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Abstract

Under the standard neo-classical growth framework, conditional convergence studies assume that a

country with a higher initial human capital among others ‘performs’ better. Nevertheless the growth

implications of health, another component of human capital, compared to education, have not been
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rigorously the positive association between per capita income and health status of an economy and

thereby provide a theoretical background for using ‘health’ variables in conditional convergence

analyses. This positive relationship between health and per capita output is first shown in the standard

neo-classical growth framework where the health status is exogenously given. Endogenising health

then enables us to analyse the impact of optimal expenditure on health care on steady state growth and
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1 Introduction

A key property of the neo-classical growth model is that an economy that starts out

further below its own steady-state position tends to grow proportionately faster. The

key word, however, is “own”, for empirical studies showed that this so-called

absolute catch up proposition clearly failed in terms of the cross-country data. Many

studies —for instance Barro (1991), Barro and Sala-i-Martin (1992) and Mankiw,

Romer, and Weil (1992)— have shown that so-called conditional convergence is

empirically more successful. In these studies country-specific characteristics are taken

into account to control for differences in steady states. A typical example is human

capital in the form of education (for example, average years of schooling and literacy

rate), which has consistently been used as a control variable in these studies.

Schultz (1961) and Mushkin (1962) have shown long time ago that human

capital can also be accumulated through improvements in health.1 In this context it is

surprising that the second component of human capital, health, has been largely

ignored in the growth literature. Indicators of health status like life expectancy at birth

and infant mortality rate have relatively rarely been used in convergence studies —see

Barro and Sala-i-Martin (1995). Knowles and Owen (1995, 1997) introduced this in

the growth literature. For example, in their 1995 paper they augmented Mankiw,

Romer, and Weil’s (1992) work by controlling for the health and education

components of human capital separately. The theoretical part of their study takes the

positive relation between output and health as given – as we do below. The authors

then estimate this relation in a Solovian growth framework. Thus, contrary to our

approach, optimal health expenditure is not considered.

This is not surprising, since the neglect of health as a relevant variable for

economic growth is also encountered on the theoretical side. While the relationship

between growth and education has been intensively investigated —see the many

studies inspired by Lucas (1988)— the link between health and growth has hardly

been researched in the theoretical literature. On the other hand it has long been

conceived that health by its very nature has important implications on labour supply

—see Mushkin (1962). This notion is taken up by Cuddington et al. (1994) who

analyse long-term growth in the presence of a communicable disease, namely AIDS,

under the assumption of exogenous health expenditure. They show that an epidemic
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disease has important implications for size, structure, and productivity of labour and

therefore for the growth performance of an economy —see Bloom and Mahal (1992)

for an opposite view specific to AIDS on empirical grounds. Again, optimal health

expenditure is not considered. Moreover, our model, unlike Cuddington et al. (1994),

is not specific to a certain disease and, in that sense, is a general health-growth model.

Another theoretical study is van Zon and Muysken (1997). They include

health into the Lucas’s (1988) endogenous growth framework. In their model healthy

labour is not only used in the production of goods and knowledge, but it is also

necessary to maintain health. As a consequence the characteristics of the health sector

have a clear impact on economic growth and optimal health expenditures are

analysed. Our model differs from van Zon and Muysken’s 1997 model because their

model is very hard to characterise in steady state situation due to the fact that there

does not exist a closed-form solution of the model and the transitional dynamics are

not available.

Against this background, the aim of this study is to show the association

between the optimal health expenditure and status of an economy and all other

variables. We thereby provide a theoretical background for using ‘health’ variables in

conditional convergence analyses, starting from the labour productivity implications

of health. To this end we introduce health in a standard Ramsey-type growth model.

In that context we develop an alternative measure of health status of an economy: the

ratio of man-hours effectively supplied (and employed) to the total amount of man-

hours available.

In section two, the basic model is presented. This model shows a positive

contribution of good health to steady state output (and economic growth) for an

exogenous health status. This exogeneity, however, can only be a first approximation.

Therefore the model is extended in the third section to endogenise the health status,

since assets have to be put aside to maintain and improve health. Consumers include

this in their dynamic consumption-asset accumulation trade-off. Thus, the

representative household’s health optimisation problem is embodied in an optimal

growth framework, which enables one to analyse the impact of changes in the

expenditure of health care on steady-state growth and transition dynamics. An

interesting finding of the study is that the optimal health expenditure and consumption

                                                                                                                                           
1 This point has been brought to our attention by Knowles and Owen (1995; 1997).
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in the transition to the steady state are below (above) their steady state values if the

ratio of the stocks of capital and health is below (above) its steady state value. In other

words, if physical capital relative to health is relatively scarce (abundant) compared to

the steady state values, optimal expenditures for health and consumption are lower

(higher) than in the steady state but increase (decrease). The last section concludes

and summarises the study.

2 The Model

This study builds on the standard Ramsey-type growth model —see Cass (1965) and

Koopmans (1965). A typical assumption in standard neo-classical growth models is

that each worker supplies a fixed amount of labour services per unit of time. By

starting from labour supply implications of health, we will show how the performance

of an economy is related to the health status of that economy.

2.1 The Household 2

Assume a representative household consisting of N members. It maximises overall

utility, U, as given by
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In (1) c is the quantity of consumption per person, n is the (net) exogenous growth

rate of the household members, and θ and ρ are the elasticity of marginal utility and

subjective rate of time preference, respectively. Let us assume that each member’s

labour supply, l i, is a function of his/her health status in the form
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2 We suppressed the time arguments for simplicity.
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In (2) hi denotes the health status of i. We assume that household members are either

healthy or unfit to work, which corresponds to the values hi = 1 and hi = 0,

respectively. Those who are unhealthy do not work and therefore they are not

included in labour supply at any instant of time. So effective labour supply is the sum

of labour supply of healthy workers. Suppose that there are N1 healthy workers at a

given time and N1 < N. As each healthy worker supplies inelastically one unit of

labour, total effective labour supply is also N1.

The health status of the economy can be approximated by its average health

status. In our model, the average health is the sum of ‘healthy persons’, N1, divided by

population N. Thus, the health index of the economy is

N

N

N
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h
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= (3)

Equation (3) can also be read as the ratio of healthy man-hours to total man-hours

available in an economy at any instant of time. Hence, by using the intuition behind

equation (2), we express the health status of the economy in a convenient way.3 We

conjecture that our health status measure does fit better in a growth framework owing

to the fact that life expectancy at birth and infant mortality rate reflect nutrition and

many other components of social development as much as health.4

Let us assume for the moment being that h = N1/N is constant, which implies

that population and healthy workers grow at the same (exogenous) rate n. We will

relax this assumption in the following section by endogenising h.

The flow budget constraint for the household is

)( 111 NNccNrAwNA −−−+=� (4)

In (4) N - N1 is the number of sick household members, A is the level of assets, and w

and r are market-determined factor prices. According to equation (4), those who are

sick are unable to work and, therefore, do not earn a wage income. Nevertheless, as is

                                                
3 This approach is quite similar to that in van Zon and Muysken (1997) who also define productive
labour as hN, where h represents the health status.
4 Our argument, nevertheless, does not mean that it is wrong to use these or other health status
variables—see OECD (1999) for a rich set of health status variables.
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obvious from equation (4), sick members are supposed to keep on consuming (by

spending savings and sharing current income at any combination). Therefore, the

household’s instantaneous utility function is independent of the health status of the

household.

The flow budget constraint can be rewritten in per capita terms as follows:

canrwha −−+= )(� (5)

In (5) assets per person a is simply A/N. The household’s optimisation problem is to

maximise the overall utility U in equation (1), subject to the budget constraint in

equation (5) given the stock of initial assets a(0) and the transversality condition on

the state variable a.

The present-value Hamiltonian is

})({
1

1 )(
1

canrwhe
c

J tn −−+λ+
θ−
−= −ρ−

θ−
. (6)

The first-order conditions for a maximum of U and the standard transversality

condition imposed on assets per capita define the household’s optimum, yielding5

)(
1 ρ−
θ

= r
c

c� (7)

Equation (7) is the ‘standard’ expression for the optimum growth rate.

2.2 The Firm

Suppose that there is perfect competition in the goods sector. A representative firm

has the following production function

α−α= 1
1NKY 10 <α< (8)
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In (8) K is the aggregate capital stock, and N1 is the number of healthy workers.6 The

per capita production function becomes

α−α= 1hky (9)

In (9) h = N1/N as previously. The representative firm’s flow of profit π at any point is

{ }krwhhkN )(1 δ+−−=π α−α (10)

In (10) r + δ is the effective cost of capital and k = K/N. The first-order conditions for

profit maximisation then yield:

δ−α= α−−α 11hkr (11a)

α−αα−= hkw )1( (11b)

The health status variable distinguishes equation (11a) and (11b) from the standard

results.

2.3 Market Equilibrium

We consider a closed economy model with no government. The assets accumulated

by the households are used to finance the stock of capital, that is the interest rate

mechanism will ensure a = k. Then using the household’s flow budget constraint

given in equation (5) and the conditions for r and w in equations (11a) and (11b) we

get

cknhkk −δ+−= α−α )(1
� (12)

                                                                                                                                           
5 Since the utility function (1) satisfies the Inada (1963) conditions we know that consumption will
always be a positive finite number.
6 In Yetkiner et al. (1999) we argue that external effects in specification of production function
becomes crucial when the public provision of health is considered, which falls out of aims of this study.
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Moreover, substituting the interest rate in the solution of the household’s optimisation

problem —cf. equation (7)— yields

)(
1 11 δ−ρ−α
θ

= α−−α hk
c

c� (13)

Equations (12) and (13) construe the equations of motion in c and k.

The constant steady-state values for per capita consumption c and per capita

capital stock k are determined by setting the expressions in equations (12) and (13)

equal to zero:
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In (14) a bar on top of a variable denotes steady state. Note that the standard perfect-

health Ramsey model’s results are obtained when h = 1. With h smaller than unity,

steady-state values of macroeconomic variables k, y, and c are lower than the

respective standard perfect-health results. Figure 1 below compares these two cases

where ‘ph’ stands for ‘perfect health’ Ramsey results in the figure. The arrows of

motion indicate the saddle-point stability of the steady state.

Insert Figure 1 here

The steady-state analysis shows equilibrium values of c and k (and thus y) lower than

in the perfect-health Ramsey model. In Figure 1 an exogenous increase in the health

status of the economy —represented by an increase in h— shifts the 0=c�  line to the

right and moves the 0=k�  curve up.7 These shifts generate increases in c , k  and y .

This suggests that, in terms of its effects on growth, a change in the average health

level of the population works in the same way as an exogenous change in the level of

                                                
7 For example, any exogenous development in curative or preventive medical technology may be the
source of that shift.



9

productivity in the Solow model. The crucial difference with productivity is that

health only has an upper limit, namely perfect health.

Our findings provide a theoretical background for using health status variables

to characterise countries in conditional convergence analysis. A convergence analysis

shows that the constant h does not appear in the β-convergence coefficient —see

Barro and Sala-i-Martin (1992; 1995)— for the reason that health status is assumed to

be constant. Therefore h behaves as if an exogenous productivity parameter, which is

not against the neo-classical conditional convergence argument. It is worth noting that

h is neither constant nor exogenous in reality. In fact, health status and income affect

each other.8 Therefore, in the next section, we will endogenise the health measure to

enrich our theoretical inquiry into the relationship between health status and per capita

output and growth.

3 Endogenous Health and Growth

This section extends the previous analysis by assuming that the health status of the

economy is endogenously determined within the model by allowing representative

household to optimise her health status in the consumption asset-accumulation trade-

off. We first elaborate the specification of the production function of the health status

accumulation. Next, we discuss the representative household’s trade-off when health

status is endogenised and also elaborate the impact on market equilibrium. Finally we

analyse the implications for the relation between health and growth in the model at

steady state.

3.1 Endogenous Health

As mentioned above we now assume that the health status is no longer exogenous, but

health expenditures have to be made to maintain and improve health. These

expenditures can be preventive (e.g., hindering dissemination of diseases) and/or

curative (aiming to regain some sick labour). Both kinds of health expenditures are

                                                
8 As an example, look at Carrin and Politi (1995) to see the ‘concave’ relationship between life
expectancy and real GDP per capita and the ‘rectangular hyperbolic’ relationship between infant
mortality rate and real GDP per capita for 1990. Causality tests between life expectancy and real GDP
per capita for high, middle, and low income countries show that the direction of causality changes from
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inevitable, because otherwise participation of labour in the production process is

subject to a constant decay of the healthy labour stock. Actually we assume that in the

absence of health expenditures, the number of healthy workers decreases at a rate v.

However, this implies that workers that become sick fall only out of labour market but

they do not die. Therefore v is neither the mortality rate nor does it have any

contribution to that rate.

Since we assume v > n, the number of healthy workers will decrease at a rate

v - n. The impact of health expenditures X is to stop or slow down the constant decay

of healthy labour and to bring the ratio of healthy labour to total labour, h, to some

optimal level. We define the healthy workers’ accumulation function as follows:

1
1

1 )( NnvNXN −−ζ= β−β
� 10 <β< (15)

where we assume that aggregate health expenditures X have decreasing returns, and ζ

is a productivity parameter.9 The generation of healthy labour N1 depends on the

existing stock of labour N as much as on preventive and curative health expenditures.

This is so because health expenditures produce healthy labour from healthy labour

(preventive effect) or from sick workers (curative effect).10

Since the Inada (1963) conditions hold for the production function (8), each

factor of production is necessary for positive output. This implies that health

expenditures are necessary and inevitable in this model. To see this, suppose for the

moment that health expenditures are zero. Then, from equation (15), it is clear that the

healthy labour stock would ‘depreciate’ at a constant rate. This would force (healthy)

labour to zero at some point in time and thus output would be zero. Since the marginal

return is very high as any factor of production approaches zero, the representative

household would always prefer to incur some positive amount of health expenditures.

We can re-write equation (15) by defining preventive and curative health

expenditures per person x = X/N and using the relationship NNNNhh /// 11
��� −= , which

yields:

                                                                                                                                           
one to another as the income group changes, cf. Mazumdar (1996). Similar results are found for infant
survival rate.
9 van Zon and Muysken (1997) use a similar function, except that they use productive labour to counter
this decay.
10 Equation (15) is, in essence, a customary stock variable accumulation function frequently used in the
growth literature See for example see Barro and Sala-i-Martin (1995).
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vhx
h

h −ζ= −β 1
�

(16)

This relation should be added as an additional constraint to the household

optimisation process.

3.2 The Household’s Trade Off

As a consequence of the necessity of health expenditures, households face a trade-off

that endogenously determines the health status of an economy. On the one hand, by

being healthier they participate more in the production process and therefore

contribute positively to their welfare at any instant of time. On the other hand, they

incur some health expenditures, which is foregone consumption, to maintain or

improve their healthiness. This trade-off shows up in the intertemporal budget

constraint, where health expenditures are at the detriment of asset accumulation:

xcanrwha −−−+= )(� (17)

The constraints to maximisation of the utility function (1) are now not only the

amended budget constraint (17), but also the healthy worker’s accumulation function

(16). This defines the dynamic optimisation process, in which households determine

the optimal health status they would like to have.

Then the present value Hamiltonian becomes

hvhxxcanrwhe
c

J tn )(})({
1

1 1)(
1

−ζµ+−−−+λ+
θ−
−= −β−ρ−

θ−
(18)

In (18) c and x are the choice variables, a and h are the state variables, and λ  and µ

are the co-state variables.11

By solving equation (18) through the method of optimum control, one finds

that the optimal path for consumption still is given by equation (7). This implies that

                                                
11 See Appendix A for a complete solution of the optimum version of the model. Equations (11a,b) are
still applicable because the market solution and that of the central planner are the same.
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as usual the interest rate determines consumption growth. The optimal path for health

expenditures is given by

β

β−
βζ−

β−
−+= wxx

nrv
x

11
� (19)

This should be considered simultaneous with the path for health creation (16) – we

elaborate this in the next section.

3.3 Market Equilibrium

Although firm behaviour is not directly affected by expenditures on health, one

should realise that health also affects marginal productivity of both labour and capital

and hence both the interest rate and the wage rate, as can be seen from equations (11a)

and (11b), respectively. Moreover, since the accumulation of assets is influenced by

health expenditures, the accumulation of capital will be too. We will return to that

later on. First we discuss the dynamic process between health expenditures and health

creation.

Note that substitution of (11a) and (11b) in the equation of motion for health

expenditures x, yields:

β
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α−βζ−
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δ−




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)1(

1

1
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The dynamics between health expenditures and health creation then can be shown for

any given value of the capital stock k, using equations (20) and (16), respectively.

This is elaborated in Figure 2 where one sees that the 0=x�  line is decreasing in h and

the 0=h�  line is increasing. Moreover, the equations of motion show that this part of

the system is saddle-point stable. The equilibrium values, as functions of k, then are:
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Insert Figure 2 here

From the figure one also sees that the saddle-path shows a negative relation between

health expenditures and health. This is plausible since optimal health expenditures

will be relatively high when health is relatively bad and vice versa, because health

expenditures are an investment in the production factor labour.12

A problem with this partial analysis is that a simultaneous movement of k will

shift the stationary line for x and the saddle path of Figure 2. If, e.g., the movement

goes from high to low x and from low to high h, the steady state is approached from

the left. However, a simultaneous increase in k, moving up the curves, reinforces the

increase in h but counteracts the decrease of x. This raises the question which of the

two effects on x is stronger.

Analogous to equation (12), the accumulation function of capital is found from

the budget constraint given in equation (17) to be:

xcknhkk −−δ+−= α−α )(1
� (22)

A second problem is that the stationary lines of Figure 1 are now shifted by

movements in h and x. Thus, we have to deal with the interaction of the variables c, k,

h, x as captured in the equations (13), (16), (20) and (22). Although it is clear that our

concave Hamiltonian function will result in a unique optimal growth path, it is far

from clear what the dynamic process exactly looks like.

Theorems 5.3 and 5.4 in Feichtinger and Hartl (1986) provide conditions

under which a linear approximation of a 4x4 system in connection with dynamic

                                                
12 For simplicity we have neither h nor x as an argument in the utility function.
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optimisation – i.e. of the so-called canonical system - will have two positive and two

negative real roots (see appendix B for details)13. In this case the constants of the two

positive roots can be put equal to zero. Otherwise it would explode, which cannot be

optimal. Consequently, the system for the analysis of local stability can be split up

into two parts: First, the dynamics of h and k is considered separately; second, the

dynamics of k and h is fed back into that of c and x, both in a very simple way. This

separation avoids the feed back of c and x into the (k, h)-system and makes the whole

problem tractable.

Unfortunately, we can prove some of the conditions critical to the application

of the theorem only numerically (see appendix C). Here we focus on the results. The

parameter values used so far are the following: We put the rate of capital depreciation

at  0.03=δ in accordance with national accounting results (see Mankiw, Romer and

Weil 1992). The share of capital is assumed to be 3.0=α ; the rate of time preference

is set equal to 06.0=ρ  in order to make sure that y/k = 0.3 in accordance with

equation (A.9). We use n = 0.01 as in Barro and Sala-i-Martin 1995. Next we fix

v = 0.02 and 5.0=β  which make sure that health expenditure as a share of GDP is

about 10% in the steady state14 and consumption is between 70 and 80%, 76,67% for

our values. Finally, we fix 045.0=ζ  which makes sure that h < 1 in the steady state

allowing us to avoid corner solutions for h = 1. Using these values we show in

appendix C that the conditions of the theorem hold and derive the lines for the

stationary loci for h and k (see Figure 3).

Insert figure 3 over here

Both lines turn out to have positive slopes in (h, k)-space. The slope of the

stationary line for k is 15% and the slope of the line for h is about 7%. Arrows in

Figure 3 indicate that the system is stable for any given initial values of h and k.

Hence k and h will always converge towards their steady state values. When the initial

values of k and h are in region B, k/h will increase whereas in region D it will

                                                
13 Readers non-familiar with German may have a look at Turnovsky (1981).
14 The business press reports that health expenditures as a percentage of GDP are 6,7% in the UK,
13,9% in the US and slightly below 10% in the Netherlands and Germany. Therefore fixing it at about
10% is a reasonable order of magnitude.
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decrease. In regions A and C the ratio k/h can both increase and decrease when

moving towards the steady state.

INSERT FIGURE 4 OVER HERE

The implications for consumption of the movement of k/h towards the steady

state follow from equation (13). This is drawn in Figure 4, putting k/h on the

horizontal and c on the vertical axis. If k/h starts below (above) its steady-state value

and therefore increases (decreases), the change in c must be positive (negative). By

implication, the initial value of c must be below (above) its steady-state value.

INSERT FIGURE 5 OVER HERE

The implications for health expenditures of the movement of k/h toward the

steady state follow from equation (20). Figure 5 reveals that in the neighbourhood of

the steady state we have 0/ >∂∂ xx� . This means that equation (20) is unstable for

given values of k/h and can only be stabilised by shifts of k/h. The stationary value of

x increases with the ratio k/h.15 As an increase (decrease) of k/h therefore shifts the

stationary line to the right (left). If k/h increases (decreases) on its way to the steady

state according to Figure 3, x must be to the right (left) of the stationary line and the

change in x must therefore be positive (negative) until it comes to a hold through the

shift in the stationary line. In other word if k/h is below (above) its steady-state value

the value for optimal health expenditure x is below (above) its steady-state value and

increasing (decreasing). This is the same behaviour as that of optimal consumption.

Therefore the optimal consumption and health expenditures depend on the relative

values of k/h in the transition relative to those in the steady state. Optimal health

expenditure and consumption in the transition to the steady state are below (above)

their steady-state values if the ratio of the stocks of capital and health is below

(above) its steady-state value. In other words, if physical capital relative to health is

relatively scarce (abundant) compared to the steady-state values, optimal expenditures

                                                

15 The stationary value of x from equation (20) can be calculated as
( )
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As the exponent is negative, the stationary value of x increases with k/h.
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for health and consumption are lower (higher) than in the steady state but increase

(decrease).

3.4 The Impact of Health Parameters

It is interesting to analyse the impact of the characteristics of the health sector on the

outcome of the model. The steady-state value of the health index is:
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The steady-state health expenditures are:
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The health sector is characterised mainly by its productivity ζ, the population growth

rate n, and the rate of decay of health v. The impact of these parameters on the steady

state of the model is summarised in Table 1.

Table 1 Impact of health parameters on the steady state

Steady state value of

Parameters
y c k h x

ζ + + + + +

n + ? + + +

v - - - - -

From the table one sees that an increase in productivity ζ affects all steady state

variables in a positive way. It seems rather obvious that an increase in productivity in

health care will lead to an improvement in health, cet. par. This will enhance both
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capital accumulation and consumption. Hence output and the capital stock will

increase too. Finally, the increase of health expenditures follows from a higher

marginal return from these expenditures in the trade-off with consumption and

investment in physical capital.

The negative impact of an increased rate of decay v on health is plausible

because a higher rate directly means more sick workers. There also is an indirect

effect through lower health expenditures, which result from a diminished marginal

productivity of these expenditures. The negative effects on consumption, output and

capital follow directly.

Finally, higher population growth n has a positive effect on health

expenditures because it increases their productivity. The effects on capital and output

then follow directly. The impact on consumption is ambiguous, however, because, on

the one hand, consumption is affected negatively by population growth in the perfect

health situation (as in Cass-Koopmans). However, the steady-state value of k also

appears in the end of the expression for c. It depends on that of h because health is

directly affected positively as can be seen from (15). This produces a positive

incentive to increase health expenditure as can be seen from (25). In sum, as in Cass-

Koopmans the c/k ratio is negatively related to population growth, but the optimal c

not necessarily decreases with population growth16.

4 Concluding Remarks

In this paper we have investigated optimal health expenditure and consumption by

adding a health accumulation function to the Cass-Koopmans optimum-growth

model.

The major finding was that optimal health expenditure and consumption in the

transition to the steady state are below (above) their steady-state values if the ratio of

the stocks of capital and health is below (above) its steady state value. In other words,

if physical capital relative to health is relatively scarce (abundant) compared to the

                                                
16More technically, consumption is affected negatively by population growth in the perfect health
situation (as in Cass-Koopmans) as can be seen also from the direct effects appearing in A.16.
However, the steady-state value of k also appears in the end of the expression for c. It depends on that
of h (according to A.12) and that is positively affected by n as health expenditure was.   
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steady state values, optimal expenditures for health and consumption are lower

(higher) than in the steady state but increase (decrease).

This result was found with the help of a theorem that allows to separate the

analysis of the dynamics of the state variables from that of the control variables.

However, results could only be obtained for one set of parameter values for which the

theorem could be applied. Other parameter values may lead to more complicate

solutions. But so far we have no indication that such a set of parameter values can be

found for reasonable orders of magnitude of the variables of the model. The search for

other constellations is left for future research.

A second finding was that steady-state consumption is no longer necessarily

negatively related to population growth (as it is in the standard model) because it

enhances the steady-state percentage of health workers under the assumption of the

health accumulation function used. An interesting alternative to this function is the

epidemic health function used by Cuddington et al. (1994). However, none of the two

functions is obviously better suited to modelling health processes then the other.

Finally, the limits that some readers may see for the Cass-Koopmans model

are of course also limits of our analysis. One of these limits is the absence of

endogenous growth. The transitional relation between health and technical change

will be an interesting subject for future research.
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Figure 1 Comparison of equilibrium points in perfect health and imperfect health

Figure 2 Stability of x and h, conditional on k
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C

Figure 3 Local dynamics of the optimal health and capital stocks
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Figure 4 Capital-healthy labour ratio driving optimum consumption
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Figure 5 Optimum health expenditure stabilised by capital and health growth
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Appendix A

The current-value Hamiltonian for the central planner’s problem is

})({}{
1

1
1

11
1

1

NnvNXKXcNNKe
c

H nt −−ζµ+δ−−−λ+
θ−
−= β−βα−α

θ−
 (A.1)

λ and µ  are the co-state variables. The first-order conditions are following:

0=λ−=
∂
∂ θ−c

c

H
(A.2)
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Solving A.2 for c and A.3 for x and using the definitions for k and h yields the canonical system:
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STEADY-STATE SOLUTIONS

In a situation of steady-state growth k, h, λ and µ  would have to be constant as would c and x.

µ=λ===== ˆˆˆˆˆˆˆ xchky (A.8)

From )4.( ′A  we get

α
δ+ρ=

k

y
(A.9)

Setting (A.7’) equal to zero yields

ζβ







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µ
λ β−
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(A.10)

Setting (A.5’) equal to zero yields (using A.9 in the second equation below)
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In order to get positive shadow prices the numerator must be positive. Equating (A.10) and (A.11) and

solving for h yields (where 1≤h  by definition)
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 (A.3), (A.10) and (A.12) yield a solution for steady-state health expenditure:
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Equations (A.9), (A.12) and the production function yield
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hk
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From production function and equation (A.9), it follows that
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We obtain the steady-state value of consumption and for λ  from equations (A.2) and )6.( ′A :
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Finally, (A.5’) or (A.11) yield
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Appendix B
The linearized form of the canonical system is
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Theorem.17

If the matrix J of the differential equations system given above, abbreviated as Jzz =� , has 2 eigen-

values with negative real parts and 2 eigen-values with positive real parts, then there will be a 2-

dimensional stable manifold in the vicinity of the origin such that solutions, which start in this

manifold, will converge to the origin.

                                                
17 We reproduce theorems 5.3 and 5.4 from Feichtinger and Hartl (1986) in the form that we apply it. It
is more general.
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Define ‘L’ as the sum of the principal minors of order 2.

Theorem.

The conditions L<0 and 0<det J ≤ L2 /4 are necessary and sufficient to get 2 negative and 2 positive

real eigen-values of J.

To get a simplified version of L, the following simplifying relations (B1-5) can be used18
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Note that the right-hand side values of (B.1) and (B.2) are identical.
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Using these relations the sum of principal minors of order 2 can be written as19
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18 They correspond to equations 5.34 in Feichtinger and Hartl (1986). Except for details in the middle
part of the equations they hold in general for canonical systems with U - n as the discount factor.
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The signs of the partial derivatives can be checked looking at the canonical system.

Exchanging the second and third column of J and also exchanging the second and third row of

J, using the definitions of the matrices A, B and C given in (B.6) allows writing J as a partitioned

matrix:
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h
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BD
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J

��

�
0

,

D is very similar to C and has the same determinant. It is well known that for this partitioned

matrix we can write the determinant as

CDABADCBABJ 11 −− −=−=

Unfortunately, three of the elements of B have the same sign as DA-1 C. Therefore we can proceed only

numerically. We do so in appendix C.

                                                                                                                                           
19 See Feichtinger and Hartl (1986) equation (5.37).



27

References

Barro, Robert J. (1991), “Economic Growth in a Cross-section of Countries”, Quarterly Journal of

Economics, Vol.106, pp. 407-443.

Barro, Robert J. and Xavier Sala-i-Martin (1992), “Convergence”, Journal of Political Economy, Vol.

100, pp. 223-251.

Barro, Robert J. and Xavier Sala-i-Martin (1995). Economic Growth, McGraw-Hill, Inc. U.S.A.

Bloom, David.E. and Ajay S. Mahal (1995), “Does the AIDS Epidemic Really Threaten Economic

Growth”, NBER Working Paper No. 5148.

Cass, David (1965). “Optimum Growth in an Aggregative Model of Capital Accumulation”, Review of

Economic Studies, Vol. (32), pp. 233-40.

Carrin, G. and C. Politi (1995). “Exploring the Health Impact of Economic Growth, Poverty Reduction

and Public Health Expenditure”, Tijdschrift Voor Economie en Management, Vol. 40, pp. 227-246.

Cuddington, John T.; Hancock, John D. and Rogers, Carol Ann. (1994). “A Dynamic Aggregative

Model of the AIDS Epidemic With Possible Policy Interventions”, Journal of Policy Modelling, Vol.

16(5), pp. 473-496.

Feichtinger, G. and R.F. Hartl (1986), Optimal Kontrolle ökonomischer Prozesse, de Gruyter, Berlin,

New York.

Inada, Ken-Ichi. (1963). “On a Two-Sector Model of Economic Growth: Comments and a

Generalisation”, Review of Economic Studies, Vol. 30, pp. 119-27.

Knowles, Stephen and Owen, Dorian P., (1995). “Health Capital and Cross-country Variation in per

Capita in the Mankiw-Romer-Weil Model”, Economics Letters, Vol. 48 (223), pp. 99-106.

Knowles, Stephen and Owen, Dorian P., (1997). “Education and Health in an Effective-Labour

Empirical Growth Model”, The Economic Record, Vol. 73 (223), pp. 314-28.

Koopmans, Tjalling (1965). “On the Concept of Optimal Economic Growth”, in The Econometric

Approach to Development Planning, Amsterdam, North Holland.



28

Lucas, R.E.Jr. (1988). “On the Mechanics of Economic Development”, Journal of Monetary

Economics, Vol. 22, pp. 3-42.

Mankiw, N.G., D. Romer and D.N. Weil, (1992). “A contribution to the Empirics of Economic

Growth”, Quarterly Journal of Economics, Vol. 107, pp. 407-437.

Mazumdar, Krishna. (1996). “An Analysis of Causal Flow Between Social Development and

Economic Growth: The Social Development Index”, American Journal of Economics and Sociology,

Vol. 55 (3), pp. 361-383.

Mushkin, S.J. (1962). “Health as an Investment”, Journal of Political Economy, Vol. 70, pp. S129-

S157.

OECD (1999). OECD Health data 1999: A Comparative Analysis of 29 Countries, Paris.

Schultz, T.W. (1961). “Investment in Human Capital”, American Economic Review, Vol. 51, pp. 1-17.

Turnovsky, S.J. (1981), The optimal intertemporal choice of inflation and unemployment, Journal of

Economic dynamics and control, 3, 357-84.

Yetkiner, I. H., J. Muysken, and T. Ziesemer (1999) “A Short Essay on Health and Growth”, Mimeo,

University of Groningen.

van Zon, Adriaan H. and Muysken, Joan (1997), “Health, Education and Endogenous Growth”,

MERIT, Working Paper No: 2/97-009, Maastricht, The Netherlands.


