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Abstract

This paper is about the behaviour of a society in which learning individuals play

a Prisoner’s Dilemma that guides social promotion and demotion. The direct effect

of the payoff-based socialization that is implemented here is segregation. However,

segregation permits the survival of cooperation as it (unintendedly) preserves cooper-

ators from detrimental interactions with defectors. Very large amounts of cooperation

can be observed in the long run.

JEL Classification: C70, C72, C73, D72
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1 Introduction

In many circumstances the people with whom we interact are not drawn randomly from the

population as a whole. Indeed, there tends to be some relatively small group to which each

person belongs and with whom he or she interacts most frequently. Often this grouping

feature can be described as constituting a social hierarchy, in which we interact mostly

with people near our level in the hierarchy. The hierarchy changes though. Agents can

move up or down, and as they do, those with whom they interact change. One might say

that this effect is the whole point of moving within the hierarchy. Promotion or demotion,

∗Corresponding author: r.cowan@merit.unimaas.nl; Tel.: 31 43 388 3878; Fax: 31 43 388 4905
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from one group to the next is very often determined by one’s standing within one’s current

group. If an agent falls to the bottom of his group, he may be shunned by other members

as “not quite the thing”. Demotion may be appealing (becoming a bigger fish in a smaller

pond),1 or it may be necessary as current group members refuse to interact any longer. On

the other hand rising to the top of a group may create the possibility of moving up either

due to the Groucho Marx effect (do I want to be part of a club that would have me as a

member?); or through invitation from above, to replace someone who has been demoted.

How does an agent choose behaviour in such a world? One thing about a social hierarchy,

as opposed to social clubs, is that while social clubs try hard to create opaque walls, social

hierarchies tend to have transparent walls. In other words, while it can be difficult to

observe actions with clubs other than one’s own, actions of agents in different places in

the social hierarchy tend to be quite visible. This implies that an agent has a relatively

wide vision when deciding which of the available actions will be effective. Agents will look

at the entire population, rather than just locally, to decide which strategies to employ.

In addition, the possibility of promotion or demotion suggests that looking beyond one’s

social group can be a more effective long-term learning strategy, since one will carry one’s

behaviour along, when changing groups if that happens.

The model developed in this paper addresses the joint effects and socialization and

learning on the welfare of a finite-sized population of individuals repeatedly playing a Pris-

oner’s Dilemma (PD). There is a large recent literature on local interaction in population

games wherein the focus has been on interaction structures that can support cooperation

as a stochastically stable equilibrium.2 This work tends to impose an interaction structure

and then invite agents to learn about which strategies to employ. Several learning mecha-

nisms have been proposed, a common one being imitative learning. Vega-Redondo (2000),

in the context of a Coordination Game, introduces the notion of an interaction structure

that evolves through changing social hierarchies. Players play only those within the same

social group, but the social structure can evolve as agents move up or down the hierarchy.3

This paper combines these ideas: imitative learning, local interaction and social evolu-

tion, all in the context of the repeated one-shot PD. Interaction is local in that a player

plays only with the other members of his social group, but learning is global in that it is

1See Frank (1987) on “choosing the right pond”.
2On the general importance of local interaction structures see Anderlini and Ianni (1996); Durlauf

(1993); Berninghaus and Schwalbe (1996); Blume (1993); Ellison (1993); regarding the Prisoner’s Dilemma

see Eshel et al. (1998); Nowak and May (1992); Nowak et al. (1994) and references therein.
3Vega-Redondo acknowledges that he was inspired by Harrington (1998) in the idea of an evolving social

hierarchy.
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based on the payoffs of play in the entire population.

Social evolution — or “socialization” for convenience — takes the form of a payoff-based

promotion mechanism which reshuffles individuals across social groups (we will indifferently

use the term social locations) but keeps the population composition of strategies unchanged.

Learning on the other hand dictates strategy change and therefore governs the evolution

of the population composition. The two mechanisms operate in parallel. Specifically, we

assume that each time period one individual is picked at random and given the chance

to be promoted by swapping group with someone located higher in the social structure,

and then one individual (possibly the same) is given a learning draw on the basis of which

he/she possibly revises strategy. These changes are subject to small independent random

perturbations (mutations) and our interest is in the behaviour of the system when mutations

become arbitrarily small.

This structure permits us to examine situations in which interaction is sufficiently local

that a cohesive group can form, and thus preserve cooperation. Interestingly, however,

cooperation is preserved not only as the unique strategy played within this group, but can

in general spill over into other groups that also contain defectors. What makes this possible

is that social “sorting” effectively expels defectors from the group of cooperators, as they

are “kicked upstairs”.4 The sorting that removes the highly-paid defectors from a group of

cooperators and forces them to play with other defectors, eventually equalizes the payoffs

of the two strategies, and cooperation is sustained.

2 The model

This section is devoted to the presentation of the main hypothesis and the first preliminary

results of the model.

2.1 Assumptions

Let S = {1, . . . , n} denote a finite population of individuals. Time is discrete and indexed

with t = 0, 1, . . . Players repeatedly engage in the one-shot Prisoner’s Dilemma with payoffs

given in Table 1.

Payoffs are assumed to satisfy 0 < b < 1/2, which implies that defection is a dominant

strategy in the one-shot game, and that cooperation is also the only symmetric and efficient

4This is related to the mechanism that supports knowledge sharing within a coalition in Eaton and

Eswaran (1997), in which defectors are expelled. In the current model defectors are sent to another group

whereas in Eaton and Eswaran they are forever black-listed from all groups.
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Row\Col C D

C 1 0

D 1 + b b

Figure 1: Payoffs to the row player for the two-by-two symmetric Prisoner’s Dilemma

outcome (it dominates any symmetric mixing of cooperation and defection).

There are 2 locations of identical size s ≥ 2 with 2s = n. The locations can be inter-

preted as ordered according to some (commonly agreed upon) social dimension. They are

occupied by the same number of individuals and it is assumed that location 2 corresponds

to a higher position in the social hierarchy than location 1. Let ` (i) denote the location

of individual i ∈ S. Define nD,` to be the number of D-players in location ` = 1, 2 (hence

s − nD,` is the number of C players at that location), and let nD denote the total num-

ber of defectors in the population, nD = nD,1 + nD,2. The state of the system at any time

t = 0, 1, . . . is fully described by the 2-dimensional vector (nD,1, nD,2) providing the number

of defectors in each location.

The dynamics of the system are as follows.

1. Play. At each time period, each individual engages in a tournament with all the indi-

viduals at his location including himself, applying uniformly the same action C or

D to all his opponents. The outcome of this round of play is used to guide social

promotion.

2. Socialization. At each time period after play has taken place, an individual who real-

izes the highest payoff in location 1 is picked up at random. With probability 1−ε he

swaps location with an individual who realizes the lowest payoff in location 2, whereas

with probability 0 ≤ ε < 1 nothing changes. Promotion is based on wealth, and it is

simply assumed that the wealthiest individual of social location 1 is promoted, while

the poorest individual from location 2 is demoted.

3. Imitation. After play and socialization have been completed, an individual is picked up

at random in any location. He compares the global performance statistics associated

with actions C and D and adopts the best action with probability 1− ε, whereas the

other action is chosen with probability 0 ≤ ε < 1. Action performance is measured

by the average payoff produced over all the meetings in which the action is involved.

The system evolves through socialization and learning, and both mechanisms are con-

tinuously subject to small random perturbations captured by ε. Our concern is with the
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system’s most likely outcomes, i.e. states in which it almost surely rests when ε goes to

zero.

2.2 Properties

The random sequence {wε,t ≡ (nε,t
D,1, n

ε,t
D,2); t ≥ 0} is a stationary Markov process, with

finite state space Ω ≡ {0, . . . , s}2. Let the probability of a one-step transition from state

w = (nD,1, nD,2) to state w′ = (n′D,1, n
′
D,2) be written as pε (w, w′) for all w, w′ ∈ Ω. Let P ε

denote the corresponding transition matrix.

Proposition 1 The stochastic process {wε,t; t ≥ 0} possesses a unique stationary distribu-

tion µε for all ε > 0.

Proof. The process {wε,t; t ≥ 0} possesses a uniquely defined stationary distribution

provided it is irreducible and ergodic (cf. Ross, 1992). Irreducibility stems from having

all states in Ω communicating. Indeed assuming socialization does not take place (which

occurs with positive probability when ε > 0) there exists a sequence of best responses (with

probability 1− ε) and errors (with probability ε) such that any state can be reached from

any other state. Ergodicity obtains if {wε,t; t ≥ 0} is positive recurrent and aperiodic, both

conditions being always satisfied for a finite irreducible Markov chain. �

The stationary distribution µε satisfies µεP = µε and
∑

w µε (w) = 1. Rather than

studying it directly, we shall use the methodology developed by Freidlin and Wentzell

(1984), which involves determining absorbing sets and their basins of attraction for the

mutation free process (ε = 0) and then examining stochastic stability by counting muta-

tions. (See Young, 1998 for extremely clear presentation and applications of the technique.)

3 Absorbing sets of the mutation free dynamics

An absorbing, or stationary, state is a state from which, once it is reached, the system never

exits. Absorbing in this model is with respect to both socialization and learning. Therefore

we start by identifying stationary states under (mutation free) promotion and then we single

out the subset of elements of this set that are also stationary under the (mutation free)

learning dynamics. Two obvious absorbing states of the process are the convention in

which everybody defects, wD = (s, s) , and the convention in which everybody cooperates,

wC = (0, 0). Once wD or wC is reached, neither socialization (there is no swapping taking

place, or more precisely, swapping has no effect on w ≡ (nD,1, nD,2)) nor imitation (only

one strategy is present) can get the system to leave it.
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3.1 Socialization

The population composition is fixed (nD is constant, there is no imitation) and individuals

are only being re-allocated across social groups by the mutation free promotion/demotion

mechanism. The following result is easily shown.

Proposition 2 Only a configuration having at most one mixed location can be absorbing

under the postulated socialization mechanism. The mixed location is either below a pure D

location — in the form (nD,1, s) — or above a pure C location — in the form (0, nD,2) .

Proof. Consider an absorbing state w. First note that w cannot be in the form (nD,1, 0) ,

i.e. such that there is a pure C location above a mixed one, as a D from the mixed location

would be promoted and the pure C location would be destroyed. For the same reason w

cannot be in the form (s, nD,2) , i.e. a pure D location below a mixed group, since a C

would be demoted and the pure D group would be destroyed. Similarly, two mixed groups

is not feasible since Ds would be promoted and Cs demoted until one or both of the mixed

groups is destroyed and becomes a group of agents all playing the same strategy (in a mixed

group defection dominates). �

Consider now the issue of learning.

3.2 Imitation

Let ΠD be the average payoff to D players, let ΠC be the average payoff to C players. In

state w = (nD,1, nD,2) , one has

ΠC = ΠC (w) =

∑2
`=1 (s− nD,`)

2

n− nD

(1)

and

ΠD = ΠD (w) =

∑2
`=1 nD,` [bnD,` + (1 + b) (s− nD,`)]

nD

. (2)

Given the previous section, we know that if w is an absorbing state with regard to social-

ization it is in the form (0, nD,2) or (nD,1, s) . It is therefore enough to consider two regions

for nD the total number of defectors: 1 ≤ nD ≤ s and s + 1 ≤ nD ≤ n. It will also be

convenient, though nD is an integer number, to treat it formally as a scalar.

In the first region 1 ≤ nD ≤ s, the world consists of a mixed group at location 2 and

a pure cooperation group at location 1, i.e. w = (0, nD). Equations 1 and 2 reduce to
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πD (nD) = bnD + (1 + b)(s− nD) and πC (nD) = [s2 + (s− nD)2] / (n− nD) . Equating the

two expressions and noting that n = 2s yields a unique solution

n−D =
2bs

1 + b
.

There is, thus, a unique sign change for the payoff difference πD (nD) − πC (nD) in 1 ≤
nD ≤ s. As the payoff difference is a continuous function over the interval considered,

it remains to compute πD (1) − πC (1) = s (2bs− b− 1) / (2s− 1), This is larger than 0

when b > 1/ (2s− 1) , a property we would expect to hold in general when s is large.

Summarizing, the equation ΠD (nD) = ΠC (nD) , has a unique root 1 ≤ n−D ≤ s, and the

payoff to D is smaller than ΠC when nD > n−D, while it is larger when nD < n−D. In the

region 1 ≤ nD ≤ s the pure (mutation free) learning dynamics would therefore drive the

process to w−
D =

(
0, n−D

)
if n−D is an integer number, and to {(0,

⌊
n−D

⌋
), (0,

⌈
n−D

⌉
)} otherwise.

In the rest of the paper it is assumed that n−D is not an integer number, hence the absorbing

set is defined S−
D ≡ {(0,

⌊
n−D

⌋
), (0,

⌈
n−D

⌉
)}.

Regarding the region s+1 ≤ nD ≤ n, the only candidate for a stable state is in the form

w = (nD mod s, s), i.e. a mixed group in location 1 and a pure defection group above.

Use nC = n − nD as the argument: then πD(nC) = (2s2b − bsnC + nCs − n2
C)/ (n− nC)

and πC(nC) = nC . Setting πD(nC) = πC(nC) yields a unique

n∗C =
2bs

1 + b
,

and hence a unique sign change for the difference πD (nC) − πC (nC) for 1 ≤ nC ≤ s

(this root for nC is the same as the one for nD in the previous case). It remains to

compute πD (1) − πC (1) = s (1− b + 2 (bs− 1)) / (2s− 1) , which is again larger than 0

when b > 1/ (2s− 1) . Now define n+
D = n − n∗C . Summarizing we have a unique root

n+
D ∈ {s + 1, n} satisfying ΠD (nD) = ΠC (nD) , and the payoff to C is larger than to D

when nD < n+
D, while it is lower when nD > n+

D. In the region {s + 1, n} the pure (mutation

free) learning dynamics would therefore drive the process away from w+
D =

(
n+

D mod s, s
)
.

To simplify matters, it is assumed hereafter that n+
D is not an integer.

From the previous discussion the following proposition is derived.

Proposition 3 The absorbing sets of the process {w0,t; t ≥ 0} are the convention in which

everybody defects wD = (s, s), the convention in which everybody cooperates wC = (0, 0) ,

and the low defection mixed set S−
D as it has been identified in the previous discussion.

Proof. The essential elements have been presented above. The last step is to determine

the behaviour of the mutation free process starting from any possible state (nD,1, nD,2) ∈ Ω.
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Figure 2: The state space Ω and the directions of motion of socialization and mutation free

learning.

In Figure 2 we depict the state space and the possible directions of motion of the mutation-

free process {w0,t; t ≥ 0}. Consider a interior state (nD,1, nD,2) with nD,1 > 0 and nD,2 < s.

Socialization promotes a defector and demotes a cooperator, so in Figure 2 this process

moves the system north-west. Defection dominates in both groups so learning with certainty

moves the system either north or east. Thus nD,2 is monotonically increasing while nD,1

either stays constant of decreases. These two remarks imply that after a finite number of

steps the system necessarily reaches either a state in the form (n′D,1, s) with n′D,1 ≤ nD,1,

or a state in the form (0, n′D,2) with n′D,2 > nD,2. In these states there is at most one mixed

location, and locations are properly sorted. What happens once it is there?

First assume we reach a state (n′D,1, s), with n′D,1 ≤ nD,1. Either n′D,1 > n+
D−s and then

learning implies that the number of defectors in location 1 increases until wD = (s, s) is

eventually reached. Or n′D,1 < n+
D−s and then learning implies that the number of defectors

in location 1 decreases to 0. Second assume we reach a state (0, n′D,2) with n′D,2 > nD,2.

Whatever the value of n′D,2 learning drives the process to S−
D.

The conclusion is that from any state (nD,1, nD,2) such that 0 < nD,1 < n+
D − s the

system eventually reaches S−
D. These states constitute the basin of attraction of S−

D, and

can be denoted B
(
S−

D

)
. (It is obvious that B (wC) = {wC}.) Can we characterize B (wD)?
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It is simply defined by the constraint nD,1 + nD,2 > n+
D, which is the triangle in the upper

right corner of Ω in Figure 2. To see this, consider that the only way to move west is through

socialization. But this also moves the system north. Inside the triangle B (wD), it is not

possible to move far enough west to arrive at nD,1 < n+
D − s before arriving at nD,2 = s.

Thus starting within this triangle leads the system to wD. The remaining trapezoid in the

figure has the property that either B
(
S−

D

)
or B (wD) can be reached from it. �

In the next section we move to stochastic stability.

4 Stochastic stability

At this stage two results are useful (cf. Young, 1993; Kandori et al., 1993). The first is that

if P ε is a regular perturbed Markov process, then limε→0 µε = µ0 exists and is a stationary

distribution of P 0. The second result is that the stochastically stable states of the process

are contained in the recurrent class(es) of P 0 having minimum stochastic potential.

That the process considered here is indeed a regular perturbed Markov process is eas-

ily seen. First, we have seen that P ε is irreducible for every ε > 0 (any two states

communicate). Second, we trivially have that limε→0 pε (w, w′) = p0 (w, w′) . Third and

last, for any pair (w,w′) such that the one step transition probability pε (w,w′) is strictly

larger than 0 for ε > 0, there exists an integer number r (w, w′) ≥ 0 such that 0 <

limε→0 pε (w, w′) /εr(w,w′) <∞. Indeed the one step transition probabilities are all products

involving ε or (1− ε). The number r (w,w′) is called the resistance of the transition from

w to w′. Transitions that can occur in the mutation-free process have zero resistance and

r (w, w′) =∞ if pε (w, w′) = p0 (w,w′) = 0 for all ε > 0.

Regarding stochastic stability, the first step has been to determine the recurrent (or

absorbing) sets for the mutation free process P 0. They are three and were identified in

the previous section. Step two now consists in determining the stochastic potential of the

three absorbing sets. For this purpose the space of directed graphs having the recurrent

sets as vertices is considered. The stochastic potential of a recurrent set is the minimum

resistance over all trees rooted at this particular set. The resistance of a rooted tree is the

sum of the edge resistances on the two edges that compose it. Finally the resistance of a

transition from one absorbing set to another is the least resistance over all paths (sequence

of states) that start in the former and end in the latter. There are 2 absorbing states wC

and wD, and the absorbing set S−
D. For each of them we need to construct the 3 possible

rooted trees and identify the one with minimum resistance. With the help of Figure 2 this

is easily done, and yields the following proposition.
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Proposition 4 The stochastically stable set of the process {w0,t; t ≥ 0} is the low defection

set S−
D as long as

⌊
n−D

⌋
< s/2. The process admits two stochastically stable sets when

⌊
n−D

⌋
=

s/2, and finally the stochastically stable state is overall defection wD when
⌊
n−D

⌋
> s/2.

Equivalently, as long as b < 1/3 the long run outcome of the joint process of socialization

and learning is a population consisting of bn/ (1 + b)c altruists. The stochastically stable

state with the lowest amount of cooperation (apart from wD) has 75% of cooperators and

obtains when b = 1/3. If the bonus to defection b is larger than 1/3, the stochastically stable

state has only defectors.

Proof. Start with trees rooted at wC . The 3 trees are

wD → wC ← S−
D,

wD → S−
D → wC ,

S−
D → wD → wC .

The stochastic potential of wC is denoted γC . It is the minimum of ρ(wD,wC) + ρ(S−
D, wC),

ρ(wD, S−
D) + ρ(S−

D, wC) and ρ(S−
D, wD) + ρ(wD, wC). From Figure 2 it is straightforward to

see that the tree with minimum resistance is wD → S−
D → wC , for which ρ(wD, S−

D) = n−⌊
n+

D

⌋
and ρ(S−

D, wC) =
⌊
n−D

⌋
. Hence γC = n−

⌊
n+

D

⌋
+

⌊
n−D

⌋
. Let γD denote the stochastic

potential of wD and let γ−D that of S−
D. We do the same computation as before on

wC → wD ← S−
D,

wC → S−
D → wD,

S−
D → wC → wD.

γD is the minimum of ρ(wC , wD) + ρ(S−
D, wD), ρ(wC , S−

D) + ρ(S−
D, wD) and ρ(S−

D, wC) +

ρ(wC , wD). Obviously the least resistant wD-tree is wC → S−
D → wD, with resistance

ρ(wC , S−
D) + ρ(S−

D, wD) = γD = 1 +
⌈
n+

D

⌉
− s + 1. Finally consider S−

D-trees. They are

wC → S−
D ← wD,

wC → wD → S−
D,

wD → wC → S−
D.

The least resistant S−
D-tree is wC → S−

D ← wD, with resistance γ−D = 1 + n−
⌊
n+

D

⌋
. It is

now possible to examine stochastic stability by finding the absorbing set having minimum

stochastic potential. These are

γC = n−
⌊
n+

D

⌋
+

⌊
n−D

⌋
,

γD = 2 +
⌈
n+

D

⌉
− s,

γ−D = 1 + n−
⌊
n+

D

⌋
.

10



Now note that n+
D + n−D = n entails

⌊
n+

D

⌋
+

⌈
n−D

⌉
= n, hence

γC = 2
⌊
n−D

⌋
+ 1,

γD = 2 + s−
⌊
n−D

⌋
,

γ−D = 2 +
⌊
n−D

⌋
.

At this stage it is clear that as soon as
⌊
n−D

⌋
> 1 the stochastic potential of wC exceeds γ−D.

So the competition is between S−
D and wD, i.e. the objective is to compare s −

⌊
n−D

⌋
and⌊

n−D
⌋
, or

⌊
n−D

⌋
and s/2. Working directly on the algebraic expression 2sb/ (1 + b) = s/2

yields b = 1/3 hence the proposition. �

5 Conclusion

In this paper we have examined the joint effects of socialization and learning on cooperation,

and have shown that a payoff-based socialization rule is likely to sustain large amounts of

cooperation. The intuition is the following. In general cooperation survives when played

within closed (or cohesive enough) sub-groups (see for instance local iteration models à la

Eshel, Samuelson and Shaked, 1998 or Nowak and May, 1992), and when the same is true

for defection. In this way the payoff from cooperation tends to be close to 1, while that to

defection tends to be close to b < 1. The modelling issue therefore is to find of way of getting

Cs and Ds to segregate while preserving the global visibility of payoffs. Local interactions

produce that feature by imposing a fixed neighbourhood structure. In this paper we take

a different path by considering an assortative social promotion mechanism. It is a natural

and reasonable one as it assumes promotion for efficient players and demotion for those

implementing poorly rewarding strategies. It does produce segregation while it preserves a

wide observability of payoffs. As a result cooperation has a chance to generate large payoffs

and be observed, and therefore further expand. This is true for reasonable values of the

premium to defect. Assortative matching therefore appears as a way to sustain cooperative

behaviour.
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