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Abstract

A model in which agents on both sides of the market are subject to informational

cascades is examined. In an uncertain environment with asymmetric information

agents tend to be overoptimistic about the state of the world, a result which fits

with empirical evidence on financing new technologies. This overoptimism based on

mutual illusions makes the system vulnerable to two-sided bubbles, and may be one

of the reasons behind ‘dot com’ crash.
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1 Introduction

Many authors writing on human behavior have noticed that individual decisions are often

influenced by decisions made by others. They have documented a number of situations

in which individuals prefer to follow the ‘crowd’, while their own feelings are against it.

There is a range of different social mechanisms which may cause conformist behavior of

individuals such as punishment of deviators [1], positive payoff externalities [2] and so

on. It is also possible that herding arises as consequence of the bounded rationality of

individuals [3].

In the last decade there has been a surge of interest in a particular kind of mecha-

nism behind conformist behavior, which can explain voluntary rational ‘herding’. After

the seminal works of Bikhchandani, Hirshleifer and Welch [4] (BHW henceforth) and of

Banerjee [5] this social phenomenon is often referred to as an ‘informational cascade’.

The basic idea of informational cascades is that in certain environments where private

information can be revealed only through individual actions because of information exter-

nalities, truly rational agents may find it optimal to follow the choice of others, rejecting

their own information. Perhaps the most striking feature of informational cascades is that

when there is noise in private information there is always a positive probability that the

overall outcome will be suboptimal, i.e. agents will form a cascade in which they reject

optimal actions in favor of inferior ones regardless of their private information. Therefore,

information structures that are vulnerable to information cascades in this way can have

negative effects on social welfare.

The original BHW model has been extended in a number of ways and the robustness of

the model with respect to changes in assumptions has been examined. The informational

cascade framework has been used to explain a wide range of social phenomena such as fads,

fashions, medical (mal) practice, collapse of political regimes among the others (see [6] for

a review). There are also some important applications of this kind of model in economics

and finance. Welch [7] applied informational cascades to the IPO market and explains

underpricing incentives of issuers. Avery and Zemsky [8] argued that short-run mispricing

on financial markets may be a consequence of investors’ herd behavior.

Most of the informational cascade models assume that the agents forming a cascade are

the same either with respect to the sort of information available to them, or with respect
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to roles they play, or both. For instance, in Avery and Zemsky’s model of financial market

investors have different roles: some of them are sellers and others are buyers of assets,

but the sort of information available to agents is essentially the same.

However, there is no a priori reason to suppose that the agents on the two sides of

the market have identical information sets, and modelling some situations may require us

to take into account that two sides of the market having access to different information.

Consider financing new technology. It is widely recognized today that one of the

main problems of external financing in new high-tech industries is information asymmetry

between firms developing new technologies and their potential investors [9]. On the one

hand, financial institutions and individual investors often do not have enough expertise to

judge ‘state-of-the-art’ technologies. On the other hand, firms working in new industries,

especially new small ventures which mainly contribute to development of ‘at-the-edge’

technologies, have problems with evaluating both market and financial potential for the

products they are developing. It seems quite reasonable to assume that investors have

better knowledge of the market perspectives for new technologies, while firms know the

technology with which they are working. This is an example of the situation in which

information sets available to the opposite sides of the market are different.

There is also no a priori reason to believe that only one side of the market is subject to

information cascades. In our example of financing new technology the process of acquiring

information about the technology and about the market for new products is costly, and

therefore has commercial value. As a consequence, agents have incentives not to share

their private information and so spillovers of this kind of knowledge are limited, at least

in the short term. Nevertheless, their actions, or ‘outcomes’ arising from the actions,

in many cases are observable and it may create conditions necessary for informational

cascades. This argument must be valid for both entrepreneurs and venture capitalists.

Hence we may expect informational cascades on the two sides.

In this paper we examine a simple setting of two-sided informational cascades and

show that taking into account both sides of the market with different information sets

may generate interesting learning dynamics on both sides of the market and emphasise

the conclusion about suboptimality of some information structures.
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2 The model

Actors There are two populations: potential investors, who, for convenience, we call

venture capitalists (VCs) and the population of entrepreneurs.

States of the World Success of a project is determined by two factors: by technology

itself (e.g. quality of the product if the project involves product innovation, productivity

gains if it is about process innovation), and by the market prospects for the new technology

(e.g. its prospective demand). As in BHW we assume the state of technology, E, and

the state of market, V , be binary variables: E ∈ {h, l}, V ∈ {H, L}, with equal prior

probabilities of 1/2.

Payoffs There is a market place, where an entrepreneur meets with a venture capitalist

to discuss the potential project. If any of the sides chooses to Decline the deal, the

negotiations fail, no project takes place, and both sides stay with their reservation values,

which without loss of generality are set to be zero.

If the negotiations have been successful, and project starts, then the payoffs to the

contracting sides are determined by the state of the world. If both technology and market

are high (E = h, V = H), the project will have success, and both parties will gain

from the project. When one of the sides, say market, is low, but the technology has a

great potential (E = h, V = L), then the project may still be successful. To achieve

this success the entrepreneur will have to work hard, and his payoff in this case is below

his reservation value, while the investor in this case will be a ‘free-rider’, and his payoff

exceeds the reservation value. Similarly, if the technology is mediocre, but the market

is high (E = h, V = L), the venture capitalist will have to put in more effort to ensure

the success. In the case of both sides being mediocre (E = l, V = L), both parties have

payoffs below their reservation values. We also assume that once the venture started, it

is not in the interest of the agents to disrupt it. 1

1For example, that might be the case if an immediate liquidation of the project would severely damage

their reputation, and in this way the cost of liquidation exceeds their losses from continuation with the

project.
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Table 2 summarizes the payoffs. The values are chosen so that from the both sides

payoffs are the same as in the BHW model.

Table 1: Payoffs (EP, VC)

V = H V = L

E = h (1, 1) (-1, 1)

E = l (1,-1) (-1,-1)

The agents choose their actions maximizing expected payoffs, which are based on

public information and their private signals. In the case of a ‘draw’ i.e. when the expected

payoffs from both actions are the same, we assume that agents trust more to their own

intuition, and take the decision according to their private signals.2

Information structure We assume that entrepreneurs observe the state of technol-

ogy E, while venture capitalists observe the market prospects for the new technology

V ; but neither do entrepreneurs know V , nor do venture capitalists know E. That is,

entrepreneurs and venture capitalists have different information sets.

We model agents’ subjective ‘guesses’ about the state of the other side of the market

as private signals of limited precision. The t-th entrepreneur observes a conditionally

independent identically distributed signal v ∈ {H, L} about state of V , and the t-th

venture capitalist gets a signal e ∈ {h, l} about E. Tables 2 and 3 describe the signal

probabilities (p, q > 1/2).

Each period t=1,2,... a pair of agents meets. The project goes ahead only if both sides

agree to participate. Thus, the outcome of the negotiations is Proceed, or Not Proceed.

We consider two information structures that differ in the scope of the public informa-

tion about the past. In previous-action-observable action (POA) model, as in BHW, the

information about actions (Agree or Decline) chosen by all agents in the past is available

to public, while in previous-outcome-observable action (POO) model only information

about outcomes (Proceed or Not Proceed) of the negotiations becomes public.

2This kind of tie-breaking rule was employed by Anderson and Holt in their experimental study of

informational cascades [10].
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Table 2: Signal probabilities for entrepreneurs

Pr(v = H|V ) Pr(v = L|V )

V = H p 1− p

V = L 1− p p

Table 3: Signal probabilities for venture capitalists

Pr(e = h|E) Pr(e = l|E)

E = h q 1− q

E = l 1− q q

As one might expect, and it will be shown in the next section, POA model is essentially

the same as BHW. Therefore, comparison of the two models may provide us an idea of

how the limitations of the public history affect the probability of ‘incorrect herding’.

3 Analysis

Our analysis proceeds as follows. First, we examine a one period game with exogenously-

given agents’ beliefs. Then we will turn to how the beliefs in the multiperiod setting are

formed under Bayesian learning in POO model. The section concludes with the general

set up for the multiperiod POO model.

However, before we start to examine POO model, we will discuss POA model which

is almost the same as the (POA) model in BHW. Later, when we will discuss the results

of our simulations for the POO model, the POA model will be used as a benchmark.

3.1 Model with observable actions

The analyis for the 1-period game that will be developed in the next section can be applied

to the model with publicly observable actions. However, analysis of POA can be made

with much more simpler means by analogy with BHW.

5



Notice that the payoff to an agent is entirely determined by the state of the other side,

and does not depend on the state of the world on his side, as seen in the payoff matrix,

Table 1. Entrepreneurs only care about V , and venture capitalists are interested only

in E. It follows that once an agent, say an entrepreneur, has an opportunity to observe

actions of the entrepreneurs that are driven by their feelings about V , and the actions

chosen by the other side has no value for him since venture capitalists’ actions depends

on venture capitalists beliefs about E which is of no interest for an entrepreneur. Due to

this in POA model we have two sides that lock into one-sided cascades independently.

The only thing we have to be cautious about is that a cascade in actions does not

necessarily mean a cascade in outcomes, which is our primary interest. While a DOWN

cascade on any side (as it is defined in BHW) always results in an infinite negative series

in the outcomes, an UP cascade on one side may not result in a never ending series of

positive outcomes yet, since the other side may be declining the offers. Therefore, we can

say that a DOWN cascade in two-sided POA model happens when either or both of the

sides rejects the deals regardless of signals. Two-sided UP cascade happens when both

sides agree whatever is their private information.

One can easily find that as in BHW one of the sides starts a cascade when the agents

on this side receive two (or three) similar signals in row.3 If signals are negative a DOWN

cascade emerges, if they are positive an UP cascade arises. Two signals of different signs

cancel each out, and the following agent finds himself in the same situation as the agent

two periods before him, e.g. if v0 = H, v1 = L, then the third entrepreneur has the same

prior belief about V as the first one. The probability for entrepreneurs to be locked in

UP cascade is

Pr(EP in UP cascade) =
p2

V

1− 2pV + 2p2
V

.

where pV = Pr(v = H|V ) (Table 2). Similarly for venture capitalists’ UP cascade

Pr(VC in UP cascade) =
q2
E

1− 2qE + 2q2
E

.

where qE = Pr(e = h|E) (Table 3).

3This is given the tie-breaking rule we use. BHW use different tie-breaking rule and have somewhat

different results including the formula for the probability of a cascade.
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Since a two-sided UP cascade is nothing more than two simulataneous independent

UP cascades on each side, the probibility to end up in two-sided UP cascade is

Pr(two-sided UP cascade) =
p2

V q2
E

(1− 2qE + 2q2
E)(1− 2pV + 2p2

V )
. (1)

since the system in BHW model converges to one of the cascades with probability 1, the

probability of two-sided DOWN cascade is

Pr(two-sided DOWN cascade) = 1− p2
V q2

E

(1− 2qE + 2q2
E)(1− 2pV + 2p2

V )
. (2)

The ease with which we manage to examine the POA model comes from the payoff matrix

that we choose to be similar to payoffs in BHW model, and from the fact that before an

information cascade arises agents can infer (from the actions) the private signals their

predecessors received.

The latter is not the case in the POO model. From a negative outcome an outside

observer cannot infer actions and therefore the private signals that the pair received.

3.2 Model with observable outcomes

3.2.1 One-period game

Consider a pair of entrepreneur and venture capitalist who are to decide upon setting up

a project. For the moment we assume that their beliefs (based on their private signals

and the public history of previous negotiations) are exogenously given.

We use a static Bayesian game with 4 types of players on each side to analyse agents’

decisions. The type of a player in this game is determined by the state of the market on

his side (E for entrepreneurs, V for venture capitalists), and the private signal he receives

(v or e).

Let PEv be the probability that the market is in a high state (V = H), given that the

state of the technology is E, and he has received signal v (i.e. his type is Ev). Similarly,

QV e is venture capitalist’s belief that E = h, when the state of the market for the new

technology is V and the private signal about technology is e. We require rather natural

conditions on the beliefs: PEH ≥ PEL, QV h ≥ QV l, i.e. a positive signal strengthens (at

least does not weaken) one’s belief that the other side is in the favourable state. The
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probability for a venture capitalist to get positive signal conditional on that the state

of the technology is E will be denoted as qE, and the conditional probability for the

entrepreneur to receive a positive signal is pV .

The signals are independent, hence, for example, the belief of an entrepreneur of type

Ev that he is playing with the venture capitalist of type Lh is (1 − PEv)qE. A venture

capitalist’s belief that his opponent belongs to the type hL is QV e(1 − pV ), given that

VC’s type is V e and so on.

Each of player has a choice between two actions (Agree or Decline). The normal form

of the game is presented in Table 4 (letters A and D stand for players’ actions: Agree or

Decline).

Table 4: 1-period game in the normal form

PEv 1− PEv

(EP, VC) qEPEv (1− qE)PEv qE(1− PEv) (1− qE)(1− PEv)

Hh Hl Lh Ll

A D A D A D A D

pV QV e A (1, 1) 0 (1, 1) 0 (-1,1) 0 (-1, 1) 0

QV e hH D 0 0 0 0 0 0 0 0

(1− pV )QV e A (1, 1) 0 (1, 1) 0 (-1,1) 0 (-1, 1) 0

hL D 0 0 0 0 0 0 0 0

pV (1−QV e) A (1,-1) 0 (1,-1) 0 (-1,-1) 0 (-1,-1) 0

1−QV e lH D 0 0 0 0 0 0 0 0

(1− pV )(1−QV e) A (1,-1) 0 (1,-1) 0 (-1,-1) 0 (-1,-1) 0

lL D 0 0 0 0 0 0 0 0

Now we will examine what are (Bayes-Nash) equilibria in this game for different sets

of beliefs. We will limit our analysis, considering only equilibria in the pure strategies.

Equilibria Player’s strategy (decision rule) in a Bayesian game is a set of the actions

for all types of the player. There are 16 strategies available for each player in our game.

To denote them we will extend notations of Table 4.
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In this notation the entrepreneur’s strategy is a vector (ahH , ahL, alH , alL) where ahH ∈
{Agree, Decline} is the action played when an entrepreneur is of type hH, ahL if he is

of type hL and so on. Similarly vector (bHh, bHl, bLh, bLl) stands for venture capitalist’s

strategy such that a venture capitalist chooses action bHh when he is of type is Hh and

so on.

A Bayes-Nash equilibrium (in pure strategies) for a Bayesian game is the strategy

profile such that each of the players chooses a best response to the conditional distribution

of his opponents’ strategies for each type that he may belong to.

Table 5 presents payoffs to each type of entrepreneur. Since an agent gets zero payoff

if he Declines, we need only consider payoffs to the action Agree when played against

different strategies of his opponent. For every type of the entrepreneur if the expected

payoff of Agree is negative he must play Decline, and Agree whenever it is positive. In the

case of a ‘draw’ (i.e. zero expected payoff),according to our tie-breaking rule, we assume

that one follows his private signal: Agree if the signal is favourable, ans Decline otherwise.

Similarly, Table 6 presents VC’s expected payoffs if he plays Agree against different

strategies of his opponent.

Examining of Tables 5 and 6 one might note that,

• Strategies (∗, ∗, D, A) and (D, A, ∗, ∗), where ‘∗’ stands either action Agree or De-

cline, should not be played in an equilibrium (which is rather natural: why would

one Decline the deal when he receives a favourable signal, and nevertheless Agree if

the signal were negative?). Indeed, by our assumption about beliefs: PEH ≥ PEL

and QV h ≥ QV l. Therefore according to Tables 5 and 6 the expected payoff of Agree

to an agent, say, to an entrepreneur of type EH is greater or equal, than to one of

type EL. Thus that if an entrepreneur of type EL plays Agree, so does the one of

type EH. In the case of PEH = PEL or QV h = QV l, the tie-breaking rule applies.4

• For any set of beliefs there will be ‘status quo’ equilibria (DD ∗ ∗,DDDD) and

(DDDD,DD ∗ ∗). Indeed, on the one hand, if my opponent is playing DDDD, I

would get a zero payoff whatever strategy I will use. On the other hand, if I am

playing DD ∗ ∗, then the payoff of my opponent is negative (or zero) whatever is his

4To compress the notation, in what follows we will express the strategy vector as a 4-digit string of

As, Ds, and ∗s where ∗ is a place holder meaning that either A or D could be played.
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type, and would therefore be better off refraining from the deal.

• Whenever there is non-zero probability that the other side is in a favourable state,

strategy AAAA is the only best response to A ∗ DD. Otherwise, one should play

ADAD or ADDD in response to A ∗DD.

Note, that although ‘status quo’ equilibria exist for any set of beliefs, whenever the beliefs

are so that there is another equilibrium, hold, ‘status quo’ equilibria are not regular, that

is they are very sensitive to small perturbations of the payoffs. For this reason we will

not consider those equilibria in the following analisis.

For the similar reason we will ignore equilibria (ADAD,A∗DD) and (A∗DD,ADAD).

Those equilibria require that one of the sides has to be sure that the other side of the

market is weak. Hence whatever startegy the other side is playing the expected payoff is

non-positive. Due to that fact, those equilibria are not stable with respect to ‘trembling

hand’: if the other side is playing ∗ ∗ A∗ or ∗ ∗ ∗A instead of ∗ ∗DD with any small but

non-zero probability, then the expected payoff is negative and the player should Decline

regardless to his signal.

Taking into account these remarks there are only 20 possible equilibria in our game

that may result in a positive outcome. The conditions on the beliefs necessary for these

equilibria are listed in the Table 9. We will asume that once the conditions for any of these

equilibria hold this equilibrium will be played (if there are several possibile equilibria,

players will toss a coin). If neither of the conditions hold then an equilibrium with

one of the sides playing DDDD strategy will be played (the result would be a negative

informational cascade).

So far, we have treated agents’ beliefs as exogenously given. Now we will discuss how

the beliefs are formed, but before that we will redefine conditions for equilibria (Table 9)

in the terms of ‘likelihood ratios’.

Likelihood ratios Let P t
E be entrepreneur’s belief that V = H prior to the private

signal, given that the state of the technology E ∈ {h, l}. Similarly, Qt
V will be venture

capitalist’s belief that E = h before he receives his private signal, conditional on V . We
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can define “likelihood ratios” At, Bt, Ct, and Dt as

P t
h =

1

1 + At

, Qt
H =

1

1 + Ct

,

P t
l =

1

1 + Bt

, Qt
L =

1

1 + Dt

.

At time t = 0, by assumption P 0
h = P 0

l = Q0
H = Q0

L = 1
2
, Therefore, initial values for the

likelihood ratios are A0 = B0 = C0 = D0 = 1.

Let us denote history up to time t as It. According to Bayes’ formula we can write P t
h

as

Pr(V = H|It) =
Pr(It|V = H) Pr(V = H)

Pr(It|V = H) Pr(V = H) + Pr(It|V = L) Pr(V = L)
=

1

1 + Pr(It|V =L) Pr(V =L)
Pr(It|V =H) Pr(V =H)

Given that at time t = 0, priors Pr(V = H) and Pr(V = L) are equal it follows that

P t
h =

1

1 + Pr(It|V =L)
Pr(It|V =H)

.

Comparing this expression with the definition of At we find that

At =
Pr(It|V = L)

Pr(It|V = H)
.

in other words, At describes how well the history It can be explained with two possible

alternatives V = L or V = H.

Remark: From the definition of At one can also find that

At =
1− P t

h

P t
h

≡ 1− Pr(V = H|It)

Pr(V = H|It)
=

Pr(V = L|It)

Pr(V = H|It)
.

Posteriors in likelihood ratios Let E = h. Consider an entrepreneur, his prior is P t
h,

and the corresponding likelihood ratio At. Suppose that he receives private signal v = H,

i.e. entrepreneur’s type is hH. According to Bayes’ formula the posterior is

P t
hH ≡ Pr(V = H|It, v = H) =

Pr(v = H|It, V = H) Pr(V = H|It)

Pr(v = H|It, V = H) Pr(V = H|It) + Pr(v = H|It, V = L) Pr(V = L|It)
=

1

1 + Pr(v=H|It,V =L) Pr(V =L|It)
Pr(v=H|It,V =H) Pr(V =H|It)

.
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Since the private signal v does not depend on the history and is determined only by the

market prospects of the technology, V (see Table with signal probabilities), and taking

into account the Remark above this expression can be rewritten as

P t
hH =

1

1 + At
1−p

p

Similarly to the case of the hH we can write down posteriors for other types of en-

trepreneurs

P t
hH =

1

1 + At
1−p

p

, P t
lH =

1

1 + Bt
1−p

p

,

P t
hL =

1

1 + At
p

1−p

, P t
lH =

1

1 + Bt
p

1−p

.

We can also write down posteriors for venture capitalists’ beliefs

Qt
Hh =

1

1 + Ct
1−q

q

Qt
Lh =

1

1 + Dt
1−q

q

,

Qt
Hl =

1

1 + Ct
q

1−q

Qt
Ll =

1

1 + Dt
q

1−q

.

Equilibria in likelihood ratios Let us consider an example. Equilibrium (ADAD,AAAD)

requires

PhH ≥ q

1 + q
≥ PhL, QHh ≥ QHl >

1

2
,

PlH ≥ 1− q

2− q
≥ PlL, QLl ≥

1

2
≥ QLl.

Applying the expressions for posterior beliefs for hH and hL via likelihood ratio At the

first of the inequalities can be rewritten as

1

1 + At
1−p

p

≥ 1

1 + 1
q

≥ 1

1 + At
p

1−p

or

At
1− p

p
≤ 1

q
≤ At

p

1− p
⇔ 1− p

p
≤ qAt ≤

p

1− p
.

In the same way we can obtain the conditions for Bt, Ct, and Dt.

Table 10 sums up the conditions for the equilibria in 1-period game in terms of the

likelyhood ratios.
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3.2.2 Beliefs updating

After one-period has been played the result of the game becomes public knowledge. Now

we turn to how this information can be integrated into agents’ beliefs.

Let the state of the technology be high, E = h. Suppose, that at time t the result of

the negotiations is Result ∈{Proceed, Not Proceed}. Consider an entrepreneur, who is to

update his belief that V = H, P t
h, given that his prior belief is

P t
h ≡ Pr(V = H|history by time t, E = h) =

1

1 + At

,

According to Bayes’ formula P t+1
h (conditional on the Result), is

Pr(V = H|Result) =

Pr(Result|V = H, E = h)P t
h

Pr(Result|V = H, E = h)P t
h + Pr(Result|V = L, E = h)(1− P t

h)
,

which can be rewritten (under assumption that Pr(Result|V = H)P t
h 6= 0)as

P t+1
h =

1

1 + Pr(Result|V =L,E=h)
Pr(Result|V =H,E=h)

1−P t
h

P t
h

,

or
1

1 + At+1

=
1

1 + Pr(Result|V =L,E=h)
Pr(Result|V =H,E=h)

· At

.

Finally, the formula for beliefs updating (in terms of the likelyhood ratios) has the form

At+1 = At ·
Pr(Result|V = L, E = h)

Pr(Result|V = H, E = h)
. (3)

Similarly, we can write down the rules for updating probabilities P t
l , Qt

H , and Qt
L, in

terms of likelyhood ratios Bt, Ct, and Dt respectively.

Bt+1 = Bt ·
Pr(Result|V = L, E = l)

Pr(Result|V = H, E = l)
, (4)

Ct+1 = Ct ·
Pr(Result|V = H, E = l)

Pr(Result|V = H, E = h)
, (5)

Dt+1 = Dt ·
Pr(Result|V = L, E = l)

Pr(Result|V = L, E = h)
. (6)
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Example

Suppose that an entrepreneur knows that at time t equilibrium (ADAD , ADAA) has

been played, and the outcome at time t is Proceed. How the entrepreneur should update

his beliefs?

E=h, Result=Proceed The outcome is Proceed may have happen only if both parties

had played Agree.

Suppose that V = H. Then both entrepreneur and venture capitalist at time t must

have received positive signals, v = H and e = h, respectively. Therefore,

Pr(Proceed|V = H, E = h) = Pr(v = H, e = h|E = h, V = H) =

Pr(v = H|V = H) Pr(e = h|E = h) = p · q.

Suppose that V = L. Once again, the entrepreneur must have received positive signal,

v = H. However, in contrast with V = H, in this case the venture capitalist chooses Agree

regardless to his private signal.

Pr(Proceed|V = L, E = h) = Pr(v = H, e = any|E = h, V = L) =

Pr(v = H|V = L) = 1− p.

Now we are ready to apply (3). The updating rule is

At+1 = At ·
1− p

p · q

E=l, Result=Proceed What would be different in the analysis above if E = l instead

of E = h? Note, that regardless of value of E (h or l) the entrepreneur’s decision rule (at

t) stays the same, he follows his signal (his strategy is ADAD). The value of E does not

affect the venture capitalist either, since he does not know what is the true E anyway.

The only thing that is going to change is the probabilities of the signals about state of

the technology, e. Practically, it means that in the previous formula we should substitute

q for (1− q). Then the beliefs will be updated according to

Bt+1 = Bt ·
1− p

p · (1− q)
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Now let them play the same equilibrium (ADAD , ADAA), but suppose that the

outcome at time t happend to be Not Proceed. How should entrepreneurs update their

beliefs?

E=h, Result=Not Proceed

Pr(NotProceed|V = H, E = h) = 1− Pr(Proceed|V = H, E = h) =

1− p · q,

Pr(NotProceed|V = H, E = l) = 1− Pr(Proceed|V = H, E = l) = p,

At+1 = At ·
p

1− p · q

E=l, Result=Not Proceed Substituting q for 1− q in the formula above we get

Bt+1 = Bt ·
p

1− p · (1− q)

In the same way, using the formulas (3)-(6) we can get updating rules for entrepreneurs’

and venture capitalists’ beliefs for other equilibria. Those rules are listed in Table 11.

3.2.3 General set up

As in BHW we start with prior probabilities (P 0
E and Q0

V ) of 1/2, or in terms of the

likelihood ratios A0 = B0 = C0 = D0 = 1. This corresponds to the equilibrium

(ADAD,ADAD), which we can call ‘follow-your-signal’ equilibrium, since the players

choose Agree when they receive a positive signal, and Decline if the signal is negative.

Once the signals are received they choose their actions according to their strategies.

If both players Agree, the result will be positive, otherwise it will be negative. The

result of the negotiations will be used by the followers to update their beliefs according

to the belief update rules listed in Table 11. Updated beliefs will be used to find the

equilirium/equilibria to be played by the next pair etc.

If there are several equilibria that may take place for a given set of beliefs we assume

that the equilibrium to be played is determined randomly (each equilibrium has the same

chances to be played) and which equilibrium is played will be known to public.
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Informational cascades

BHW define an informational cascade as the situation where individual actions does not

depend on the private signals. Once it happens the actions of individuals do not reveal

any new information to the followers, hence the followers will find themselves in the same

situation as their predecessors, therefore, they should ignore their private signals as well.

As an informational cascade starts, an observer will see a sequience of uniform outcomes

either positive (UP cascade) or negative (DOWN cascade).

What would be an informational cascade in our two-sided setting?

In the terms of the strategies in one-period game ignorance of a private signal means

that one uses ∗ ∗ AA or ∗ ∗ DD, if the state of the world is low on his side, and AA ∗ ∗
or DD ∗ ∗, if it is high (that is one-sided cascade in BHW model). However, that might

not be enough to obtain a sequience of uniform outcomes (which is the primary interest

in these models).

There is a difference between the emergence of UP and DOWN cascades in our two-

sided model. The difference arises due to the asymmetry in how Agree and Decline actions

are translated into outcomes.

DOWN cascade Once one of the sides starts to reject the deals regardless of their

signals, the outcomes will be negative. Indeed, while the opposite side might still change

their beliefs, the side that is rejecting the deals has nothing to learn from the results of the

negotiations: the outcomes would be negative whatever are the private signals and the

actions chosen by the other side. As a result, all followers on this side will find themselves

in the same situation (with the same beliefs) as their predecessors, and should reject deals

regardless to their signals. Therefore, we can say that one-sided DOWN cascade (∗ ∗DD

or DD ∗ ∗) would lead to two-sided DOWN cascade (a never ending series of negative

outcomes). Since we know that outside of the regions defined by conditions in Table 9

only equilibria with one of the sides playing DDDD exist, once the beliefs leave those

regions we can say that two-sided DOWN cascade emerges.

UP cascade The things are diferent for UP cascades. There are two reasons for that.

First, though one of the sides may stick to Agree actions, the outcomes might still be
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negative, if the other side is not in an UP cascade. It would mean that the other side

is still learning, and unlike in the case of DOWN cascades this learning may change the

story.

For example, consider the case of E = h, V = H and assume that (AAAA, ADAD)

equilibrium is played. Although entrepreneurs are in an UP cascade, venture capitalists

are not. Beliefs of entrepreneurs do not change, while venture capitalists’ beliefs that

E = h strengthen when the outcome is positive or weaken when they see a failure of

negotiations (see update rules 11). Therefore, an unlucky sequence of negative signals to

venture capitalists’ might result in that venture capitalists will be locked in a negative

cascade, hence to two-sided DOWN cascade.

Second, we have the striking possibility that even if both sides are in a positive one-

sided cascade, it may still not be enough for a two-sided UP cascade. Consider an example

where E = l, V = L and (ADAA, ADAA) is played. Both sides are playing the strategies

which assign them to play Agree regardless of their signals. Still this is not an UP cascade.

Players on each of the sides hope that the state of the world on the other side is high.

In this case the ADAA decision rule implies that the other side follow its signals. Hence

negative outcomes are expected from time to time, but what agents see is a long lasting

series of positive outcomes. It must lead them to the suspicion that the other side is

playing not AD but AA. This would imply that the true state is low, and consequently

they might end up in a DOWN cascade instead of an UP cascade. One can also see this

from the updating rules for (ADAA, ADAA) equilibrium.

We can also remark that the latter example demonstrates what we call gradual ‘rev-

elation’. One can note that (ADAA, ADAA) is a separating equilibrium, where the

behaviour of the player depends on the state of the world on his side, and with the time

one can infer what is the state of the world on the other side, not from the behaviour of

rivals from his own side as in BHW, but from the behaviour of the other side. Revelation

does not always have to be gradual, e.g. in equilibrium (AAAA,AAAD) a negative out-

come would immediately lead entrepreneurs to the conclusion that the prospective market

for their technology is weak (V = L).

Thus for a two-sided UP cascade we have to require from the equilibrium strategy

profile that both sides and all types of the players on each side choose to Agree regardless
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of their signals. The only equilibrium that results in an infinite sequence of positive

outcomes is (AAAA, AAAA), which therefore we call an UP cascade in our two-sided

POO model.

One remark on the our implementation of the simulations. For some p and q the region

of equilibrium (AAAA, AAAA) may overlap with one of equilibrium (ADAA, ADAA).

In this overlap we choose the equilibrium to play randomly. But since (AAAA, AAAA)

does not change beliefs we will assume that (ADAA, ADAA) is always played, and UP

cascade happens only if there is no equilibrium (excluding ‘status quo’ equilibria) other

than (AAAA, AAAA).

4 Simulations

As do BHW, we can also compare information regimes with different degrees of limitation

on information available to the public. Under full information, where E and V are known

to the public, every agent chooses correct actions. In the previous-signals-observable

(PSO) regime agents do not know the state of the opposite side, but can observe the

signals their predecessor received. As a result, public information becomes more and

more precise, and soon the system will converge to the optimal outcome. In the previous-

actions-observable (POA) regime, where signals are kept private, but agents can observe

actions of their predecessors, informational cascades appear, and there is always non-zero

probability that the system may end up in the inferior equilibrium. Now the question

to be answered is whether further restrictions on public information as POO regime will

further decrease social welfare by increasing the probability of a suboptimal outcome?

We have simulated the POO model for p and q ranging from 0.5 to 1 and have estimated

the probability of two-sided cascades. For each values of p and q (on a grid with step size

of 0.01) we made 10000 runs. In all series the system converges to one of the cascades.

The probability of a cascade was estimated as the share of realizations in our simulations

that have been locked into that cascade. We use POA model as benchmark, probabilities

of cascades in the POA model are given by equations (1) and (2). We found no qualititive

differences in the results, neither for a higher number of runs, nor for finer grids.
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Results of simulations

Our primary interest is the probability of informational cascades that lead to convergence

to suboptimal choice. For this reason, we will constrain ourselves to two cases: ‘negative’

cascades when E = h and V = H, which is an ‘unjustified crunch’, where wide-spread

negative feeling about the state of the world, resulting from the chain of the unlucky

events, inhibits the diffusion of the good technologies; and ‘positive’ cascade when E = l

and V = L, which is a socially undesirable ‘two-sided bubble’.

Case E=h, V=H The difference between the probailities of ‘incorrect’ cascade (DOWN

cascade in this case) in POO model estimated from our simulations and one of ‘bench-

mark’ POA model is presented in Figure 1.

Notice that for most values of p and q (white region in the density plot) the probability

to be locked in the incorrect cascade is higher under POO regime than under POA regime

(statistically significant). As private precision of the signals (p and q) is increasing, the

difference levels out.

Another interesting feature of the Figure 1 is the deep ‘valley’ at small p and q (< 0.66).

The depth of the valley is about 20%. In contrast with what has been discussed above,

in the valley the probability to be locked in DOWN cascade is lower under POO regime,

than under POA regime.

There are also two steps by the sides of the Figure 1. In the depth of those steps, as in

the valley, the probability of DOWN cascades is also lower under POO than under POA

regime.

Case E=l, V=L Figure 2 shows the difference in the probability of UP cascade under

POO and under POA regimes.

As in the previous case, the probability of incorrect cascade (UP cascade in this case)

in POO model exceeds one of POA model (about 5% at the top of the hill at p = 0.5 and

q = 0.5). Now, it does so for all p and q.

As in the case of E = h, V = H, the difference in the probabilities of UP cascades for

small values of p and q is substantially higher (‘island’ at p, q < 0.66) and it is decreasing

with rising p and q.
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5 Discussion

As we have anticipated, results of our simulations for the POO model go in line with the

result of BHW: restrictions on the information available to public reduce social welfare (in

terms of the probability of suboptimal outcome), especially when the private information

is only an inferior substitute to public.

The other conclusion from our simulations is rather striking: under the POO regime

the agents seem to be ‘overoptimistic’: when the quality of the private signals is low the

system is more prone to UP cascades.

To understand why there is ‘overoptimism’ in our models let us consider ‘minimum

series’: the shortest series of outcome which result in a cascade. In the POA model

similarly to BHW, a cascade starts when the two first pairs receive their positive (for UP

cascade) or negative (for DOWN cascade) signals independent of p and q. In terms of

the equilibria of the one-period game it means that starting from the third pair we move

from (ADAD,ADAD) to (AAAA,AAAA) or to (DDDD,DDDD).

What might be different in POO model?

Notice that when (ADAD,ADAD) is played, an agent observing a positive outcome

unambigiously infers that the players must have received positive signals, i.e. a positive

outcome is as informative as the private signals. It means that in the POO model as in

POA, two positive outcomes should be enough to start an UP cascade.

However, observing a negative outcome one cannot unambigiously conclude which side

rejected the deal, i.e. a negative outcome is less informative than corresponding actions

(and private signals). Moreover, the amount of information that an agent can extract

from a negative outcome depends on the accuracy of private signals on the other side as

well as on the state of the world on his side.

Let E = h, and consider an entrepreneur who observes a negative outcome. He wants

to know V , therefore he is interested which signal the entrepreneur in that pair received.

If the quality of the private information on the other side, q is high, then it is less likely

that the venture capitalist received a negative (wrong) signal, thus the deal has to be

rejected by entrepreneur, who must have got a negative signal. If, on the other hand, q is

low, so it is quite probable that venture capitalist got negative signal, then the outcome is

not very informative to entrepreneurs. Thus we might expect that low precision of private
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information makes agents more tolerant to negative outcomes.

Where lies the border between ‘high’ and ‘low’ the precision of the signals? To answer

the question we should examine the minimum series. Suppose that the first two deals have

failed. Should the third pair follow their signals or join the ‘herd’? Using the updating

rules for (ADAD, ADAD), and the equilibrium conditions, we can find p and q for which

the strategy profile (ADAD, ADAD) remains the equilibrium, that is, for which a cascade

has not yet started, and conditions for which a cascade will certainly start (A2 ≥ p
1−p

and

C2 ≥ q
1−q

). The two conditions are given by:(
1− (1− p)q

1− pq

)2

≥ p

1− p
,

(
1− p(1− q)

1− pq

)2

≥ q

1− q
(7)

(the conditions on Bt and Dt corresponding to E = l and V = L are not binding in this

case). Figure 3 represents the inequalities in equation (7) graphically. The first inequality

is represented by the light grey line labelled 1; the second by the dark grey line labelled

2. Below line 1 and left of line 2, the strategy (ADAD, ADAD) remains the equilibrium

even after two failures. Outside that area, after two failures a DOWN cascade surely

starts.

Examining one other sequence helps to understand the landscapes of Figures 1 and 2.

Consider that in the first four meetings there are two negative and two positive outcomes,

and that currently the equilibrium strategy is (ADAD, ADAD). Applying again the

updating rules and the equilibrium conditions permits us to determine the conditions

under which the next equilibrium strategy is (ADAD, AAAA). This is the case in the

region above the black line (labelled 3) in Figure 3, and here an UP cascade starts on one

side. By contrast, for (p, q) lying between lines 1 and 4 in the figure, the next equilibrium

in strategies is (ADAD, ADAA) and no cascade has yet begun (E = h, V = H).

These minimum sereies results connect well with the results of the simulations. The

left diagram in Figure 1 combines a contour plot for the case E = h, V = H and lines

of Figure 3. As one can see, the valley falls exactly in the range of the values for which

after two negative outcomes the players are still following their signals. The two steps of

Figure 1 are located in the area where two negative and two positive outcomes result in

(ADAA,AAAA) or (AAAA,ADAA) equilibria and so on.

As one can see the main feature of Figure 2, the ‘island’ at small p and q, can also be

21



explained by the minimum series. What is the intuition here?

One can find that after two negative outcomes neither B2, nor D2, which are the

likelihood ratios of the agents when E = l and V = L, are large enough to abandon

conditions for ‘follow-your-signal’ equilibrium (ADAD,ADAD). Why, then, for p and q

lying outside the island does a DOWN cascade start? As we already know, outside the

island A2 ≥ p
1−p

and C2 ≥ q
1−q

and therefore if one of the sides of the market had been in

the high state it would have played DD ∗ ∗. The only reasonable reply to this strategy

would be a rejection of any deal: DDDD. As a result, a DOWN cascade emerges. On

the contrary, inside the island the agents continue playing (ADAD,ADAD) and there is

still a chance to be locked into an UP cascade.

Thus, no matter what is the true state of the world in the POO model, in the situation

where the quality of the private information is low, the agents tend to be ‘overoptimistic’

as compared with the POA regime. They put relatively more weight on positive outcomes

and less weight on negative ones.

The region of low values of p and q is of particular interest if financing new technology is

concerned. The degree of ‘asymmetry’ of information in this case is high, because investors

do not know the technology well, nor do entrepreneurs have knowledge of the market.

Overoptimistic bias of individuals in an uncertain environment is well-known in the field of

cognitive science. There are studies documenting overconfidence of among entrepreneurs

[11] and venture capitalists [12]. Not contesting explanations of this phenomenon from

the point of view of cognitive phychology, we conjecture that two-sided interaction and

information constraints discussed in this paper may contribute to overconfidence of the

agents in real economy.

The recent ‘dot com’ crash rises questions why the market overvalued many ‘new

economy’ companies with immature products which had vague market perspectives. As

we have seen, low quality of information (precision of private signals and incompleteness

of information in public domain) results in a overoptimistic bias in interpretation of the

history: successful deals get more weight than failures, and agents tend to overvalue

performance of their counterparts. Overoptimism based on mutual illusions makes the

system more vulnerable to two-sided ‘high-tech bubbles’.

Summarizing, we conclude with the following. First, dynamics of two-sided cascades
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in information structure where only the history of outcomes (rather than history of pre-

decessors’s actions) are observable is non-trivial and can be characterized by interactions

between the two sides of market arising from learning. In comparison with POA model,

where actions are public information, in POO model, although with some exceptions, the

probability to end up in socially inferior cascade is higher. Second, in the situation where

precision of the private signals is low for both of the sides of the market, agents tend to

be ‘overoptimistic’ about the state of the world.

6 Conclusions

We examine a model in which agents on the both sides of a market have different in-

formation sets and are subject to information cascades. We assume some restrictions on

available information: instead of observing actions of their predecessors as in one sided

information cascade models, agents observe only successes or failures of negotiations. The

changes in the information structure lead to increasing probability of locking in socially

inferior informational cascade. The results support the general conclusion that can be

drawn from literature about information cascades: information structure does matter,

and the more restrictions on publicly available information are imposed, the higher is the

probability that collective behavior will be suboptimal. Another finding of the paper is

that in uncertain environment agents tend to be overoptimistic about the state of the

world, which fits with results of empirical studies of financing new technologies. Overop-

timism based on mutual illusions makes the system vulnerable to two-sided “high-tech”

bubbles, and may be one of the reasons behind “dot com” crash.
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Table 5: EP’s expected payoffs, if he chooses Agree
VC’s strategy Agree, E=h Agree, E=l

hH hL lH lL
AAAA 2PhH − 1 2PhL − 1 2PlH − 1 2PlL − 1
AAAD (1 + q)PhH − q (1 + q)PhL − q (2− q)PlH − (1− q) (2− q)PlL − (1− q)
AADA (2− q)PhH − (1− q) (2− q)PhL − (1− q) (1 + q)PlH − q (1 + q)PlL − q
AADD PhH PhL PlH PlL

ADAA (1 + q)PhH − 1 (1 + q)PhL − 1 (2− q)PlH − 1 (2− q)PlL − 1
ADAD q(2PhH − 1) q(2PhL − 1) (1− q)(2PlH − 1) (1− q)(2PlL − 1)
ADDA PhH − (1− q) PhL − (1− q) PlH − q PlL − q
ADDD qPhH qPhL (1− q)PlH (1− q)PlL

DAAA (2− q)PhH − 1 (2− q)PhL − 1 (1 + q)PlH − 1 (1 + q)PlL − 1
DAAD PhH − q PhL − q PlH − (1− q) PlL − (1− q)
DADA (1− q)(2PhH − 1) (1− q)(2PhL − 1) q(2PlH − 1) q(2PlL − 1)
DADD (1− q)PhH (1− q)PhL qPlH qPlL

DDAA PhH − 1 PhL − 1 PlH − 1 PlL − 1
DDAD −q(1− PhH) −q(1− PhL) −(1− q)(1− PlH) −(1− q)(1− PlL)
DDDA −(1− q)(1− PhH) −(1− q)(1− PhL) −q(1− PlH) −q(1− PlL)
DDDD 0 0 0 0
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Table 6: VC’s expected payoffs if he chooses Agree
EP’s strategy Agree, E=h Agree, E=l

Hh Hl Lh Ll
AAAA 2QHh − 1 2QHl − 1 2QLh − 1 2QLl − 1
AAAD (1 + p)QHh − p (1 + p)QHl − p (2− p)QLh − (1− p) (2− p)QLl − (1− p)
AADA (2− p)QHh − (1− p) (2− p)QHl − (1− p) (1 + p)QLh − p (1 + p)QLl − p
AADD QHh QHl QLh QLl

ADAA (1 + p)QHh − 1 (1 + p)QHl − 1 (2− p)QLh − 1 (2− p)QLl − 1
ADAD p(2QHh − 1) p(2QHl − 1) (1− p)(2QLh − 1) (1− p)(2QLl − 1)
ADDA QHh − (1− p) QHl − (1− p) QLh − p QLl − p
ADDD pQHh pQHl (1− p)QLh (1− p)QLl

DAAA (2− p)QHh − 1 (2− p)QHl − 1 (1 + p)QLh − 1 (1 + p)QLl − 1
DAAD QHh − p QHl − p QLh − (1− p) QLl − (1− p)
DADA (1− p)(2QHh − 1) (1− p)(2QHl − 1) p(2QLh − 1) p(2QLl − 1)
DADD (1− p)QHh (1− p)QHl pQLh pQLl

DDAA QHh − 1 QHl − 1 QLh − 1 QLl − 1
DDAD −p(1−QHh) −p(1−QHl) −(1− p)(1−QLh) −(1− p)(1−QLl)
DDDA −(1− p)(1−QHh) −(1− p)(1−QHl) −p(1−QLh) −p(1−QLl)
DDDD 0 0 0 0
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Table 7: Conditions for EP to choose Agree
VC’s strategy Agree, E=h Agree, E=l

hH hL lH lL
AAAA PhH ≥ 1/2 PhL > 1/2 PlH ≥ 1/2 PlL > 1/2
AAAD PhH ≥ q/(1 + q) PhL > q/(1 + q) PlH ≥ (1− q)/(2− q) PlL > (1− q)/(2− q)
AADA PhH ≥ (1− q)/(2− q) PhL > (1− q)/(2− q) PlH ≥ q/(1 + q) PlL > q/(1 + q)
AADD All PhH All PhL All PlH All PlL

ADAA PhH ≥ 1/(1 + q) PhL > 1/(1 + q) PlH ≥ 1/(2− q) PlL > 1/(2− q)
ADAD PhH ≥ 1/2 PhL > 1/2 PlH ≥ 1/2 PlL > 1/2
ADDA PhH ≥ 1− q PhL > (1− q) PlH ≥ q PlL > q
ADDD All PhH All PhL All PlH All P lL

DAAA PhH ≥ 1/(2− q) PhL > 1/(2− q) PlH ≥ 1/(1 + q) PlL > 1/(1 + q)
DAAD PhH ≥ q PhL > q PlH ≥ (1− q) PlL > (1− q)
DADA PhH ≥ 1/2 PhL > 1/2 PlH ≥ 1/2 PlL > 1/2
DADD All PhH All PhL All PlH All PlL

DDAA ∅ ∅ ∅ ∅
DDAD ∅ ∅ ∅ ∅
DDDA ∅ ∅ ∅ ∅
DDDD All PhH All PhL All PlH All PlL
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Table 8: Conditions for VC to choose Agree
EP’s strategy Agree, E=h Agree, E=l

Hh Hl Lh Ll
AAAA QHh ≥ 1/2 QHl > 1/2 QLh ≥ 1/2 QLl > 1/2
AAAD QHh ≥ p/(1 + p) QHl > p/(1 + p) QLh ≥ (1− p)/(2− p) QLl > (1− p)/(2− p)
AADA QHh ≥ (1− p)/(2− p) QHl > (1− p)/(2− p) QLh ≥ p/(1 + p) QLl > p/(1 + p)
AADD All QHh All QHl All QLh All QLl

ADAA QHh ≥ 1/(1 + p) QHl > 1/(1 + p) QLh ≥ 1/(2− p) QLl > 1/(2− p)
ADAD QHh ≥ 1/2 QHl > 1/2 QLh ≥ 1/2 QLl > 1/2
ADDA QHh ≥ 1− p QHl > (1− p) QLh ≥ p QLl > p
ADDD All QHh All QHl All QLh All PLl

DAAA QHh ≥ 1/(2− p) QHl > 1/(2− p) QLh ≥ 1/(1 + p) QLl > 1/(1 + p)
DAAD QHh ≥ p QHl > p QLh ≥ (1− p) QLl > (1− p)
DADA QHh ≥ 1/2 QHl > 1/2 QLh ≥ 1/2 QLl > 1/2
DADD All QHh All QHl All QLh All QLl

DDAA ∅ ∅ ∅ ∅
DDAD ∅ ∅ ∅ ∅
DDDA ∅ ∅ ∅ ∅
DDDD All QHh All QHl All QLh All QLl
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Table 9: Equilibria in 1-period game
Equilibrium Phv Plv QHe QLe

(AAAA, AAAA) PhH ≥ PhL > 1/2 PlH ≥ PlL > 1/2 QHh ≥ QHl > 1/2 QLh ≥ QLl > 1/2
(AAAA, AAAD) PhH ≥ PhL > q/(1 + q) PlH ≥ PlL > (1− q)/(2− q) QHh ≥ QHl > 1/2 QLh ≥ 1/2 ≥ QLl

(AAAD, AAAA) PhH ≥ PhL > 1/2 PlH ≥ 1/2 ≥ PlL QHh ≥ QHl > p/(1 + p) QLh ≥ QLl > (1− p)/(2− p)
(AAAA, AADD) All All QHh ≥ QHl > 1/2 1/2 > QLh ≥ QLl

(AADD, AAAA) PhH ≥ PhL > 1/2 1/2 > PlH ≥ PlL All All
(AAAA, ADAA) PhH ≥ PhL > 1/(1 + q) PlH ≥ PlL > 1/(2− q) QHh ≥ 1/2 ≥ QHl QLh ≥ QLl > 1/2
(ADAA, AAAA) PhH ≥ 1/2 ≥ PhL PlH ≥ PlL > 1/2 QHh ≥ QHl > 1/(1 + p) QLh ≥ QLl > 1/(2− p)
(AAAA, ADAD) PhH ≥ PhL > 1/2 PlH ≥ PlL > 1/2 QHh ≥ 1/2 ≥ QHl QLh ≥ 1/2 ≥ QLl

(ADAD, AAAA) PhH ≥ 1/2 ≥ PhL PlH ≥ 1/2 ≥ PlL QHh ≥ QHl > 1/2 QLh ≥ QLl > 1/2
(AAAA, ADDD) All All QHh ≥ 1/2 ≥ QHl 1/2 > QLh ≥ QLl

(ADDD, AAAA) PhH ≥ 1/2 ≥ PhL 1/2 > PlH ≥ PlL All All
(AAAD, AAAD) PhH ≥ PhL > q/(1 + q) PlH ≥ (1− q)/(2− q) ≥ PlL QHh ≥ QHl > p/(1 + p) QLh ≥ (1− p)/(2− p) ≥ QLl

(AAAD, ADAA) PhH ≥ PhL > 1/(1 + q) PlH ≥ 1/(2− q) ≥ PlL QHh ≥ p/(1 + p) ≥ QHl QLh ≥ QLl > (1− p)/(2− p)
(ADAA, AAAD) PhH ≥ q/(1 + q) ≥ PhL PlH ≥ PlL > (1− q)/(2− q) QHh ≥ QHl > 1/(1 + p) QLh ≥ 1/(2− p) ≥ QLl

(AAAD, ADAD) PhH ≥ PhL > 1/2 PlH ≥ 1/2 ≥ PlL QHh ≥ p/(1 + p) ≥ QHl QLh ≥ (1− p)/(2− p) ≥ QLl

(ADAD, AAAD) PhH ≥ q/(1 + q) ≥ PhL PlH ≥ (1− q)/(2− q) ≥ PlL QHh ≥ QHl > 1/2 QLh ≥ 1/2 ≥ QLl

(ADAA, ADAA) PhH ≥ 1/(1 + q) ≥ PhL PlH ≥ PlL > 1/(2− q) QHh ≥ 1/(1 + p) ≥ QHl QLh ≥ QLl > 1/(2− p)
(ADAA, ADAD) PhH ≥ 1/2 ≥ PhL PlH ≥ PlL > 1/2 QHh ≥ 1/(1 + p) ≥ QHl QLh ≥ 1/(2− p) ≥ QLl

(ADAD, ADAA) PhH ≥ 1/(1 + q) ≥ PhL PlH ≥ 1/(2− q) > PlL QHh ≥ 1/2 ≥ QHl QLh ≥ QLl > 1/2
(ADAD, ADAD) PhH ≥ 1/2 ≥ PhL PlH ≥ 1/2 ≥ PlL QHh ≥ 1/2 ≥ QHl QLh ≥ 1/2 ≥ QLl
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Table 10: Equilibria in likelihood ratios
Equilibrium At Bt Ct Dt

(AAAA, AAAA) A < 1−p
p

B < 1−p
p

C < 1−q
q

D < 1−q
q

(AAAA, AAAD) qA < 1−p
p

(1− q)B < 1−p
p

C < 1−q
q

1−q
q
≤ D ≤ q

1−q

(AAAD, AAAA) A < 1−p
p

1−p
p
≤ B ≤ p

1−p
pC < 1−q

q
(1− p)D < 1−q

q

(AAAA, AADD) All All C < 1−q
q

D > q
1−q

(AADD, AAAA) A < 1−p
p

B > p
1−p

All All

(AAAA, ADAA) A
q

< 1−p
p

B
1−q

< 1−p
p

1−q
q
≤ C ≤ q

1−q
D < 1−q

q

(ADAA, AAAA) 1−p
p
≤ A ≤ p

1−p
B < 1−p

p
C
p

< 1−q
q

D
1−p

< 1−q
q

(AAAA, ADAD) A < 1−p
p

B < 1−p
p

1−q
q
≤ C ≤ q

1−q
1−q

q
≤ D ≤ q

1−q

(ADAD, AAAA) 1−p
p
≤ A ≤ p

1−p
1−p

p
≤ B ≤ p

1−p
C < 1−q

q
D < 1−q

q

(AAAA, ADDD) All All 1−q
q
≤ C ≤ q

1−q
D > q

1−q

(ADDD, AAAA) 1−p
p
≤ A ≤ p

1−p
B > p

1−p
All All

(AAAD, AAAD) qA < 1−p
p

1−p
p
≤ (1− q)B ≤ p

1−p
pC < 1−q

q
1−q

q
≤ (1− p)D ≤ q

1−q

(AAAD, ADAA) A
q

< 1−p
p

1−p
p
≤ B

1−q
≤ p

1−p
1−q

q
≤ pC ≤ q

1−q
(1− p)D < 1−q

q

(ADAA, AAAD) 1−p
p
≤ qA ≤ p

1−p
(1− q)B < 1−p

p
C
p

< 1−q
q

1−q
q
≤ D

1−p
≤ q

1−q

(AAAD, ADAD) A < 1−p
p

1−p
p
≤ B ≤ p

1−p
1−q

q
≤ pC ≤ q

1−q
1−q

q
≤ (1− p)D ≤ q

1−q

(ADAD, AAAD) 1−p
p
≤ qA ≤ p

1−p
1−p

p
≤ (1− q)B ≤ p

1−p
C < 1−q

q
1−q

q
≤ D ≤ q

1−q

(ADAA, ADAA) 1−p
p
≤ A

q
≤ p

1−p
B

1−q
< 1−p

p
1−q

q
≤ C

p
≤ q

1−q
D

1−p
< 1−q

q

(ADAA, ADAD) 1−p
p
≤ A ≤ p

1−p
B < 1−p

p
1−q

q
≤ C

p
≤ q

1−q
1−q

q
≤ D

1−p
≤ q

1−q

(ADAD, ADAA) 1−p
p
≤ A

q
≤ p

1−p
1−p

p
≤ B

1−q
≤ p

1−p
1−q

q
≤ C ≤ q

1−q
D < 1−q

q

(ADAD, ADAD) 1−p
p
≤ A ≤ p

1−p
1−p

p
≤ B ≤ p

1−p
1−q

q
≤ C ≤ q

1−q
1−q

q
≤ D ≤ q

1−q
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Table 11: Beliefs updating rule. P:Result=Proceed, N:Result=Not Proceed
Equilibrium At+1 Bt+1 Ct+1 Dt+1

(AAAA, AAAA) P At Bt Ct Dt

N - - - -

(AAAA, AAAD) P Atq Bt(1− q) Ct Dt
1−q

q

N ∞ ∞ - Dt
q

1−q

(AAAD, AAAA) P At Bt
1−p

p
Ctp Dt(1− p)

N - Bt
p

1−p
∞ ∞

(AAAA, AADD) P 0 0 Ct -
N ∞ ∞ - Dt

(AADD, AAAA) P At - 0 0
N - Bt ∞ ∞

(AAAA, ADAA) P At
1
q

Bt
1

1−q
Ct

1−q
q

Dt

N 0 0 Ct
q

1−q
-

(ADAA, AAAA) P At
1−p

p
Bt Ct

1
p

Dt
1

1−p

N At
p

1−p
- 0 0

(AAAA, ADAD) P At Bt Ct
1−q

q
Dt

1−q
q

N At Bt Ct
q

1−q
Dt

q
1−q

(ADAD, AAAA) P At
1−p

p
Bt

1−p
p

Ct Dt

N At
p

1−p
Bt

p
1−p

Ct Dt

(AAAA, ADDD) P 0 0 Ct
1−q

q
-

N At
1

1−q
Bt

1
q

Ct
q

1−q
Dt

(ADDD, AAAA) P At
1−p

p
- 0 0

N At
p

1−p
Bt Ct

1
1−p

Dt
1
p

(AAAD, AAAD) P Atq Bt
(1−p)(1−q)

p
Ctp Dt

(1−p)(1−q)
q

N ∞ Bt
1−(1−p)(1−q)

1−p
∞ Dt

1−(1−p)(1−q)
1−q

(AAAD, ADAA) P At
1
q

Bt
1−p

p(1−q)
Ct

p(1−q)
q

Dt(1− p)

N 0 Bt
p

1−p(1−q)
Ct

1−p(1−q)
1−q

∞
(ADAA, AAAD) P At

(1−p)q
p

Bt(1− q) Ct
1
p

Dt
1−q

(1−p)q

N At
1−(1−p)q

1−p
∞ 0 Dt

q
1−(1−p)q

(AAAD, ADAD) P At Bt
1−p

p
Ct

p(1−q)
q

Dt
(1−p)(1−q)

q

N At Bt
1−(1−p)(1−q)

1−p(1−q)
Ct

1−p(1−q)
1−q

Dt
1−(1−p)(1−q)

1−q
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Equilibrium At+1 Bt+1 Ct+1 Dt+1

(ADAD, AAAD) P At
(1−p)q

p
Bt

(1−p)(1−q)
p

Ct Dt
1−q

q

N At
1−(1−p)q

1−p
Bt

1−(1−p)(1−q)
1−p

Ct Dt
1−(1−p)(1−q)

1−(1−p)q

(ADAA, ADAA) P At
1−p
pq

Bt
1

1−q
Ct

1−q
pq

Dt
1

1−p

N At
p

1−pq
0 Ct

q
1−pq

0

(ADAA, ADAD) P At
1−p

p
Bt Ct

1−q
pq

Dt
1−q

(1−p)q

N At
1−(1−p)q

1−pq
Bt Ct

q
1−pq

Dt
q

1−(1−p)q

(ADAD, ADAA) P At
1−p
pq

Bt
1−p

p(1−q)
Ct

1−q
q

Dt

N At
p

1−pq
Bt

p
1−p(1−q)

Ct
1−p(1−q)

1−pq
Dt

(ADAD, ADAD) P At
1−p

p
Bt

1−p
p

Ct
1−q

q
Dt

1−q
q

N At
1−(1−p)q

1−pq
Bt

1−(1−p)q
1−pq

Ct
1−p(1−q)

1−pq
Dt

1−p(1−q)
1−pq
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Figure 1: The difference between the probabilities of DOWN cascade in POO and POA
models, E = h, V = H. Left: 3D plot. Right: contour plot.
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Figure 2: The difference between the probabilities of UP cascade in POO and POA
models, E = l, V = L. Left: 3D plot. Right: contour plot.
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Figure 3: Conditions for minimum series.
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