficients α1, β1, and γ1, 

which are respectively those of the first cohort, the first period, and the first age. However, 

the collinearity between the indicators of age, period, and cohort has not been removed by 

this procedure: in fact, it is easy to show that even the variables in this new equation will 

not be linearly independent. How can one then estimate this model? As discussed earlier, 

several methods of identification have been proposed in the past; here we focus our 

discussion on those that involve simple restrictions on the dummy variables, rather than 

the addition of new variables such as macro-economic indicators. 

 

Mason et al. (1973) proposed determining the number of restrictions which are necessary 

to impose on equation (3) in order to eliminate the problem of collinearity and identify the 

model. They demonstrated that one possible sufficient condition is to constrain two 

coefficients in the same dimension (age, period, or cohort) to be equal. For example, by 

imposing that the effects of the first and last ages are equal, one can identify the model, 

provided that there are at least 12 cohort-period combinations. The number of coefficients 

that can be estimated is therefore 1 + (P-1) + (C-1) + (A-1) - 1 = 2(P+C) – 4, as compared 
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to PC for the saturated model. When P=C=2, the three-way model coincides with the 

saturated model, implying that at least one of P or C must be larger than 2 for this model to 

impose meaningful constraints.  

 

Naturally, the problem with identifying the three-way model using an equality constraint 

on two of the coefficients is that the different equality constraints will correspond to 

different estimates of the coefficients. The explanatory power of the models (measured by 

the R-squared) estimated under the different equality constraints will be the same. As a 

consequence, in the absence of an equality constraint that is preferred a priori, identifying 

the model in this way does not allow the selection of a “good” model. A secondary 

problem is that the identification may be fairly weak, relying as it does on a single equality 

constraint between coefficients.  

 

However, as Berndt et al. (1995) showed, when the number of periods and cohorts is large 

enough, the three-way model imposes a number of constraints on the saturated model that 

can be tested in order to determine its plausibility. Similarly, models with only two or one 

set of dummies are nested within the three-way model, so that it is possible to test their 

validity using either the saturated or the three-way model as the maintained hypothesis. 

We write the two-way models as follows: 

 

 

CP:       

CA:   

PA:   

it c t it

it c a it

it t a it

y

y

y

µ α β ε

µ α γ ε

µ β γ ε

= + + +

= + + +

= + + +

 (4) 

 

and the one-way models similarly: 
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C:       

P:   

A:   

it c it

it t it

it a it

y

y

y

µ α ε

µ β ε

µ γ ε

= + +

= + +

= + +

 (5) 

 

For example, testing the CP model against the CAP model is equivalent to testing whether 

the A-1 coefficients γ2, γ3, …, γA are equal to zero, which corresponds to testing the 

constraints on the saturated model given in Table 1. 
7
 

 

[Table 1 about here] 

 

The implication of this particular set of constraints is that the change in y from period to 

period is the same for each cohort, but that the change in y from age to age is different for 

each cohort. The number of constraints relative to the saturated model is equal to PC – (P-

1) – (C-1) – 1 = (P-1) (C-1), which can be a sizable number. In section 4 of the paper we 

present empirical results for a panel of French physicists which has 25 cohorts and either 

12 or 21 periods. For the shorter sample using these data, the number of implied 

constraints for the CP model is equal to 264 out of 300 coefficients. Table 2 gives the 

general formulas for the number of constraints in all the models when the data are 

balanced in the cohort and period dimension. Table 3 illustrates the computations for our 

two panels, where we have i = 1,…,N individuals (N=465 for the short panel and 418 for 

the long); p = 1,…,P years (P=12 or 21); c = 1,…,C cohorts (C=25); and therefore age 

a=t-c (A = P+C-1 =36 or 45). 

 

[Tables 2 and 3 about here] 

 

                                                 

7
 Similar tables apply for the other models. 
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It is clear from these tables that when there are a large number of years or cohorts, there 

are a large number of implied constraints. The implication is that even though it is not 

possible to identify a model with a full set of cohort, year, and age dummies, it is still 

possible to test for the presence of any one set of these dummies conditional on including 

the other two sets. That is, because only one additional constraint is required to identify the 

model with all three effects, when more than one additional constraint is implied by 

dropping a set of dummies, we can still perform a test. As mentioned earlier, in the case of 

data balanced in the cohort and period dimension, this will be true when either the number 

of periods or the number of cohorts is at least three.  

2.3 Including individual effects 

In many situations, it is desirable to control not only for effects due to the cohort to which 

an individual belongs, but for permanent differences in individuals as well, leading to a 

variation of the CAP model: 

 IAP:     µ α β γ ε= + + + +it i c t a ity  (6) 

It is obvious that this will create a further identification problem: given any individual i, 

the cohort c to which he belongs is known, and the cohort effect αc is therefore completely 

unidentified in a model with individual effects. In addition, some of the identification 

strategies discussed above (specifically those involving constraining the cohort dummies) 

are unavailable, because including individual effects necessarily involves including a 

complete set of cohort dummies. One additional danger with including individual effects in 

this models (and as a consequence differencing out the cohort effect) is that the 

identification problem itself is therefore obscured and may be missed by the researcher.  

 

Heckman and Robb (1985) discuss the identification issue in CAP models with individual 

effects and suggest an alternative identification strategy using a variance components 
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decomposition. That is, they propose modeling using random effects in cohort, age, and 

period, and then estimating the model using the moment matching methods associated with 

Joreskog’s LISREL program (2005).  

3 AN ILLUSTRATION USING SIMULATED DATA  

In order to illustrate the identification problem and the difficulties it creates for measuring 

age effects in researcher productivity, we performed a simulation using data calibrated to 

match the panel of French physicists analyzed in Turner and Mairesse (2003) and also in 

section 4 of this paper. That dataset had observations on the publications of 465 

individuals who were born between 1936 and 1960 (25 cohorts), for the period 1986 to 

1997 (12 years). In this section of the paper we present the results of a series of structured 

statistical tests on the simulated data that are designed to choose the correct model from 

among the various dummy variable alternatives discussed earlier. In addition, we show the 

results of one draw from our simulation graphically. The model we chose for simulation 

illustrates the potential for a model that has only cohort and period effects to generate data 

that may appear to have peak in productivity at a certain age in spite of there being no age 

effect in reality.  

 

Our approach here is to generate data that looks like the real data using a negative 

binomial model (so we obtain counts with overdispersion), but to estimate using the log-

linear dummy variable model that is common in the literature. Given the generally small 

values of the dependent variable and the fact that we are using dummy variables, the 

differences between using OLS or using the more correct ML on a negative binomial 

model for estimation are likely to be slight. Figures 1a-1c show the results of one 

simulation draw of the model given below: 
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2

2

0

~ ( , )

exp

it it

it

y NB

t c c

λ σ

λ µ α β γ = + + + 
 (7) 

 

where NB denotes the negative binomial distribution, t is the period (1986-1997, centered 

at 1991.5), c is the cohort (1936-1960, centered at 1948), α = .022, β = .001, γ = -.0015, µ0 

= 1.09, and σ = 3.1.  µ0 and σ were chosen so that the logarithms of the simulated data had 

the same mean and variance as the actual data. These parameter values imply that the 

quadratic in c reaches its maximum in about 1948-49, in the middle of our data period, but 

that the slope ranges from a minus 4 per cent growth rate to a plus 4 per cent growth rate in 

publications per year for the observed cohorts and is usually much lower, of the same 

order of magnitude as the year effect. In levels and at the mean of the data (2.7 

publications per year), 4 per cent corresponds to a growth rate of about 0.1 articles per 

year. 

 

[Figures 1a-1c about here] 

 

Each panel of Figure 1 shows the resulting data from one draw of this simulation, plotted 

three different ways. Figure 1a shows the means by age, Figure 1b the means by year, and 

Figure 1c the means by cohort. In each case we also show the best fit line for the dummy 

variable model that excludes the variable on the X axis, as a guide to the eye. Note that any 

dummy variable model which includes a set of dummies for the X-axis variable will fit the 

means of the data perfectly. For example, in Figure 1a we show the fit from a model that 

includes only the cohort and period dummies (the CP model). Any model that includes age 

dummies (that is, the CAP, CA, PA, or A models of Section 2) would have matched the 
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overall age means exactly. Of course, were we to examine the fit of the age distribution for 

particular cohorts or particular years, only the saturated model would be able to match the 

data exactly. This fact is illustrated in Figure 2, which shows the data and the fit of the 

various models for three separate cohorts (1936, 1948, and 1960) that have three sets of 

non-overlapping ages (50-61, 38-49, and 26-37).  

 

[Figure 2 about here] 

 

The main message of Figure 1 is that although the year and cohort distributions look the 

way we would expect, given the simulation, the resulting age distribution exhibits smooth 

behavior with peaking during the 40s, even though there is no age effect in our simulated 

model. As we expected, the year distribution shows a modest trend increase of about 0.06 

publications on average throughout the twelve-year period and the cohort distribution a 

slight peaking tendency in the late 1940s. Our conclusion is that for samples of our size, 

averaging approximately 17 observations per period-cohort cell, it would be possible to 

observe a peaked age effect even if one is not there, at least if there is curvature in the 

cohort or period dimension.
8
 That is, the observed age effect can be generated simply by 

the interaction of period and cohort effects.  

 

What are the implications of this “age” effect for model selection? That is, even though we 

observe something that looks like an age effect in Figure 1a, the testing strategy outlined in 

section 2 of the paper may allow us to choose correctly among the many possible models 

that are given in Tables 2 and 3, at least when the number of cells or observations are large 

                                                 

8
 In this investigation we have focused on a quadratic age effect because that is a typical finding of the 

human capital literature and is therefore of considerable interest to researchers of scientific productivity. 

Spurious linear age effects would be even easier to generate using trends in period and cohort.  
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enough, and to reject models that are inappropriate for the data. The tests corresponding to 

the eight different models in Table 2 are nested in the way shown in Figure 3: the three-

way CAP model is nested within the saturated model, the three two-way CP, CA, and PA 

models are nested within the CAP model, and the three one-way C, P, and A models are 

nested within either of their corresponding two-way models. Thus we can test for the 

correct specification using a general-to-specific sequence of tests: first we test the CAP 

model using the saturated model as the maintained hypothesis, and if we accept, then we 

can test the three two-way models (CP, CA, and PA) using the CAP model as the 

maintained hypothesis. Each of the  three two-way models has nested within it two one-

way models and each one-way model (C, A, and P) can be obtained from two different 

two-way models. Because this is a sequence of nested tests, one might want to adjust the 

corresponding significance levels when conducting the tests. In the case shown here, the 

tests are sharp enough (either very significant or very insignificant) that such an 

adjustment would make little difference.
9
  

 

[Figure 3 about here] 

 

As we suspected from Figures 1 and 2, for the simulated data the results of this model 

selection approach are somewhat ambiguous. Given the saturated model, we can easily 

accept a model with cohort, year, and age effects only (F-statistic (230,5280) = 1.00), but 

conditional on that model, there are two models that will describe the data accurately: one 

is the cohort-year model (F-statistic (34,5050) = 1.01), which is consistent with the data 

generating process we used for the simulation, and the second is the cohort-age model (F-

                                                 

9
 For example, to obtain a nominal size of 5 per cent for the overall test, the individual significance level for 

each of 3 nested tests should be somewhat smaller, equal to (1-(1-.05)
1/n

) = 0.017 with n=3 (see Kennedy 

(1996), p. 92, for a discussion of nested testing).  
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statistic (10,5050) = 1.12), which is not. The year-age model and the three one-way 

models are clearly rejected, regardless of the model that is taken as the maintained 

hypothesis. Our conclusion is that for data like ours, it may be difficult to discriminate 

between some of the models using samples of the size available to us, although clearly we 

are able to reject the more restrictive specifications. In particular, we are likely to find age 

effects in a model that has only a linear time trend and a smooth quadratic cohort effect. In 

the next section of the paper we apply the same sequence of tests, this time to the real data, 

and reach similar conclusions.  

4 AN APPLICATION USING DATA FOR A PANEL OF FRENCH 

PHYSICISTS  

There are many studies of age and/or gender differences in research production in the 

sociology of science and in scientometrics (for example Cole, 1979; Cole and Zuckerman, 

1984; Cole and Singer, 1991; Bonaccorsi and Daraio, 2003). Economists have also 

investigated them in the framework of cumulative advantage models and/or life cycle 

models (Diamond, 1984; Levin and Stephan, 1991; David, 1994; Stephan, 1996 and 1998). 

These models reveal the consequences of events arriving in the early career of the scientist 

on the one hand and of the anticipation of the coming end of career on the other on the 

allocation of research efforts over time and individual productivity. However, there has 

been relatively little research based on individual panel data, which could allow 

disentangling the effects of age and gender from cohort and period effects, as well as from 

other unobservable individual effects. One of the few exceptions is Levin and Stephan 

(1991), in which the proposition that research activity declines over the life cycle is tested 

on publication panel data for scientists in six sub-fields of earth science and physics 

(including condensed matter physics), over the period 1973-1979. 
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4.1 The dataset 

The database with which we work is an original panel database that was created from the 

records of 523 French condensed matter physicists working at the Centre National de la 

Recherche Scientifique (CNRS) between 1980 and 2002, and born between 1936 and 

1960. Condensed matter (solid state) physics comprises half of all French academic 

physics. During the period of study, it was a rapidly growing field with relatively little 

mobility towards the private sector or the universities, and with well-identified journals.
10

 

The group of physicists studied here represents a majority of all CNRS researchers in this 

discipline (they numbered 598 in 2002). The CNRS and universities are the main public 

research institutions in this domain in France. In 2002, 28.3% of the condensed matter 

physicists in France belonged to the CNRS and 70.5% to the academic sector (1489 

researchers). 

 

Our panel database is unbalanced both because the scientists enter at different dates, and 

because some exit before 2002.
11

 We restrict the analysis in this paper to a panel analyzed 

by Turner and Mairesse (2003) containing 465 physicists, observed from 1986 to 1997, 

aged 26 to 60 and with twelve years of data. Tables 4 and 5 contain some simple statistics 

for our data. 18 per cent of these researchers are female, rising from 15 per cent in the 

earliest cohort (those born 1936-40) to over 20 per cent in the last two cohorts (those born 

1951-1960). About the same proportion have a doctorate degree from a Grande Ecole, of 

                                                 

10
 For further information on the database and its creation, see Turner (2003).  

 
11 The identification problem is complicated in our setting by the fact that there is a small amount of variation 

in the identity given above due to entry at different ages (90% of the researchers enter between age 23 and 

32) which yields apparent identification, but where such identification is achieved using only a few of the 

observations. In this paper we abstract from this complication by defining age to be year less entry cohort 

rather than calendar age.  
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this number about 16 per cent are female.
12

 Over half of them (62 per cent) started their 

career in either Grenoble or Paris, which are considered the most important centers in this 

field. Almost half of the researchers changed labs at least once during their career. The 

average number of researchers in the labs in which they worked was 46, and the sample 

published at a slightly higher rate than their labs (2.7 papers per year versus 2.3 for the 

average researcher in the lab).  

 

As is usual in this literature (Levin and Stephan 1991), our measure of researcher 

productivity is the count of articles published during the year.
13

 The total number of 

articles published is about 15,000 (2.7 per person per year) but 25% of the researchers 

have no publications in a given year, and one individual has 62. Fitting a simple Pareto 

distribution to these data yields a coefficient of about 0.1, which implies that the 

distribution from which they are drawn has neither a mean nor a variance.
14

 Figures 4 and 

5 show the smoothed sample averages of the productivity measure plotted versus age and 

calendar year respectively, for five year groupings of the cohorts (year of birth). As 

expected, the average number of articles published tends to increase over time, although 

the main differences seem to be by cohort rather than year, with the exception of the most 

                                                 

12 The Grande Ecole degree is a high-level pre-doctoral degree. In the French educational system, after 

graduation  from high school, students can either go directly to university, which does not require any grade 

or level of achievement in high school, or they can apply to a preparatory class where they spend two years 

studying the material required to compete for the very selective admission into a Grande Ecole. Every 

student of a Grande Ecole has therefore been successful in passing a two phase selection process: selection 

on the basis of their grades in high school, and on the basis of the Grandes Ecoles entrance exams. 

 
13 We also have several other measures available: articles published weighted by the number of co-authors, 

the average number of pages in an article, and measures based on citations received in the first two and five 

years, weighted by the impact factors for the journals in which the citing papers appeared (the average 

citation rate of its articles). However, in the present paper we focus on the article count itself, which is 

sufficient to illustrate the various identification strategies.  See Table 5 for simple statistics on the other 

measures.  

 
14

 Obviously the Pareto properties of the distribution are merely indicative of the level of dispersion in the 

data. We do not really believe that there is a nonzero probability that an individual researcher will publish an 

arbitrarily large number of papers per year, so the actual distribution must be bounded, which would imply 

that the mean and variance exist.   
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recent cohort. The age distributions for the earlier cohorts suggest a peak somewhere in the 

late 40s or early 50s, although not very strongly.  

 

[Tables 4 and 5 about here] 

[Figures 4 and 5 about here] 

 

4.2 Productivity and age 

In this section of the paper we use the sequence of tests described earlier to ask whether 

the apparent peak in productivity as a function of age could be due to the confluence of 

cohort and year effects. In Figures 6a and 6b we show the results of our tests applied to the 

actual data on French solid state physicists. Figure 6a considers models with cohort, year, 

and age effects and Figure 6b considers the same models, but this time with individual 

effects substituted for cohort effects.  

 

The results in Figure 6a are similar to those for the simulated data in Figure 3. The 

preferred specifications with only two sets of dummies are those with cohort and year or 

cohort and age effects. Although they are both rejected at the 5 per cent level in favor of a 

specification with all three sets of dummies, using a size adjusted for the fact that the test 

is nested yields a more equivocal result. Note that the test for a model with only cohort and 

year effects versus that which includes age effects in addition has a p-value of 0.034, 

which is fairly large given the number of observations (5580) and larger than the adjusted 

size of 0.025.
15

 The conclusion is that the independent effect of researcher age above and 

                                                 

15
 Because we are looking at the combination of two tests here, the correct size is equal to (1-.95

0.5
) = 0.025. 
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beyond that due to the cohort in which he or she entered and the year of publication is at 

most slight. 

 

[Figure 6 about here] 

 

Alternatively, if we prefer a specification with cohort and age effects only, that is, a model 

where calendar time influences only the “initial condition” for the researcher, such a model 

would be only marginally less preferred to the cohort-year model. The conclusion is that in 

order to distinguish these alternatives it will be necessary to appeal to some prior 

information, as the data themselves cannot really tell us which is correct.  

 

To underline this point, we show the actual and fitted values from the two models in 

Figures 7 and 8, plotted first versus age and then versus time. Figure 7 shows the 

geometric means of the data (publication counts) for each age, and the geometric means of 

the values predicted by the cohort-year model (those predicted by the cohort-age model 

will lie precisely on the actual data).
16

 Similarly, Figure 8 shows the same thing by time, 

with the fitted values from the cohort-age model, since the cohort-year predictions will 

coincide exactly with the data when it is displayed in this way. Looked at in the age 

dimension, the cohort-year model appears to miss a bit at the youngest and oldest ages, 

although it does reproduce the slight peaking. Looked at in the time dimension, the cohort-

age model appears to impose an acceptable smoothness on the data. So from this 

perspective we might prefer the cohort-age model, even though the fit of the two models is 

nearly identical (R-squareds of .047 and .052 respectively). 

                                                 

16
 Geometric means are used because the model was fit in log-linear form, so these are the unbiased 

predictions (but without the correction for the residual variance, which is small).  
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Now suppose the research question concerns the age at which publication productivity 

peaks. In this case the choice of model may matter. For example, consider the choice 

between the three-way model and the cohort-age model, both of which will reproduce the 

data means when looked at in the cohort-age dimension. Nevertheless, the two models may 

predict a different productivity peak. A quadratic fit to the two sets of age dummies 

obtained from these two models using our data yielded the following result: research 

productivity peaks at 52.2 years of age using the three-way model and at 53.7 years of age 

using the cohort-age model and ignoring the calendar time effects if they are there. 

Although this difference is not large, it is significant.
17

 

 

[Figures 7 and 8  about here] 

 

But that is not the end of the problem. Consider the following model which combines a 

quadratic in age with sets of year and cohort dummies: 

 

 2

1 2   µ α β γ γ ε= + + + + +it c t it it ity a a  (8) 

 

At first glance, this model looks sensible and in fact has often been estimated, sometimes 

with individual effects rather than cohort effects included (Levin and Stephan 1991; 

Turner and Mairesse 2003). Identification (with an intercept included) requires omission 

both of one of the cohort dummies and of one of the year dummies. However, because age 

(ait) is an exact linear function of cohort and period, which identifying assumption you 

                                                 

17
 If a quadratic model in age is included directly in the model with cohort-year dummies and that with 

cohort dummies alone, the difference in peak age is even larger: 50.6 years versus 53.8 years.  
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choose (and there are potentially a large number) will affect the estimates of γ1 and γ2, and 

therefore, the estimate of the age at which productivity peaks (which is - γ1/2 γ2).  

 

Figure 9 shows a representative result for our data. The identifying assumptions used were 

to include a complete set of year dummies, exclude the intercept, and include all but one of 

the cohort dummies. The excluded cohort dummy was allowed to vary from 1936 to 1960. 

The figure shows a few representative examples of the resulting age profile (excluding 

year and cohort effects). Note that all the fits were identical, in the sense that the sum of 

squared residuals were exactly equal, and they all generated the same age-cohort-year 

means, but very different age-productivity profiles. The problem is interpretive: the age-

cohort-year identity means that it is impossible to identify the productivity curve as a 

function of age without strong prior restrictions on the year and cohort effects (such as 

their absence). The age at which productivity peaks also varies significantly for the 

different normalizations: it is 39.6, 41.3, 42.4, 37.9, and 50.4 when we drop the dummy for 

entry in 1936, 1940, 1944, 1948, and 1952 respectively.  

 

The situation is even worse for the model with individual effects in place of the cohort 

effects, along with the year and age effects. For this model, we obtained identification by 

setting the coefficients of two of the adjacent years equal to each other, again varying the 

choice of years for which we did this from 1986/87 to 1996/97. In this case, the age at 

which productivity peaked varied all the way from 0 to 100, of course with large standard 

errors. Figure 6b shows the results of conducting our testing methodology on the model 

with individual, year, and age effects. In contrast to the models with cohort effects, the 

only model that is accepted is the three-way model. The implication of the results is that 

we need to include individual, year, and age effects in our model, but that we cannot use 
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the results to infer the age productivity peak, since it is so sensitive to the choice of 

normalization. 

5 CONCLUSIONS 

This paper has explored a familiar identification problem, that of vintage, age, and time, in 

a context where it does not seem to have been sufficiently recognized: the identification of 

cohort, age, and period effects in scientific productivity. We have emphasized the fact that 

identifying an age-related productivity effect or the presence and location of a productivity 

peak relies crucially on what we are willing to assume about the variation in the other two 

dimensions, cohort and time. There is no universal solution to this problem, given the 

identity that relates the three.  

 

Therefore we recommend the following: test for the presence of each of the three effects 

semi-parametrically as we have done in this paper. If the tests reveal that one dimension 

can be ignored, then the most parsimonious specification will include only the other two 

dimensions. However, the power of such a test clearly goes up with the dimensions of the 

data: in some unreported experiments, we found that 12 years and 36 ages led to confusion 

between a cohort-age and a cohort-year model when the former was the true model, 

whereas 25 years and 44 ages allowed us to distinguish the two.  

 

Alternatively, we return to the original recommendations of Rodgers, who strongly 

advocated the use of a priori information about cohorts or the time periods to help identify 

the model. We note that this approach was the one taken by Stephan and Levin (1991) 

when they achieved identification by grouping the cohorts in their sample according to the 
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knowledge base to which they were exposed in their graduate training.
18

 One solution 

sometimes proposed, grouping cohorts in multi-year intervals seems somewhat less 

satisfactory in this context. This amounts to achieving identification of the age effect by 

comparing closely adjacent ages and assuming they come from the same cohort. In this 

case, it would seem preferable to use the actual variation in year of entry into the sample 

(cohort) for individuals of the same age rather than creating spurious age variation by 

holding the cohort fixed.  

 

We conclude with a discussion of the impact of the identification problem discussed here 

on the coefficient estimates for other variables that may be included in the regression. For 

example, a researcher may be interested in gender differences in scientific productivity, or 

in the impacts of productivity on the part of other researchers in the lab. Although clearly 

these coefficients will be affected by the choice of model when the variables of interest are 

correlated with cohort, age, or period. In this case, the choice of assumption used to 

identify the three-way model will not matter for the coefficients of interest. As long as the 

assumptions used are equivalent in the sense of yielding the same (identical) fit of the 

model, the estimated coefficients on the variables of interest will be the same. This fact 

suggests that the safest procedure when the variables of interest are other than age may 

indeed be to use the saturated or three-way model to estimate scientific productivity, in 

order to provide maximum control for unknown cohort, year, and age effects. This is the 

good news. The bad news is that it appears impossible to estimate age productivity effects 

without strong a priori assumptions on the rest of the model.  

                                                 

18
 However as we have shown here, and as is also clear from their detailed discussion of the tables in Levin 

and Stephan, this method of identification breaks down if individual rather than cohort effects are included.   
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Table 1 

Constraints for the Cohort-Period Model 

Periods/ 

Cohorts 

P1 P2 P3 P4 …… 

C1 a11 = µ a12 = µ+β1 a13 = µ+β2 a14 = µ+β3 … 

C2 a21 = µ+α1 a22 = µ+α1+β1 a23 = 

µ+α1+β2 

a24= µ+α1+β3 … 

C3 a31 = µ+α2 a32 = µ+α2+β1 a33 = 

µ+α2+β2 

A34 = µ+α2+β3 … 

…. … … … … … 

 

Table 2 

Number of Parameters and Constraints for the Different Models 

Model Free parameters 

Number 

of 

constraints 

Minimum P, C for 

over identification 

Saturated P·C 0 NA 

CAP - cohort, age, and 

period 
P+C+A-3 = 2(C+P)-4 (P-2)(C-2) P=3,C=3 

CP – cohort and period P+C-1 (P-1)(C-1) P=2,C=2 

CA – cohort and age C+A-1 = 2C+P-2 (C-1)(P-2) P=3,C=2 

PA – period and age P+A-1 = C+2P-2 (P-1)(C-2) P=2,C=3 

C – cohort C C(P-1) P=2,C=1 

P – period P P(C-1) P=1,C=2 

A - age A = P+C-1 (P-1)(C-1) P=2,C=2 

 

Table 3 

Number of Parameters and Constraints for the Data 

 Short Sample Long Sample 

Model 
Free 

parameters 

Number 

of constraints 

Free 

parameters 

Number 

of 

constraints 

Saturated 300 0 525 0 

CAP - cohort, age, and 

period 
70 230 88 437 

CP – cohort and period 36 264 45 480 

CA – cohort and age 60 240 69 456 

PA – period and age 47 253 65 460 

C – cohort 25 275 25 500 

P – period 12 288 21 504 

A - age 36 264 45 480 
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Description Number Share

Gender (1 = female) 84 18%
D (started in Grenoble) 121 26%
D (started in Paris) 167 36%
D (PhD from a Grande Ecole) 79 17%
Changed labs one or more times 205 44%

Table 4

Sample Statistics for 465 CNRS Physicists

Dummy variables

 

 

Description Median Mean Std. Dev. Min Max

Date of birth 1945 1946.8 7.3 1936 1960

Average lab productivity* 2.29 2.37 0.88 0.11 7.59

Average lab impact factor* 3.58 3.53 0.64 1.61 7.62

Intl openness - share art pub intl 0.037 0.039 0.028 0.000 0.109

No. of researchers in lab 43 46.4 26.3 0 134

No. of labs in career 1 1.61 0.79 1 4

Age of researcher this year 45 44.6 8.0 20 61

No of articles published in year 2 2.69 3.21 0 62

No of articles weighted by authors 0.20 0.21 0.19 0 1

Average number of pages 5.40 5.49 4.68 0 58

Impact factor (2 years) 2.54 2.66 2.30 0 21.48

Impact factor (5 years) 4.36 4.15 3.18 0 26.56

*Based on only 447 observations.

Time-varying variables (5,580 observations for 1986-1997)

Variables constant over time

Table 5

Sample Statistics for 465 CNRS Physicists
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Figure 1a
Data Simulation with Cohort and Period Effects Only, Plotted versus Age
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Figure 1b
Data Simulation with Cohort and Period Effects Only, Plotted versus Period
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Figure 1c
Data Simulation with Cohort and Period Effects Only, Plotted versus Cohort
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Figure 2 

Estimated Models for Data Simulated with Cohort and Period Effects 
1936, 1948, and 1960 Cohort
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F-tests for Cohort, Age, and Period Models
Simulated Data

Figure 3

Saturated model
300 coefficients

Cohort, Year, and Age
70 coefficients

Cohort and year
36 coefficents

Cohort and age
60 coefficients

Year and age
47 coefficients

Cohort only
25 coefficients

Age only
36 coefficients

Year only
12 coefficients

1.00 (.497)

1.98 (.004)1.01 (.447)
1.12 (.343)

3.15 (.000)4.25 (.000) 2.14 (.000)2.00 (.005)

4.25 (.000) 3.73 (.000)
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Figure 4
Average Number of Articles Published by Age

(5-year Moving Average)
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Figure 5
Average Number of Articles Published by Year

(5-year Moving Average)
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Actual Data (N = 465)

F-tests for Cohort, Age, and Period Models
Actual Data (N = 465)

Figure 6a

F-tests for Age and Period Models with Individual Effects

Figure 6b

Saturated model
300 coefficients

Cohort, year, and age
70 coefficients

Cohort and year
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Cohort and age
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2.10 (.021)
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Saturated model
740 coefficients
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511 coefficients
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Year and age
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Age only
36 coefficients

Year only
12 coefficients
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6.05 (.000)2.64 (.000)
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Figure 7
Geometric Average of Number of Articles Published by Age
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Figure 8
Geometric Average of Number of Articles Published by Year
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Figure 9 
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