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Abstract

In this paper we model the formation of innovation networks as they emerge
from bilateral actions. The effectiveness of a bilateral collaboration is determined
by cognitive, relational and structural embeddedness. Innovation results from the
recombination of knowledge held by the partners to the collaboration, and the extent
to which agents’ knowledge complement each others is an issue of cognitive embed-
dedness. Previous collaborations (relational embeddedness) increase the probability
of a successful collaboration; as does information gained from common third parties
(structural embeddedness). As a result of repeated alliance formation, a network
emerges whose properties are studied, together with those of the process of knowl-
edge creation. Two features are central to the innovation process: how agents pool
their knowledge resources; and how agents derive information about potential part-
ners. We focus on the interplay between these two dimensions, and find that they
both matter. The networks that emerge are not random, but in certain parts of the
parameter space have properties of small worlds.
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1 Introduction

One of the effects of the recent rapid technical advance is a change in the technological

structure of many firms. As new technologies have emerged and been integrated into exist-

ing products and technology spaces, the successful firm now must have access to expertise

covering a much larger scope of technologies than in the past. We have observed a rapid

increase in the prevalence of “multi-technology” firms. Firms have had to incorporate

many new types of expertise both in their production activities, and in innovation (see for

example Powell et al., 1996, Grandstand and Sjolander, 1990; Grandstand, 1996; Teece

and Pisano, 1989). This raises the difficulty that knowledge and technology necessary for

innovation may lie outside a firm’s traditional core competence. A now common strategy

for addressing this problem, adopted by more and more firms, is to form alliances, both

with competitors and with non-competing firms and institutions. Inter-firm cooperation

can be extremely effective in increasing the circulation of tacit knowledge, and in creating

possibilities for a firm to acquire knowledge outside its boundaries. Consequently, these

co-operative agreements for R&D have grown dramatically in number since the 1970s.1

The increase in alliances, which have been created for purposes of gathering or exchang-

ing knowledge and information, has led to a new view of industry structure. In the past we

have observed hierarchies and markets as dominant structures. Implicit is a well-defined

notion of the boundary of the firm. As knowledge (and indeed many other things) are pass-

ing between firms in what cannot be described as purely market transactions, analysts have

begun to discuss the network-based organization (see Powell, 1990 for example). Networks

differ from markets and hierarchies in a variety of ways, but can be seen as depending

on particular types of interactions between pairs of agents within the economy. Within

a network structure, firm boundaries are relatively porous, and a firm survives by having

good contacts with other firms who hold complementary assets.

Clearly, the strategic alliance is a central part of the process creating a network struc-

ture within an industry. For any firm seeking to expand its innovation capabilities through

alliance formation, though, there is the question of choosing a partner. Simply partnering

with every other firm is not feasible for many reasons (there are time, resource and man-

agement constraints; competitive considerations would militate against it and so on), so

selecting a partner, acknowledging that many other firms are doing the same, becomes a

strategic issue that firms must deal with. A basic way of analysing this issue is to observe

that alliances do not exist in a vacuum, but are embedded in a variety of other issues.

Analysts have focussed on three: relational embeddedness; cognitive embeddedness; and

structural embeddedness. Each of these features of a possible relationship lends it value,

and they play a central role in determining the desirability of different potential partners.

In this paper we examine the creation and evolution of a network of firms through

bilateral alliance formation. The micro-economics of our model deal with the firms’ im-

mediate goal, which is to find an alliance for purposes of innovation, and in the model

each firm’s choice of partner is driven explicitly by concerns of cognitive, structural and

relational embeddedness. These micro-economic activities, however, create an emergent

1See Hagedoorn (2001) for a review and discussion of this trend.
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network structure in which firms are connected to each other through bilateral links.2

In the context of finding an alliance partner, cognitive embeddedness refers to two

agents’ abilities to integrate effectively their respective knowledge. Empirical analyses of

alliance formation conclude that firms look for partners with the best technological fit in

the sense of providing “missing resources”.3 If we consider that a firm has a knowledge

profile, we can think of it as being located in some knowledge or competence space. When

two firms innovate jointly, the action will be most effective if their locations complement

each other. In the literature a Euclidean space has been used, and there is a consensus

that the effectiveness of cooperation has an inverted U-shape in cognitive distance. If

firms are too close together, their knowledge overlaps too much and there is little point

in sharing; if they are too far apart they have difficulty understanding each other, and

so sharing is too difficult. The arguments are very appealing intuitively (see for example

Grant, 1996 or Nooteboom, 1999), and Mowery et al. (1998) find this effect empirically. In

the model below we take a more explicit notion of complementarity, using a richer notion

of complementarity than a simple Euclidean distance.

One consequence of a knowledge partnership is that partners will develop closer cogni-

tive ties. That is, their knowledge profiles will, in general become more similar. Mowery

et al. (1998), for example find that “technological overlap between joint venture partners

after alliance formation is greater than their pre-alliance overlap” (p. 517). (See also Dyer

and Nobeoka, 2000.) This has the feature of increasing embeddedness, but after a time

may make firms less attractive to each other, since as they become similar, there is less to

share. This intuition may be misleading in some cases, and as we discuss below, it depends

heavily on the nature of the innovation process, and how firms integrate their competencies

in that process.

Cooperation between firms is risky, and is marked by uncertainty regarding the skills of

the partner, your joint ability to work together, the potential partner’s reliability, his goals

and so on. (See Powell 1990, p. 318 for a discussion of these risks.) This can be cast as

an issue of incomplete information, and the most obvious way to reduce the uncertainty is

to improve the information used in choosing a partner. There are two sources of this type

of information: experience and other agents. The first relates to relational embeddedness,

the second to structural embeddedness (see Uzzi 1996, 1997 for discussion).

Past experiences with an agent will both improve abilities to cooperate, and yield infor-

mation about that agent. Cooperation implies mutual knowledge and sharing of routines,

representations, ways of thinking, the ability to share tacit knowledge and so on: in gen-

eral the creation of some common ground on which the cooperation can be built. Galison

(1999), for example, shows that in experimental physics, cooperation between theorists,

2To model strategic technological alliances in their entirety is far beyond the scope of this paper.
Technological alliances can be very rich and varied, and firms have many motivations for entering into
them. See Oliver (1990) for a discussion of the motivations of firms to form outsider relationships. But
for our purposes we focus on a single effect, namely the production of shared knowledge, and how firms’
behaviour in this regard leads to the emergence of networks.

3This idea has a long history in the management literature, going back to Penrose (1959). See Chung
et al. (2000); Doz (1988); Hamel et al. (1989); Narula (1999); Richardson (1972); Teece (1986) among
others. In this regard, one difficult issue has to do with how resources of partners are combined, which in
turn determines what “complementary” means. This is an issue we address directly below.
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experimentalists and instrument makers is made possible by the emergence of some sort

of “creole”, an intermediary level knowledge specific to a given pair of actors, that has

been built through their repeated interactions. This common ground can be built through

the experience of cooperation (Garcia-Pont and Nohria, 2002). In addition, repeated in-

teraction creates trust in the broadest sense (both in terms of motives and in terms of

competencies) and the importance of predictability implies that trust construction and

learning are strongly related (Sako, 1991; Dodgson, 1996). All of these considerations will

clearly create an inertia in partnership formation, and a stability in the emergent network

structures: agents will, all else equal, prefer partners they have worked with in the past.

Powell et al. (1996) show that firms that have engaged in partnerships in the past are

more likely to engage in them in the future. This is a general result. Chung et al. (2000),

Gulati (1995) and Roijakkers (2003) all find that if two particular firms have allied with

each other in the past, these two firms are more likely to have an alliance together in the

future.

The second source of information about potential partners is other agents (see Kogut et

al. 1992, for example). Those who have worked with a firm will have experience that they

can, in principle, share with others who might be considering working with that firm. This

is captured by the idea that many alliances exhibit structural embeddedness: there is some

tendency for firms to find partners that are close to them in network space. In the model

we develop below, this source of information is included explicitly: a firms perceived value

to me as a partner increases if my previous partners have had good experiences with that

firm. My network of immediate contacts is a source of information about possible future

contacts.

The entanglement of these different effects – learning about partners and learning

from partners – makes analysis of network formation tricky. Both Chung et al. (2000)

and Gulati (1995), examining very different industries, find that both a history of direct

interactions and indirect ties affect the probability that two firms will form a partnership

in the future. As the number of past ties between two firms increases the probability

that they will form a partnership together in the future increases and then decreases.

There seems to be a concave relationship. While it seems reasonable that the effect of a

shared history should taper off, it is not immediately clear why it should turn negative

at any point. Similarly, the number of indirect links between two firms has an effect on

the probability that they will form a direct link or partnership in the future: the effect

is initially positive, but again tapers off, Chung et al. suggesting that their data display

an inverted-U.4 That a shared history or shared neighbours could have a negative effect

seems odd. The explanation may be in the difficulty of measuring their other explanatory

variable, namely strategic complementarity. Both papers acknowledge that this is a difficult

variable to measure, and both provide a static measure of it. This means that in their

implicit model, when two firms interact there is no effect on the strength of their strategic

complementarity. We have argued that this is likely not to be the case, and in fact that

strategic complementarity should weaken after a point, as two firms continue to interact

4This claim should be treated cautiously, since the peak occurs at 185 alliances according to their
calculations.
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and learn from each other, their knowledge bases will eventually have too big an overlap

(and indeed this convergence is what Mowery et al., 1998, and Uzzi, 1997, find). Such an

effect would explain a decrease in strength, and even a negative effect, of past interactions

on the probability that two firms interact in the future. The model that we develop below

has this built in, and under certain conditions about the nature of the complementarity,

this effect is clear.

In this paper we design an agent-based model of network formation in which agents are

repeatedly forming bilateral pairs for the purposes of creating new knowledge.5 We abstract

from pure “network-oriented” strategic motives of firms, such as filling structural holes

(Burt, 1992), or increasing their positions of centrality (Podolny, 1993). We focus instead

on the effects of firms’ motivations driven by short-term innovation concerns. Partnerships

are embedded cognitively, structurally and relationally, and this embeddedness directly

influences the choice of partner by every firm.6 Over time this bilateral link formation

process results in an emergent structure which is characterised as an industrial network.7

We analyse the effects of the nature of the innovation process, and the way firms can

effectively pool their knowledge on the structure that emerges and on the nature of the

knowledge that is held by the network.

2 The model

We present here a schematic description of the model before turning to the formal descrip-

tion. Each period every firm forms an alliance with one other firm, based on the output

that they expect from the collaboration. If preferable a firm can also choose isolation. An

alliance having formed, the firms pool their knowledge and use the joint knowledge stock as

inputs into new knowledge production. If the alliance is successful, and new knowledge is

created, this is added to each firm’s existing stock of knowledge, and then the partnership

is dissolved. In the next period firms form new alliances, possibly with previous partners,

5There is now a growing literature in economics on network formation, but the majority of it treats
the problem in game-theoretic terms, looking for stable structures that emerge from agents’s one-time
decisions about whether to form links. The concern in this literature tends to be whether the stable
networks are efficient. (For a recent survey see Jackson and Dutta, 2003.) This work tends not to address
the evolutionary nature of network formation and operation, and tends to have a thin model of firm
behaviour. For an example of adaptive networks in the context of customer loyalty, see Kirman and Vriend
(2001).

6These three types of embeddedness span the two types of explanations for partner choice in the litera-
ture, namely resource complementarity and social structural context. In this regard the model we develop
here is in the tradition of empirical work such as Gulati (1995) and Chung et al. (2000) which find support
for both explanations.

7Recent empirical analysis of economic networks has focused to a large extent on their structural prop-
erties, in particular whether various networks are small worlds. In general the answer is yes. Co-authorship
in a variety of academic disciplines (Newman, 2001); patent citation in US biotech (Johnson and Mareva,
2002); interlocking corporate directorships in the US (for example, Davis et al., 2003); technology alliances
(Duysters and Verspagen, forthcoming); the BRITE/EURAM network and the 5th Framework TSER
network (Cowan and Jonard, 2004) all have small world properties, and there is a consensus that small
worlds are pervasive. A second structure that has received attention recently is the scale free network
(Barabasi and Albert, 2000). Riccaboni and Pammolli (2000) find that networks in the life sciences and
ICT industries have scale free properties.
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possibly with new partners. This repeated bilateral partnership formation and dissolu-

tion generates the emergence and evolution of an economy-wide network structure, fosters

knowledge growth, and changes the knowledge endowments of the firms in the economy.8

Formally, consider a finite population of agents denoted S = {1, . . . , n}. Each agent
i ∈ S is characterized by a knowledge endowment of several types of knowledge. This is
represented as a vector v (i) = (v1 (i) , . . . , vm (i)), where each element vm (i) ≥ 0 represents
the amount of knowledge of typem = 1, . . . ,m held by agent i. This representation permits

us to treat agents as located in an m-dimensional knowledge space. Knowledge is thus

treated as a form of human capital, of which distinct types exist. This notation describes

the agents, and we use it throughout. We treat individually the two parts of the model:

knowledge creation, and partnership formation.

2.1 Knowledge production

Both knowledge and innovation are very difficult to characterize satisfactorily, and any

characterization has its weaknesses. We adopt the simple vector characterization of knowl-

edge described above, but focus more attention on the properties of joint innovation. A

representation of the innovation process should satisfy several minimal requirements (for

supporting evidence see Mowery et al., 1998; Uzzi, 1997). Consider two individuals i and j

who innovate together. After innovation has taken place, one would expect the following to

be true: the knowledge amounts held by i and j have increased; the knowledge “profiles”

of i and j have changed; and the similarity of the knowledge profiles of i and j (that is the

relative distance between them in the knowledge space) has fallen.

Operationally, each pair of agents (i, j) creates an amount of new knowledge deter-

mined by a production function, and this amount is simply added to both partners’ ex-

isting knowledge endowments. This process is very simple in principle and satisfies the

three requirements just described. Recall that each period agents form pairs (in a process

discussed below), and the knowledge that they bring to the pair is pooled, then serving as

input to the innovation process. The pooling is done through

vm (i, j) = (1− θ)min{vm (i) , vm (j)}+ θmax{vm (i) , vm (j)}, m = 1, . . . ,m. (1)

The pooling of course remains virtual, as each of the partners remains the owner of his own

skills. Nevertheless, it permits a useful formalization, permitting a concise representation

of the inputs available for the joint innovation production process.

In Equation (1), θ reflects the nature of the knowledge pooling which the knowledge cre-

ation task demands. If it is possible to separate the sub-tasks in the innovation process, the

agents will specialize, each agent doing some sub-tasks, and bringing the results together at

the end to create the complete innovation. Here, since specialization is possible, the better

8We have assumed here that agents are pursuing knowledge for its own sake. This is unrealistic in general
for firms, who pursue knowledge more generally for the sake of profits. To incorporate that explicitly in
the model adds significant complication, demanding a fully blown goods market with production and
consumption. We avoid that by this simplifying assumption, which, in an industry involved in rapid
technical change, will be behaviourally quite adequate.
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econometrician will do the econometrics; the better growth theorist will do the growth the-

ory, and so on, and thus the pooled knowledge vector is the element-wise maximum of the

individual vectors. θ is close to one. By contrast, if the tasks are not separable, and both

partners must be involved in every sub-task, then the weaker partner will be a bottleneck:

the pooled knowledge vector will be the element-wise minimum, and θ is close to zero.

The advantage of this formalization is that we can avoid specifying a particular distance

function, and an optimal distance (the peak of the inverted-U). More specifically, it per-

mits us to have a richer model of joint innovation than is usually considered (for example

by Mowery et al., 1998; Nooteboom, 2000; Alstyne and Brynjolfsson, 1996, 1997; Peretto

and Smulders, 2002) in which a simple Euclidean distance in knowledge space determines

the effectiveness of a partnership. Putting knowledge together involves considering deeper

issues of complementarities, captured by the production function approach.

Knowledge pooling is where strategic complementarity is defined. What counts as a

complement depends on the nature of the innovation process, and thus on the nature of

the way knowledge can be pooled. On this interpretation θ turns out to be a measure

of the taste for dissimilar partners. If θ is close to 0 then for any element m, in which

vm (j) < vm (i), agent j reduces the effectiveness of i. The converse is true as well. In

this case, agents will be driven to find partners similar to themselves, so they create as

little drag on each other as possible, and possibly agents end up alone. By contrast, if θ is

close to 1, agents look for partners whose endowments tend to complement their own, since

they can benefit from each others’ strengths. Implicitly, they search for partners who are

different from themselves in the sense of being good where they are bad. Naturally every

agent would still prefer to be with someone better than him in every discipline, but then

the dominant agent would refuse the partnership.

The pooled knowledge vector serves as the vector of inputs to the innovation production

function. To formalize this, we use a standard constant elasticity of substitution (CES)

production function φ : Rm
+ → R+, with

φ (v (i, j)) =

(X
m

(vm (i, j))β
)1/β

. (2)

The parameter β ≤ 1, β 6= 0, is an inverse measure of the elasticity of substitution across
knowledge types, which is written as 1/ (1− β) . To see how it affects the type of part-

nerships wanted, consider an agent with asymmetric profile (i.e. marked strengths and

weaknesses) and remark that φ is symmetric in its arguments and homogeneous. In gen-

eral this agent would like to find a partnership such that the joint profile is more evenly

distributed and so a higher isoquant can be reached. How desirable this is varies with the

degree of substitutability across knowledge types. When β is small the agent is very eager

to find a partnership and many different partners will complement him in such a way that

his innovation output increases. By contrast, when β is close to 1, being evenly skilful

becomes less important since substitution between different knowledge types gets easier.

Consequently, less networking should be observed.

6



2.2 Innovative success and experience

An innovation project may fail, and the projected new knowledge may not be created. Here

history is important since project success is driven in part by familiarity of the partners,

and the nature of the embeddedness of the partnership, as discussed above.

Suppose i and j have had partnerships in the past. The probability that i and j, will

have a successful collaboration is determined by the information they have about each

other at the time of the collaboration. As discussed in the introduction, information has

two sources: their shared history, and mutual former partners. Our focus will be on how the

balance between my own history (direct information) and my partners’ histories (indirect

information) affects my decisions.

Conditional to what has happened up to period t−1, define the a priori probability that
a collaboration between i and j in the next period, t, is successful as πt (i, j) = πt (j, i).

Suppose further that their previous collaboration took place s(i, j) periods ago (so in period

t − s (i, j)). (Henceforth we drop the t subscript for readability.) Now define the direct
credit of the pair (i, j) in period t to be

γ(i, j) = ρs(i,j)χ (i, j) , (3)

where 0 < ρ < 1 is a discount factor, and χ (i, j) = 1 if i and j had a successful interaction

when they last tried s(i, j) periods ago, while χ (i, j) = 0 otherwise. Equation (3) captures

the simple assumption of learning to collaborate by successfully collaborating. The more

distant our previous success is in time, the less credit we have in each other’s eyes (and the

less likely it is that our next attempt is a success). In case of a failure zero credit obtains.

Focussing solely on Equation (3) would give rise to a situation in which partners are a

source of (possibly) complementary knowledge, but no information about other agents,

and my own interactions are the only basis on which to judge the value of other agents as

potential partners.

In a similar way, define now the indirect credit of the pair (i, j) in period t to be

η (i, j) =
X
k 6=i6=j

ρs(i,k)χ (i, k) · ρs(k,j)χ (k, j) , (4)

where χ (i, k) and χ (k, j) are defined as earlier. The product χ (i, k)χ (k, j) is non zero

only if the last attempt of i and k was a success, and the last attempt of k and j was a

success. Through the decay term ρs(i,k)ρs(k,j) indirect credit also weakens as time passes

without new successes. A sketch of the way this works would be as follows. Suppose I am

interested in agent j. I look through my list of past partners, and when I find one with

whom I was successful in our most recent interaction, I ask, “In your latest interaction

with j, were you successful [which determines χ (k, j)], and if so, when was that interaction

[which determines ρs(k,j)]?” The sum of these over all my previous partners determines the

indirect credit between me (i) and j. Focussing solely on Equation (4) would imply that

partners, in addition to being a source of (possibly) complementary knowledge, are the

only source of information.

In general both direct and indirect information or credit will be considered, so to inter-
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polate between the two extremes the credit of the pair (i, j) will be a weighted sum of the

two, according to

c (i, j) =
αγ(i, j)

α+ (1− α)
P

k 6=i χi,kχk,j
+

(1− α) η (i, j)

α+ (1− α)
P

k 6=i χi,kχk,j
, (5)

with 0 ≤ α ≤ 1 the weight of the agent’s own opinion. This way c (i, j) accounts for

both i’s direct knowledge of j (as captured by γ(i, j)) and the knowledge accessed by i via

neighbours who are common to j, as measured by η (i, j) . Then the probability that the

next collaborative attempt is a success is simply assumed to be

π (i, j) = πL + (πH − πL)c (i, j) , (6)

and the expected amount of knowledge produced by a cooperation between i and j can be

expressed as

F (i, j) = π (i, j) · φ(v (i, j)). (7)

This is the amount of knowledge produced in case of success multiplied by the probability

that the cooperation succeeds. (Thus agents are assumed to be risk-neutral.) Firms that

innovate in isolation have one source of risk removed, namely that associated with having

to work with a partner. This does not make autarchic innovation a sure thing though: we

assume that a firm innovating alone is successful with probability πH . Given this, πL plays

a central role in a firm’s decision to operate in autarchy rather than collaborating. A larger

baseline probability of failure associated with the partner’s contribution (lower πL) will

obviously imply a stronger tendency for firms to conduct innovative projects in isolation.

Note that F (i, j) = F (j, i) , i.e. the score function is symmetric.

If the innovation project is successful, and new knowledge is created, it is added to

each of the partners’ knowledge vectors. The general intuition is that as an agent uses

knowledge or is exposed to it, he will assimilate at least part of it, and will thereby change

the precise area of his expertise. As the argument of the production function is the joint

knowledge profile, it seems natural to let this joint profile also determine the type of

knowledge produced.9 It is assumed that the probability, conditional to the collaboration

being successful, of the new knowledge being of type m is

vm (i, j)P
m v

m (i, j)
. (8)

If the collaboration fails, both agents get 0.

9We have explored other variants in which a share of the new knowledge is allocated according to the
joint profile to a category common to both participants, while the remaining part is allocated according
to each partner’s profile. As long as the share of new knowledge allocated according to the joint profile is
not negligible, the results remain qualitatively unchanged.
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2.3 Pair formation and equilibrium

We draw on the literature on matching problems for our basic model of pair formation.

Because we consider a single population of firms rather than two populations (of jobs

and workers for instance) matching here is a roommate problem, rather than a standard

marriage problem. A one-sided, roommate, matching problem is defined as follows (see

Gale and Shapley, 1962). Each individual i ∈ S has a strict preference ordering Âi over all
the individuals in S−{i}. All preferences are complete and transitive. Let Â = {Âi, i ∈ S}
denote the profile of the preference orderings of all the individuals in S. We generalize the

standard roommate problem to include the possibility of self-matching. This is done in

a straightforward way: the preference ordering is over the entire set S. The pair (S,Â)
is a generalized roommate matching problem, and a matching is a partition of S into q

singletons and (n− q)/2 pairs of roommates, that is to say a bijection µ : S → S such that

µ(µ(i)) = i for all i ∈ S.
Having defined a matching, the equilibrium concept can be presented. A matching µ is

said to be stable in (S,Â) if there is no (i, j) /∈ µ such that both j Âi µ(i) and i Âj µ(j).
Put another way, stability is characterized by the non-existence of blocking pairs. In the

particular problem examined here, the preference profile Â is generated by the expected

output of a pairing F : S2 → R+, which associates to any pair of individuals (i, j) a value

that represents the expected innovative output of this pair. In the event that i = j the

pooled vector is simply the vector of i, and production remains defined as it was above.

The profile of preference orderings of i ∈ S is then defined for all (j, k) in S2 by
j Âi k iff F (i, j) > F (i, k), (9)

i.e. preferences are directly derived from expected output.

Before turning to the emergence of network structure and the associated knowledge

dynamics, we discuss in further detail the market clearing mechanism present in this model.

Because agents in any pair assign the same cardinal value to their match, a unique stable

matching always exists, i.e. the market for alliances always possesses a unique equilibrium.

We prove this by construction.

Proposition 1 The roommate matching problem (S,Â) with preferences given by Equation
(9) has a unique stable matching µ.

The formal proof is given in the appendix. It is quite simple, as is the intuition. Of

all possible pairs of agents in the economy one pair produces the biggest innovation. The

two agents in that pair will block any matching in which they are not together, because

each prefer each other to anyone else. That pair of agents must be in the stable match.

Consider the sub-population which excludes that pair. Within that sub-population there

is a most innovation potential pair. They too must be joined in the stable match. This

recursive argument generates a unique stable matching. As we allow for self-matching the

argument naturally extends to the case of isolated agents maximizing innovative output.

It is worth noting that unlike the standard matching problems, here agents are permitted

to remain as individuals, innovating autarchically. What drives this is the trade-off between
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an agent’s ability to substitute between different types of his own knowledge, and what he

gets by joining another. In a partnership, an agent will have access to superior knowledge of

type m, but then will also necessarily be forced to accept a lower value of type `, because

of the partner’s inferior knowledge of that type. This trade-off is evaluated differently

depending on the elasticity of substitution in production (β), and on the divisibility of

the innovation task (θ) and thus on how heavily is the maximum weighted in knowledge

pooling.

To see how this works, consider agent i as a point in knowledge space: Rm
+ . No

collaboration will take place with any j if i dominates j in every knowledge type, since

combining knowledge with j will necessarily put i on a lower isoquant. Similarly, j will

reject a partnership with i if j dominates. So i must search for a partner in the region

Ai ⊂ Rm
+ such that vm (i) > vm (j) for some m and vm (i) < vm (j) for others. In words

this means that a necessary condition for collaboration potentially to form is that there is

a complementarity between the potential partners: I must be stronger than you in some

way, and you must be stronger than me in some other way. Now consider θ = 0 (pooling is

on the minimum). Even for potential partners in Ai agent i will refuse all collaborations,

as he loses in the categories where vm (i) > vm (j), and gains nowhere. Symmetrically if

θ = 1, i will accept any collaborator in Ai and will be accepted by any j ∈ Ai, since both

of them gain in at least one knowledge type. This suggests that more collaborations should

be possible when θ is larger.

Proposition 2 As θ increases, the possibilities of collaboration as captured by the number

of acceptable partners increase for any agent i ∈ S.
The formal proof is given in the appendix; again it is simple and intuitive. There is an

indifference frontier such that i will consider collaboration with j ∈ Ai if j’s endowments

are above the frontier, and not if they are below the frontier. As θ increases from 0 to 1

the frontier moves lower and so more people become acceptable to i. As this effect of θ is

true for anyone, i also becomes acceptable to more people.10

These two results will be useful in guiding our interpretation of the results of the

dynamic system. First we know that in any period there is a unique set of partnerships

that will emerge. Second we know that potentially, more partnerships are available to each

individual as θ increases, which implies that there is a static effect whereby for larger values

of θ there will be fewer isolated individuals each period. In addition there is a dynamic

effect of θ. As discussed above, after two agents have jointly innovated, they add the same

amount and type of knowledge to their respective stocks. That is, they move the same

distance, parallel to one axis in the Rm
+ knowledge space. Both the isoquant map from

the innovation production function, and the map of the indifference frontiers determining

the area of knowledge space in which fruitful partners can be found, are families of convex

curves, becoming “more parallel” to the axes as quantities increase. This implies that by

moving in lock-step parallel to the axes, eventually one agent moves out of the acceptable

10Implicit in the way this is worded would be an assumption that agents are distributed uniformly over
Rm
+ . This is purely to facilitate exposition. The intuition generated through this linguistic shortcut is not

misleading.
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area of the other. When this happens, they search for new partners. If θ is large, new

partners are relatively easy to find, and we would expect the result is that agents have

relatively many distinct partners over the history of the ecoonomy.

3 Numerical experiment

The model just developed represents a complex dynamic process. As such it is impossible

to track analytically, so we use numerical experiments to examine how the performance of

the system responds to different parameters. We are concerned with two parameters here:

the nature of the innovation task (whether divisible or not) and consequently the nature of

knowledge pooling as measured by θ; and the relative importance of direct versus indirect

information about potential partners as measured by α. These parameters are varied in

the numerical experiments below, in order to understand their effects on network structure

and knowledge growth and distribution.

We study a population of n = 100 firms. At the outset individual knowledge endow-

ments are randomly drawn from a uniform distribution over [0,1], independently for every

element vm (i) in each agent’s knowledge vector. Each period, the market for collaborative

agreements is activated and firms form pairs (or stay alone) in order to innovate. The

pairing results in a stable matching where stability is defined as above (everybody is as

satisfied as possible, given everyone else’s preferences), and where the value of a pair is

equal to the expected amount of knowledge produced by that pair. After innovation, the

new knowledge is added to the firms’ knowledge stocks; the firms’ knowledge types change,

as described previously; and so does accumulated experience. At the end of the period all

pairs disband, and the process begins again in the following period. We iterate this process

for 1,000 rounds, recording data for the entire history of the industry. In the numerical

experiments reported below we chose the initial probability of a success to be πL = .9, and

learning gradually increases it to values close to πH = .99. We fix the elasticity of substi-

tution in the innovation production function at β = 1/4. Discounting is performed with a

discount factor ρ = .95. The parameters we examine are α and θ. Regarding pooling (θ) we

consider 100 randomly generated values uniformly distributed over [0, 1]. Similarly α takes

100 uniformly distributed values in [0, 1]. We thus have a large data sample on which we

apply a simple non-parametric estimation technique – Kernel regression (Yatchew, 1998

for a comprehensive presentation) – which basically amounts to local averaging.

Regarding the properties of knowledge accumulation, we are interested in the allocation

of knowledge both across individuals, and “within” individuals. Knowledge is used for

innovation, so we define as our knowledge measure an agent’s “innovative potential”, that

is, how much innovation an agent could produce on his own. In this way, rather than

simply summing an agent’s different knowledge types, we aggregate into a scalar which is

easier to interpret. Letting φ =
P

i φ (v (i)) designate total innovative potential, equity in

allocation across individuals can be assessed by considering the coefficient of variation

v =

qP
i φ (v (i))

2 /n− (φ/n)2
φ/n

. (10)
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Large values of v indicate the coexistence of rich and poor knowledge agents, while lower

values of v indicate a more even distribution.

At the individual level symmetrically the specialization index si of individual i can be

defined via the coefficient of variation in his endowments s (i) = σ (i) /v̄ (i) , where v̄ (i) is

the average knowledge level of i and σ (i) the standard deviation. The larger this index

is the more of a specialist and less of a generalist i is. Summing across the population

produces a normalized specialization index s =
P

i s (i) , for which large values indicate a

population of experts, while low values indicate a population of generalists.

Regarding the network, in any period t the static network consists of q isolated agents

and (n−q)/2 disconnected pairs, as given by the stable matching µt. To study the properties
of the dynamic network, we record the list of connections active over time. This generates

a weighted graph, in which the weight of an edge indicates how frequently the two firms

have interacted in the history.

Denote (S, Vt) the graph associated with the stable matching achieved at time t, with

Vt (i, j) = 1 if (i, j) ∈ µt, and Vt (i, j) = 0 otherwise. The weighted graph recording

past interactions is denoted (S,Wt), where Wt (i, j) is the frequency of activations of the

connection between i and j, obtained as Wt (i, j) =
P

1≤s≤t Vs (i, j) /t. For this graph we
study the properties of the distribution of collaborative links, specifically the average path

length and the clustering coefficient (cliquishness in Watts and Strogatz, 1998). To move

fromWt to a 0/1 graph, distances must be computed first. The distance d (i, j) between two

nodes i and j is the number of edges in the highest frequency path linking them. Indeed any

path i0, i1, . . . , iz with i0 = i and iz = j has an associated frequency
Q
l=1,...,zWt (il−1, il)

and a length z ≥ 1. Thus between two agents i and j a path with maximum frequency

exists, and its length is denoted d (i, j) . The average path length is then

d =
1

n (n− 1)
X
i

X
j 6=i
d (i, j)

and simply measures how distant vertices are on average (its inverse is sometimes referred

to as closeness centrality in social networks analysis). Denoting Γ (i) = {j 6= i : d (i, j) = 1}
the neighbourhood of vertex i and ni = #Γ (i) the size of i’s neighbourhood, the average

degree of the graph is

∆ =
1

n

X
i

ni.

The average degree ∆ measures the density of the interaction structure.

Another interesting feature of network structure is the extent to which there is asym-

metry in the connectivity of agents, that is, the extent to which stars exist (agents having

much larger neighbourhoods than others). The measure we use is network centralization,

i.e. the variance in the distribution of links over agents normalized by the variance that

would obtain in a perfect star network of the same size.

The clustering (or cliquishness) coefficient is the share of active links between any given
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vertex’s neighbours, averaged over the system. It is written

c =
1

n

X
i

X
j,l∈Γ(i)

X (j, l)

ni (ni − 1) ,

where X (j, l) = 1 if d (j, l) = 1 and 0 otherwise.

4 Results

In the sections that follow, the results are displayed as shaded contour plots, which should

be read as maps in an atlas: darker greys imply higher values on the z axis. This provides

a compact display of the relationship between the relative importance of my information

(α), the pooling parameter (θ), and the performance measures we are concerned with.

4.1 Network

In this section we examine how several measures of network structure respond to changes

in the two parameters in the model.

4.1.1 Degree

Figure 1 displays the number of connections held by the average agent, that is, how many

distinct partners an agent has, on average, over the history of the economy. There is a

region below θ = .25 in which autarchic innovation prevails, so the degree of the network

is consistently 0. This follows from the intuitions of Proposition 2. Once this critical value

of θ is crossed, degree increases both when the decomposition of tasks becomes easier (θ

increases) and when the relative importance of direct (versus indirect) credit (α) decreases.

The first effect stems largely from the properties of the innovative process. In terms

of Proposition 2 this can be seen by considering the conditions under which agents prefer

collaboration to autarchy. Statically, as θ increases, the range of other knowledge vectors

that would generate an improvement over autarchy is larger, so there are more prospective

partners. This implies that in each period, there are likely to be fewer agents innovating

in isolation. In addition, increasing θ increases the propensity of the stable matching to

create pairs of unlike agents. But repeated interaction makes agents more alike in knowledge

profiles, so with higher θ they are likely to switch partners more frequently. This dynamic

effect combined with the static effect explains the effect of θ on average degree in Figure

1. The other effect is the effect of α, the importance of the private signal versus the social,

constructed one. When own experience is weighted heavily (α ≥ .75), an agent’s networking
is focussed on a very small number of people (never more than 5). On the contrary when

I take into account the information provided by my partners about their partners, indirect

credit accumulates and increases the attractiveness of new people. In essence, previous

partners are valuable in introducing an agent to new potential partners. This is what

we observe in Figure 1 when moving right to left for high enough θ. When I value my

partners’ information more heavily than my own, (α ≤ .5), we observe a steady increase in
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Figure 1: Degree of the emerging network in the (α, θ)-space.

the average number of partners as secondary information increases in relative value. In the

extreme, when an agent disregards his own information and uses only that acquired from

his previous partners, agents form alliances with fully 20 percent of the population.

4.1.2 Connectedness

Figure 2 is a binary indicator of the connectedness of the network (0 for disconnected; 1

for connected; intermediate grey levels are artefacts of the Kernel smoothing procedure).

The pattern is driven by θ: when θ exceeds a critical level of about .75, a single connected

component emerges. This effect works through the nature of optimal partnerships and the

dynamics of knowledge as discussed in the previous paragraph. It is a consequence of rising

degree, roughly independent of α.

Looking at Figures 1 and 2 together we can see that for .25 ≤ θ ≤ .75 we have a

disconnected graph with low degree (between 1 and 5) over the entire α-range. Within this

zone the network consists of connected sub-components; that is, as the network evolves

over time, small isolated groups form. We will see below that these groups are relatively

densely connected.

4.1.3 Path Length

Figure 3 depicts average shortest path lengths (distances) between agents in the network.

Because a disconnected graph has some agents who are infinitely distant from each other,

the averages shown in Figure 3 are computed only for the networks that are connected, i.e.
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Figure 2: Connectedness of the emerging network in the (α, θ)-space.

the black parts of Figure 2. Figure 3 is the mirror image of Figure 1. Path lengths fall as

density increases, as one would expect, and this is the dominating effect.
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Figure 3: Average path length of the emerging network in the (α, θ)-space.
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For the sake of comparison, we can consider random graphs of equivalent degree. From

Figure 1, the degree of our networks fall from roughly 20 to 2 when θ = 1 and from 5 to 2

when θ = .75. A random graph of uniform degree ∆ has average path length of lnn/ ln∆,

which implies that if our networks were random, path lengths would rise from about 1.5

to 6.6 as α increases from 0 to 1 for θ = 1, but from 2.6 to 6.6 when θ = .75. The path

lengths in our networks are slightly longer than those of equivalent random graphs, which

suggests that there is more structure than a random connection model would predict. The

nature of that structure can further be characterised by looking at cliquishness.

4.1.4 Cliquishness

Figure 4 displays the average share of an agent’s neighbours who are also neighbours of

each other (the number of triangles divided by the number of possible triangles). Thus this

coefficient measures the degree of local transitivity emerging in the network. In the white

region at the bottom of the graph all firms always innovate as individuals rather than as

part of a pair. There clustering is defined to be zero. Above the collaborative threshold

and in the region α ≤ .5 we observe relatively high levels of cliquishness, getting higher as
we move left. This time the pattern is weakly increasing with θ and markedly decreasing

with α.
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Figure 4: Cliquishness of the emerging network in the (α, θ)-space.

This measure of cliquishness can be misleading, though, since it is strongly correlated to

the degree of the graph. As agents acquire more links, even if they are acquired at random,

the network will become more dense locally. To get a better measure of the structure of the

graph, it is necessary to compare cliquishness with that of a network of known structural
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properties as we did for distance. Excess cliquishness, as shown in Figure 5, re-scales the

measure from Figure 4 to make it comparable to a random graph with the same average

degree (which has cliquishness of approximately ∆/n.) Figure 5 shows the ratio of observed

over “predicted” cliquishness. Values significantly larger than 1 would indicate a structure

richer than a random graph. There is a very clear effect of α, and also a visible effect of θ.
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Figure 5: Excess cliquishness of the emerging network in the (α, θ)-space.

When the source of information about possible partners is mostly my past partners (say

α < .5), excess cliquishness is much bigger than 1: it is often larger than 3 and in the zone

(α, θ) ∈ [0, .25] × [.25, .75] it is even larger than 6. This says that transitive groups are
forming in zones with relatively low degree (between 1 and 10), while the graph as a whole

is still not connected. Above θ = .75 the graph connects and even there, as long as α is

less than .5, normalized cliquishness significantly exceeds 1 and often exceeds 3. Recalling

the discussion of Figure 3, in which we observed path lengths slightly larger than those of

a random graph, the networks that emerge here, (θ > .75, α < .5), have the characteristic

properties of small worlds: they are sparse, cliquish and have short paths. The general

pattern is that as “second hand” information becomes increasingly important in evaluating

potential partners, the network becomes more cliquish. The apparent exception, in the

upper left corner of the space, is an artefact of the high density in that region. When

agents have many partners, even a random network is highly cliquish (in the extreme case

of a complete graph, cliquishness is at it’s maximum of 1). Thus it will be difficult for any

network to have values of cliquishness that are much higher than the equivalently dense

random network (yet values larger than 1 are observed).

This suggests three regions, and three types of structures. When the innovation task

is not separable, (very low θ) agents act in isolation. As separability becomes possible,
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but is not extreme, the network resembles a caveman graph: we see small groups of agents

who are densely connected within themselves, but isolated from the rest of the economy.

When innovation consists of largely seprable tasks, small world structures begin to emerge,

provided indirect sources of information remain relatively important.

What this result suggests is that the process generating small worlds depends heavily

both on the cognitive properties of innovation, and also on structural embeddedness. “Sec-

ond hand” information about prospective partners generates structural inertia in network

formation, as an agent is more likely to pair with partners that have been recommended

by previous partners. Thus our formal model generates results that are consistent with

other discussions of alliance formation (Kogut et al., 1992 for instance, or Uzzi, 1996, for

an empirical study that finds this effect.).

4.1.5 Centrality

Finally, we turn to network centralization: to what extent do the emergent networks con-

tain stars? The answer is essentially that they do not. There is no pattern to network

centralization over the (α, θ) parameter space, and the measures are uniformly low: in the

range of 4 percent. The distribution of links over agents is relatively, though not completely,

uniform. No agent is able to capture a dominant position in these networks.

4.1.6 Graphical representation of the networks

In order to illustrate more visually the emerging patterns of networking, Figure 6 shows

typical networks obtained in 4 different regions of the (α, θ)-space. We consider two values

of each of the parameters: α ∈ {.2, .8} and θ ∈ {.4, .8}. This illustrates regions of the
parameter space in which the emergent networks differ in terms of degree and cliquishness.

Panels in the figure are arrayed correspondingly to the (α, θ)-values. Table 1 summarizes

the essential features of the networks that have formed, giving the size of the giant connected

component; average degree; cliquishness; excess cliquishness; and network centralization.

θ\α .2 .8

.8

Giant comp.: 98
∆ = 3.12
Cliq.: .094
Excess Cliq.: 1.54
Net. Centr.:4.0%

Giant comp.: 95
∆ = 2.88
Cliq.: .009
Excess Cliq.: .19
Net. Centr.: 3.22%

.4

Giant comp.: 55
∆ = 1.64
Cliq.: .108
Excess Cliq.: 1.18
Net. Centr.: 4.49%

Giant comp.: 49
∆ = 1.66
Cliq.: .077
Excess Cliq.: .83
Net. Centr.: 3.44%

Table 1: Summary statistics.

None of the graphs shown here is connected, but we can see that the giant component

is large for large θ and small for low θ. Note also that autarky is very common for low
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values of θ. Many agents actually pursue their innovative activities on their own, without

ever forming alliances with other firms. Excess cliquishness is higher for higher θ values,

which is where we observe more structure than would be present in a random network.11

Figure 6: Four typical networks.

4.2 Knowledge

In this section we examine two measures of knowledge performance: the distribution of

knowledge over individuals, and the extent to which individuals specialize in one type of

knowledge.12

11Visually, the networks shown here exhibit structures similar to networks from different eras in the
pharmaceutical biotechnology industry, as shown in Roijakkers, (2003), chapter 6.
12We cannot sensibly examine knowledge levels, as there is no way of normalizing the output to compare

different parts of the parameter space. The pattern of knowledge levels is dominated by the effect of θ: if
pooling is done using the maximum, inputs to innovation are in general larger, innovations are larger, and
knowledge levels grow faster.
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4.2.1 Knowledge distribution

Figure 7 depicts the relationship between the long run coefficient of variation of individual

innovative potential and the parameters α and θ.
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Figure 7: Knowledge coefficient of variation in the (α, θ)-space.

The extent to which indirect knowledge is used to evaluate potential partners (α) has

little effect on this measure, but there is a clear negative relationship between the weight of

the maximum in pooled knowledge (θ) and the equality in distribution of knowledge over

agents. In the region of isolated innovators (θ < .25), inequality in knowledge distribution

is driven by initial conditions: agents who received a large knowledge endowment in the

initial random assignment are able to make large innovations. Their knowledge stocks

increase rapidly. Those with small initial endowments make small innovations and theirs

increase slowly, thereby magnifying initial differences. The parameter α has no effect

because there is no networking. As networking becomes more intense, in the sense that

more agents regularly have partners, the distribution of innovative potential becomes more

equal. Joint innovation implies that partners move towards each other in knowledge space,

both in terms of where their expertise lies and (in relative terms) how much knowledge

they possess. The more intense is the networking activity, the stronger is this effect. It is

compounded by the fact that when θ is large, the stable matching mechanism favours pairs

whose partners have highly complementary knowledge profiles. When this happens, the

knowledge accumulation process we have modelled has the effect of decreasing the relative

gaps between agents relatively rapidly, which in turn implies a rapid decrease in the gap

between their innovative potentials. This convergence is exactly what the coefficient of

variation captures, as the average relative distance to the average individual.
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4.2.2 Specialization

As agents innovate, their knowledge profiles change, and they can become generalists or

specialists. In Figure 8 we display the average individual specialization as measured by the

individual coefficient of variation on knowledge endowments.
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Figure 8: Expertise (specialization) in the (α, θ)-space.

The idea here is that an agent’s knowledge is spread over the 5 categories, and if he

has significantly more in one category than in the others, he can be called a specialist,

whereas if the agent has roughly equal amounts in each of the categories, he would be a

generalist. The Herfindahl index provides a natural measure for this specialization. The

individual index has an analytical lower bound of 0 when all components of the endowment

are identical (the agent is a generalist), and an upper bound of 2 when all the knowledge

held by an agent is in one category (the agent is a pure expert). The effect of θ is clear, with

the degree of specialization falling as pooling moves towards the maximum of the partners’

endowments.13 This figure shows essentially a mirror image of the pattern in Figure 1, the

density of the network. Agents become highly specialized when they innovate largely as

individuals. What drives this is that the type of knowledge produced is probabilistically

the same as the knowledge input. Thus an agent is likely to innovate where he has most

13Large θ also implies that the innovation task is separable, so here specialization could be efficient.
Extreme specialization would not be efficient in the context of the model, however, since there are 5 types
of input to the production function, and partnerships are restricted to two members. Generalizing the
model to permit larger coalitions would make specialization efficient in this region. It is difficult to sustain,
though, because of the nature of knowledge accumulation – all members of a partnership learn the same
thing, which immediately dilutes the specialization for most of them.
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knowledge. In expected value, this process will lead an agent to innovate always in the

same knowledge type, and so drive extreme specialization. When alliances form in a more

systematic way (larger θ) there is a rapid emergence of generalist profiles. Sometimes an

agent will innovate in his speciality, sometimes in his partner’s, and as θ increases, an agent

will have many different partners. This will both smooth the agent’s profile immediately,

and possibly even shift his area of expertise. This sort of mixing produces much flatter

profiles, and the more partners an agent has, the more this mixing will take place.

5 Conclusion

In this paper we have developed a stylized but rich model of the innovation process in

which the underlying principle of innovation is the recombination of existing knowledge.

Heterogeneous knowledge actors form partnerships which are embedded cognitively, struc-

turally and relationally, and this embeddedness directly influences the choice of partner by

every firm. Over time this bilateral link formation process results in an emergent network

structure. We have analyzed the properties of this network and the corresponding patterns

of knowledge accumulation, and studied how they respond to changes in the cognitive divi-

sion of labour performed by the knowledge agents (the pooling parameter θ), and changes

in the relative importance of the sources of information accessed by firms in the network

(α).

First we find that there is a critical value of the knowledge pooling parameter θ where

the process tips from a world of firms operating in isolation when the innovation process is

not separable, to a collaborative world with intensive networking as innovation can be more

effectively sub-divided into independent sub-tasks. Connectedness emerges for larger values

of the pooling parameter. As we move along the pooling dimension, the tendency of the

network is thus to evolve from a sea of isolated agents to an archipelago of pairs and small

subgroups, and finally to one big continent. This tendency is stronger when the weight

of “second hand” information is larger, i.e. α is small, and agents rely on past partners

for information regarding the value of potential future partners. This reliance generates

structural inertia in network formation. The emergent networks retain a relatively low

degree regardless of the parameters values: the average number of partnership reaches

20% of the population in a small part of the parameter space, but otherwise the networks

stay fairly sparse. When we look for structure by benchmarking the networks against the

“equivalent” random ones, we find that average distances between agents are only slightly

larger than those of a random graph, but that the measure of transitivity (the extent to

which “my friends are friends of each other”) significantly exceeds that of a random graph in

the zone in which my partners’ opinions are taken seriously (α ≤ .5) and where a cognitive
division of labour is feasible (θ ≥ .4). This suggests very clearly a network with more

structure than a random one, and more specifically a small world type of structure.

Regarding the properties of knowledge accumulation, the most marked result is the de-

cline of both inter-individual aggregate differences, and individual specialization as knowl-

edge pooling becomes easier (θ increases). It may seem at odds with the general intuition

that as labour division gets easier specialization should increase, but is easily understood
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when considering the way new knowledge is allocated to individuals: the field in which

novelty is created is common to both partners, and this precisely prevents specialization.14

Discussions of networks that arise from alliance formation, and empirical investigations

of real networks emphasize the importance of embedded interactions. The formal model

presented here shows a process by which the embeddedness of interactions translates into

different network structures. Small worlds are commonly found in alliance networks, but

they are not the only structure present in empirical results. The model we have developed

can generate different network structures, depending on paramaters, and in particular shows

when small worlds can be expected, depending not only on the nature of the embedded

relations, but also on the nature of the innovation task itself. Our results underline the

observation that understanding embedded relations is central in understanding the network

stsructures that we observe, but they also show the importance of understanding how firms

actually combine their knowledge to create innovations. Our model of this process provides

a way to address the issue of knowledge combination as an important aspect of innovation.

6 Appendix

In this appendix we provide the proofs for the analytical results on a single round of

matching.

Proposition 1 The roommate matching problem (S,Â) with preferences given by Equation
(9) has a unique stable matching µ.

Proof: The algorithm to construct the stable matching is as follows. Let S0 = S and

µ0 = {∅}. There exists a pair (a1, b1) such that F (a1b1) = max(i,j)∈S2 F (i, j). Then (a1, b1)
must belong to any stable assignment, as b1 is preferred by a1 to any other partner, and

this preference is reciprocal. No matching which does not involve this pair could be stable.

Hence the pair (a1, b1) is necessarily part of a stable matching.Let then µ1 = µ0+{(a1, b1)}
and S1 = S0 − {a1, b1}. It is possible that a1 = b1, in which case µ1 = µ0 + {(a1, a1)} and
S1 = S0− {a1}. Again there is a single pair within S1 maximizing the innovation function.
Proceed recursively this way. Denote p the smallest integer such that Sp = {∅}. Then
µp ≡ µ is a stable matching and q = 2p − n is the number of agents that have preferred
self-matching to cooperation. ¤
In case of a tie (that is to say when individual i can achieve the same innovative output

with two or more different partners), we apply an arbitrary rule to guarantee that the score

function is still strict: if F (i, j) = F (i, k) then j Âi k if and only if j > k.
Proposition 2 As θ increases, the possibilities of collaboration as captured by the number

of acceptable partners increase for any agent i ∈ S.
Proof: We provide the derivation in 2 dimensions. It extends to any m > 2 but the

calculations are more tedious. Take x = (x1, x2) as a point in R
2
+. First we can restrict

14In Cowan et al. (2003) a situation in which people were innovating most often in their domain of
expertise was explored, and there of course as division got easier specialization increased. The contrast
between these two results indicates the importance of understanding exactly how new knowledge is absorbed
by economic actors.
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the set of x’s potential collaborations to Ax = {y ∈ R2
+ : #{m : xm < ym} = 1}. Consider

y = (y1, y2) ∈ Ax, with x1 > y1 and x2 < y2. Agent x is then indifferent between autarky

and collaboration with y iff

(θx1 + (1− θ) y1)
β + (θy2 + (1− θ)x2)

β = xβ1 + x
β
2 .

This equality implictly defines a curve in R2
+, the indifference frontier. The frontier goes

through x, since any agent is indifferent between autarchy and partnering with an indetical

agent. Any y lying above this curve is preferred by x to isolation. Using the implicit

function theorem it is straightforwardly seen that

∂y1
∂θ

= −(θx1 + (1− θ) y1)
β (θy2 + (1− θ)x2) (x1 − y1)

(θx1 + (1− θ) y1)
β (θy2 + (1− θ)x2) (1− θ)

−(θy2 + (1− θ)x2)
β (θx1 + (1− θ) y1) (y2 − x2)

(θx1 + (1− θ) y1)
β (θy2 + (1− θ)x2) (1− θ)

,

which is negative. The same calculation shows that also ∂y2/∂θ < 0. Thus as θ increases

from 0 to 1 the frontier gets lower everywhere and thus more people become acceptable to

i. ¤
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