
 

                                
 

 

 

 
 
 
 
 

#2016-048 
 

River deep, mountain high: Of long‐run knowledge trajectories 
within and between innovation clusters 
Önder Nomaler and Bart Verspagen 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
Maastricht Economic and social Research institute on Innovation and Technology (UNU‐MERIT) 
email: info@merit.unu.edu | website: http://www.merit.unu.edu 
 
Maastricht Graduate School of Governance (MGSoG) 
email: info‐governance@maastrichtuniversity.nl | website: http://www.maastrichtuniversity.nl/governance 
 
Boschstraat 24, 6211 AX Maastricht, The Netherlands 
Tel: (31) (43) 388 44 00 

Working Paper Series 



UNU-MERIT Working Papers 
ISSN 1871-9872 

Maastricht Economic and social Research Institute on Innovation and Technology 
UNU-MERIT 
 
Maastricht Graduate School of Governance  
MGSoG 

 
 
UNU-MERIT Working Papers intend to disseminate preliminary results of research carried 
out at UNU-MERIT and MGSoG to stimulate discussion on the issues raised. 
 
 

 
 



River Deep, Mountain High: 

Of Long-Run Knowledge Trajectories Within and 

Between Innovation Clusters1 
 

Önder Nomaler 

(Eindhoven University of Technology, ECIS & UNU-MERIT) 

Bart Verspagen 

(UNU-MERIT and Maastricht University, Department of Economics) 

 

Version 3.2, (final, September 2016) 

 

Abstract: 

 
We bring together the topics of geographical clusters and technological trajectories, and shift 

the focus of the analysis of regional innovation to main technological trends rather than firms. 

We define a number of inventive clusters in the US space and show that long chains of 

citations mostly take place between these clusters. This is reminiscent of the idea of global 

pipelines of knowledge transfer that is found in the geographical literature. The deep citations 

are used to identify technological trajectories, which are the main directions along which 

incremental technological progress accumulates into larger changes. While the origin and 

destination of these trajectories are concentrated in space, the intermediate nodes travel long 

distances and cover many locations across the globe. We conclude by calling for more 

theoretical and empirical attention to the “deep rivers” that connect the “high mountains” of 

local knowledge production. 
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1. Introduction 

The concentration of specific kinds of economic activity in small and confined geographical 

spaces is a long-lasting theme in the economics, business and geographical literature (cf. 

Marshall, 1890; Porter, 2000; Dicken and Lloyd, 1990). The development of new knowledge 

motivated by economic incentives is one of these activities that seem to be geographically 

clustered in a strong way (e.g., Storper, 1993). The literature on clusters of innovative activity 

suggests that a knowledge-based theory is needed to explain the more general trend of 

industry agglomeration (Malmberg and Maskell, 2002), or that the knowledge creating 

capacity of local clusters is decisive for growth and the long-run survival of the cluster 

(Bathelt, 2005).  

 

Traditionally, the explanation for the tendency clustering has been sought in the broad 

concept of agglomeration economies, i.e., the idea that by locating close together, firms may 

reduce production costs. Agglomeration economies comprise a wide variety of factors 

(Dicken and Lloyd, 1990), including the availability of raw materials, the availability of a 

pool of specialised labour, the possibilities for an advanced division of labour, and, 

specifically for innovation clusters, knowledge spillovers that are bounded by distance (Jaffe 

et al., 1993). The role of social networks and entrepreneurship has also been stressed as a 

factor explaining clustering of innovation activities (Sorensen, 2003).  

 

An important topic in the literature on innovation clusters is which specific aspects of the 

nature of knowledge give rise to clustering. The tacit vs. codified nature of knowledge may 

explain an important part (Gertler, 2003). The part of knowledge that cannot be codified, i.e., 

which is tacit, can most easily be transferred over small distances (by face-to-face contact). 

This gives rise to agglomeration economies in knowledge transfer and knowledge spillovers. 

The degree of complexity of knowledge has also been suggested as a factor in innovation 

clustering (Sorensen et al., 2006).  

 

The concentration of innovation activities in confined spaces may also lead to a particular 

interactive structure between firms and other actors (such as research institutes, universities, 

regional policymakers including investment agencies) that acts as a system. This introduces 

the notion of a regional innovation system (e.g., Morgan, 2004; Lau and Lo, 2015). The 

crucial aspect of these systems is that institutions (in the widest possible definition, i.e., 

including formal rules of the game as well as informal customs and habits) partly determine 

the performance of the system. This implies that there is a meso-structure to regional 

innovation systems, which surpasses the level of decision-making in individual firms.  

 

At an abstract level, what these approaches have in common is that they stress the importance 

of knowledge flows for the generation of new knowledge. Scientists and engineers that are 

engaged in the inventive process use existing knowledge to generate new ideas. In other 
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words, knowledge is cumulative. The combination of the cumulative nature of knowledge and 

the localised nature of knowledge flows gives rise to the existence of geographical clusters of 

knowledge production.  

 

But knowledge flows are not exclusively local. This recognition gave rise to the idea that 

firms use a combination of “local buzz and global pipelines” (Bathelt et al, 2004) for sourcing 

new knowledge as an input into their own innovation activities. The local buzz that firms find 

inside the cluster consists of easily accessible knowledge resources that are “just there”, like 

Marshall’s (1890) idea that the mysteries of trade are no longer mysteries but are “in the air”. 

Local buzz is the typical factor behind the success of Silicon Valley, where engineers, 

entrepreneurs and venture capitalists meet in bars and restaurants (Saxenian, 1994). Global 

pipelines, on the other hand, are consciously constructed and managed gateways to 

knowledge in different (long distance) localities. Strategic alliances (Owen-Smith and Powel, 

2004) have been analysed as a tool for building global pipelines. Bathelt et al. (2004) argue 

that the co-existence of a high level of local buzz and access to many global pipelines 

provides the best environment for economic success, both for individual firms, and for cluster 

regions. Bathelt and Glückler (2011) discuss the broader consequences of local buzz and 

global pipelines for the geography of innovation.  

 

The literature on innovation clusters, regional innovation systems, or local buzz vs. global 

pipelines, takes the firm as the key unit for analysing knowledge dynamics. The knowledge 

that this literature is interested in is economically motivated, and this makes firm decisions a 

logical starting point for the analysis. The novel contribution of the current paper is that we 

want to shift this focus from the firm to technology itself. We are not so much interested in 

the evolution of the firm population that invests in knowledge and that operates in local 

clusters, but rather in the way that technology itself evolves, and how this evolution interacts 

with space. The way in which we undertake this endeavour is to draw on an existing literature 

that conceptualises technological evolution as trajectories, and which quantifies these 

trajectories by using patent citations data. We will briefly summarise the main ideas in this 

literature below. 

 

Technological trajectories are accumulated chains of incremental innovations (we use patent 

data to measure these innovations) that display the dominant long-run developments in 

technology. Examples of technological trajectories include Moore’s law, which defines 

technological progress in personal computers, or the specific types of internal combustion 

engines used in motor cars. The idea of technological trajectories is important for analysing 

the main avenues along which technological change has an impact on the economy and 

society at large, including the firms that are the subject of the geographical literatures that 

were briefly referred to above. But when adopting a firm perspective, as much of the literature 

does, the main directions of technological change remain largely obscure.  
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The results of our analysis point to the importance of knowledge flows between local 

innovative clusters, rather than within clusters, for the development of technological 

trajectories. Although we confirm the strongly concentrated nature of knowledge generation 

activities, and of patent citations (which are the main unit of observation in our analysis), our 

results show that the accumulated knowledge flows between rather than within clusters are 

responsible for the main directions of technological change (the trajectories). This emphasis 

on between-clusters flows is reminiscent of the idea of global pipelines, but it differs in one 

crucial aspect. Whereas the global pipelines that firms use to access knowledge from far-away 

locations are consciously managed and constructed, the trajectories that we find emerge from 

collective rather than individual action. No single firm exclusively shapes a technological 

trajectory (see, e.g., the empirical evidence in Verspagen, 2007). 

 

The research here is a novel combination of existing research traditions that have so far not 

been combined at all. One overlap that can be observed between these literatures is the use of 

data on patents and patent citations, which is a (small) part of the geographical literature (e.g., 

Sorensen et al, 2006; Jaffe et al., 1993), and dominates the branch of the trajectories literature 

that attempt to quantify the main concepts in this tradition (e.g., Verspagen, 2007, Mina et al., 

2007; Nomaler and Martinelli, 2014). Another overlap lies in the use of formal network 

methods, e.g., Owen-Smith and Powell (2004) in the analysis of local buzz and global 

pipelines, while a specific form of network theory is the bread and butter of quantifying 

technological trajectories.  

 

Otherwise, the underlying units of analysis (relationships between firms and other 

organisation on the one hand vs. relationships between inventions on the other hand), and the 

disciplinary backgrounds (geography, business studies and economics on the one hand vs. 

economic history and technology analysis on the other hand) are very different between the 

fields of literature that we try to bridge. Fitting with the early stage of such an ambitious 

combination of literatures, our analysis will be mainly explorative in nature. We will try to 

operationalise various concepts and ideas from both literatures and bring them together in an 

empirical overview of the trends that are observed in our database. We leave a fuller 

development of truly integrative conceptualisations to a later stage, which we hope will be 

forthcoming on the basis of the interest in the empirical facts that we provide. 

 

Ultimately, what these empirical facts suggest is that the geographical concentration of patent 

citations that has been an important topic of the literature so far, is typical of individual small 

technological steps, while the main directions of technological change (trajectories) that are 

comprised of many cumulative incremental steps have a much wider spatial reach than is 

suggested by the analysis of patent citations by economic geographers. The underlying reason 

for this broader geographical reach lies in between-cluster knowledge flows. The collective 
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nature of these between-cluster flows adds a new dimension to the understanding of global 

pipelines that are analysed in a part of the geographical literature.  

 

The rest of the paper is organised as follows. In Section 2, we provide a short overview of the 

relevant literature on technological trajectories, including a discussion of the indicators used 

(patents and patent citations). Section 3 introduces the database, and Section 4 presents the 

methods used. Section 5 is the first one where we present novel empirical results. Here, 35 

inventive clusters in the US are presented, which will form the main unit of analysis in the 

remainder of the paper. Our analysis focuses exclusively on the US, because for this country 

we have data available that are broken down to the relevant geographical unit (counties). 

Section 6 looks at the geographical distribution of citations, both direct (which is the usual 

indicator of knowledge flow between localities), and so-called deep citations, which are our 

way of identifying technological trajectories. Section 7 looks in-depth at some of these 

technological trajectories, in this case between the largest of the 35 US inventive clusters. The 

concluding section 8 discusses how the evidence provided in our analysis has implications for 

the spatial nature of knowledge flows and knowledge production, and suggests directions for 

future research. 

 

2. Technological trajectories and patent citations 

The novelty of our research lays in the application of the idea of technological trajectories to 

the idea of innovation clusters, and in particular the quantification of a geographical 

dimension of technological trajectories. The notion of technological trajectories stems from a 

number of authors (in particular Dosi, 1982; Sahal, 1981) who analyse the history of 

technology from a strongly economic perspective. The central idea is that the economic 

impact of innovation takes place through a combined process of radical breakthroughs, 

incremental innovations and diffusion. This generates “technological paradigms” and 

“technological trajectories” (Dosi, 1982). By a technological paradigm, Dosi refers to a 

“model and pattern of solution of selected technological problems, based on selected 

principles from the natural science and on selected material technologies.” A paradigm is the 

set of technological opportunities that emerges from a radical breakthrough, such as the 

application of steam power to industrial processes, or the notion of mechanised calculations 

based on binary logic.  

 

The paradigm develops along a number of specific trajectories, which are accumulations of 

incremental improvements of a basic design. These incremental innovations are endogenous 

reactions to the specific circumstances in which the technology develops. For example, when 

labour costs are high and an important part of total production costs, the trajectory will likely 

take a labour-saving nature. This endogeneity of the main technological trends also implies 

that technological trajectories may lock-in to a particular direction, and ignore technological 

possibilities that lie further away in technological space (e.g., Arthur, 2014). As an 
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evolutionary process, technological change does not optimise globally, but adapts to local 

circumstances. 

 

An example of a technological trajectory is the famous “Moore’s Law” that describes the 

technological development of microprocessors (the law states that the number of transistors in 

a single integrated circuit doubles every two years). How different technological trajectories 

co-exist within the same paradigm is illustrated well by the example of steam engines. In one 

particular environment, trains, a trajectory of lean but powerful high-pressure engines 

emerged, while in the case of Cornish metal ore mines a completely different trajectory of 

very large engines with relatively low pressure developed (Nuvolari and Verspagen, 2009). In 

summary, a technological paradigm is a set of radical breakthroughs that defines 

developments in the techno-economic domain for the long run, while the technological 

trajectory adapts the paradigm to local circumstances through a series of cumulative and 

incremental innovations. Although made up of incremental steps, technological trajectories 

represent big changes over long periods of time. It is this kind of change that we are interested 

in here 

 

Verspagen (2007) and Mina et al. (2007), based on Hummon and Doreian (1989) pioneered a 

method to map technological trajectories using patent citations. Their approach focuses on a 

small pre-defined field (fuel cells in the case of Verspagen, 2007; and medical technology in 

the case of Mina et al., 2007), for which it identifies a number of citation paths that capture 

the largest amount of knowledge flows in the field. The current paper applies the same 

method, with further developments, to the phenomenon of spatial knowledge flows. Thus, our 

analysis makes the novel combination of mapping trajectories of knowledge in technological 

space, with trajectories of knowledge in geographical space. Moreover, instead of analysing 

the trajectories in a single technology field (which is the norm in the literature), we look at a 

much larger patent dataset that covers all trajectories in all technology fields in the period 

under consideration. 

 

The quantitative analysis of technological trajectories is mostly done with patent data, in 

particular with patent citations. These data are also used in the geographical literature on the 

concentration of patenting activities. Jaffe et al. (1993) found that in the US, distance is 

inversely related to the probability that two patents are linked by a citation. They control for a 

range of factors such as technology class and time, by matching actual citation pairs by pairs 

of patents that are similar in terms of these other variables, but do not cite each other, and then 

find that distance across the two patents in the pair is smaller in the group of patent citations. 

This result was confirmed in many follow-up studies, including other geographical areas, e.g., 

Maurseth and Verspagen (2002) and Bottazi and Peri (2003) for Europe.  
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The use of patent statistics in geographical analysis requires careful interpretation. Griliches 

(1990) discusses many aspects of patents as indicators. Perhaps the most crucial aspect of his 

discussion is the fact that patents are indicators of invention rather than innovation. They 

show the technical possibilities, but do not guarantee commercial relevance. In fact, many 

patents that are granted are not used commercially (Giura et al, 2007). This is more of a 

limitation for studies that aim at analysing the economic success of innovative firms, than it is 

for our study. As already explained, our emphasis is on technological trajectories, which 

represent the main directions of technology. Inventions are the basic unit of these trajectories, 

and whether or not these inventions are actually commercialised is of secondary importance 

as compared to a research design where the emphasis is on firms. That individual patents are 

the incremental steps that accumulate into a trajectory is consistent with the finding by Giura 

et al. (2007) and Gambardella et al. (2008), who show that most patents have small economic 

value, and provide small technological steps, with only a few very infrequent outlier patents 

representing radical change and large economic value.  

 

Griliches (1990) also stresses that the extent to which firms patent their inventions differs 

greatly between industries. For example, in pharmaceuticals, patents are of crucial 

importance, because a product that is not patented can easily be imitated, at lower costs, by 

competitors. In other industries, such as machinery, patents are less important, because 

competitiveness depends more on factors that are not described in the patent itself. Also, some 

inventions cannot (or could not) be patented, such as software in some jurisdictions. As a 

result of this, patents are very common in some industries, and not in others. This does affect 

our analysis, as the geographical patterns of patented inventions may differ from non-patented 

innovations.  

 

This literature has also addressed the issue of whether patent citations can actually be seen as 

a measure of spillovers or knowledge flows. This is, again, mostly relevant for studies that 

take the firm (or innovative efforts by the firm) as the main object of study. In many of those 

studies, for example when analysing the nature and causes of clustering of innovative efforts, 

the factor of interest are the flows that firms receive, and use to generate new knowledge. The 

implicit assumption is that patent citations indicate such flows, from the patent that is cited to 

the patent that is citing. The fact that many citations are added by patent examiners (instead of 

by the inventor herself), may be a reason in itself why the citation does not indicate an actual 

technology flow, as it seems to suggest that the inventor of the citing patent did not know the 

cited patent. This has been investigated, for example, by Thompson (2006) and Criscuolo and 

Verspagen (2008). The conclusion seems to be that although citations are noisy indicators, the 

conclusion of a geographical bias in knowledge flows stands even when only inventor-

citations are used.  
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For our purposes, when analysing technological trajectories, patent citations will be used as 

indicators of technological relatedness. The citing patent is related to the cited patent, even if 

the inventor did not make the citation, because it is the job of the patent examiner to judge the 

novelty of the patent, and citations are used for that purpose. It is this kind of technological 

relatedness that the trajectory approach uses to map the main directions of technological 

developments. We will use the term technology flows for this, even though we do not imply 

that a flow between two firms (or inventors) has necessarily taken place.  

 

3. Data 

We use the OECD REGPAT database, which contains patent-level information, with 

geographical information about the inventors and applicants of the patent. The patents in the 

REGPAT database are patents issued by the European Patent Office (EPO), or filed under the 

so-called Patent Cooperation Treaty (PCT), which allows just one application at one of the 

participating offices, and get patents in multiple jurisdictions. We focus on the US, in 

particular the part of the US located on the main North American continent, with the 

exception of Alaska. The geographical entities used in the REGPAT database are always 

administrative regions. In the US, the regions are counties. In other nations, the geographical 

entity tends to be much larger, which is why we focus on the US.  

 

We generally count patents in a fractional way, i.e., when there is more than one inventor, the 

patent is assigned to all geographical entities (regions) that the inventors come from, using 

weights that are proportional to the number of times a region appears on the inventor list. The 

same fractional procedure is applied to citations, which have a citing and a cited inventor list.  

 

We divide the total period for which we have data, which is 1973 – 2012, into sub periods of 

3 years, and focus on the time span that starts with 1986-88 and ends with 2004-06. The EPO 

only started in 1979, and had relatively few patent applications in the early years (before 

1986). From 2007-09, the number of patents declines due to a backlog in processing (our 

dates are priority dates, as close as possible to the date of invention). These trends, and other 

basic information about the data will be illustrated and discussed below in Figure 1. 

 

4. Methods 

We now proceed to summarise the methods. Many of the details are left for the annex.  

 

4.1. Identifying clusters  

The first step in our methodology is a workable definition to identify inventive clusters as the 

main geographical unit of our analysis. The geography literature, taking the firm as the unit of 

analysis, remains close to Porter’s (2000, p. 16) definition of a cluster as “… a geographically 

proximate group of interconnected companies and associated institutions in a particular field, 

linked by commonalities and complementarities.” Because we focus on patented inventions 
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instead of firms, the notions of interconnectedness, commonalities and complementarities are 

substituted by the intensity of knowledge flows, proxied by the number of citations. We 

define a cluster as a set of geographically close counties among which knowledge flows are 

particularly strong. The emphasis on knowledge flows in our procedure for identifying 

clusters not only stems from the common notion that knowledge is an input for producing new 

knowledge, but also from the idea of technological relatedness. Knowledge flows only 

between related inventions, and hence we also capture the presence of related activities in the 

cluster. High inventive activity is a necessary but not sufficient condition for strong 

knowledge flows.  

 

The cluster identification procedure is motivated by a broad analogy to the idea of 

metropolitan spaces, in which flows of commuter movements are concentrated (in our case, 

knowledge flows represent the commuter movements). The clusters are groups of spatially 

contiguous counties with high patenting activity and intensive knowledge flows between 

them. We look at citations and patents in the period 2001-06. The citation matrix, which is 

directed, gives the number of citations between the US counties. We standardise all cells in 

this matrix as follows: ܿݏ௜௝ ൌ ൫ܿ௜௝ ሺ݌௜݌௝ሻ⁄ ൯ ሺܿ ⁄ଶ݌ ሻ⁄ , where c is the number of citations, p the 

number of patents, the subscripts i and j indicate counties, and the absence of a subscript 

indicates an aggregation of counties.  

 

The standardisation expresses the number of citations between a pair of counties relative to its 

expected value, if citations were completely random (within the US). In this context, “random 

citations” means that the relative frequency of citations between a pair of counties is equal to 

the product of the shares of patents in the two counties. In other words, the more patents there 

are on either side of the citations relationship, the higher the number of expected citations is. 

A value lower (higher) than 1 for the standardised citations number indicates less (more) 

citations than expected randomly. We then binarise the matrix by setting all cells that are 

larger than 1 to 1, and all other cells to 0. We further thin out the number of ones in this 

matrix by setting to 0 all cells for which the original number of citations was less than 1, and 

all cells for which the patents for either the row-county or the column-county is less than 1. 

The latter part of the procedure is intended to ignore all counties that have very little inventive 

activity. 

 

In this matrix, we check the geography of all cells with a value of 1. If the row- and column 

counties for such a cell share a border (we use queen contiguity), we put these counties on a 

preliminary list. We plot the counties on the list on a map, and check for contiguous areas, 

which are defined as the clusters. There are 30 clusters that appear in this way, of which 16 

have two counties, and the largest cluster has 30 counties. We increase the number of clusters 

to 35 by merging two clusters that are separated by a sea border, and by including a number of 
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single counties that have an exceptionally large number of patents, and high internal 

knowledge flows. This is described in detail in the annex.  

 

4.2. Deep citations 

The next step in the methods is to associate the clusters, or geographical space in general, to 

technological trajectories. As technological trajectories are defined as citation chains (this will 

be explained in more detail below), we need a way to associate these chains to geography. For 

this we will use what we call deep citations. A very simple example is where patent A in 

region 1 is cited by patent B in region 2, which is in turn cited by patent C in region 3. The 

knowledge flow is then A(1)  B(2)  C(3). In terms of the start- and endpoint of this 

example path, we see a “deep” knowledge flow from region 1 to region 3. However, because 

patents usually cite more than one other patent, we need a way to conceptualise the complex 

networks that arise in the real world. 

 

We implement the deep citations idea by looking at all patents in the last 3 years of the period 

that we used to construct the clusters (2004-06), and chart their “ancestry” in terms of patents 

from 1986-88. We use a calculation that was pioneered by Martinelli and Nomaler (2014), 

and that is akin to genealogy. It considers cited patents as the “parents” of the citing patent, 

and attributes a “parenthood” share of 1/n to each cited patent, where n is the total number of 

citations made by the “child.” By multiplying the direct ancestry shares of different 

generations, we trace the ancestry across generations. For example, in the genealogy of 

human reproduction, the share of each parent would be 1/2, the share of each grandparent 

would be 1/4, and the share of each great-grandparent 1/8, etc. For the patent case we 

continue tracing back generations as long as we have not yet reached a patent in the period 

1986-88. Obviously, this uses both long and short citation paths, including direct citations 

between the two periods (i.e., paths of length 2, which do exist but are rare). Also, not all 

patents from 2004-06 have ancestry in 1986-88, and we simply ignore those patents that do 

not have this. 

 

4.3. Technological trajectories in sandwich networks 

The deep citations represent all citation paths that exist in geographical space, but 

technological trajectories are selective important pathways from this large set. The idea is that 

only those deep citation chains that embody the highest amount of knowledge flows are 

representative of the main trends in “technology space”, i.e., the trajectories.  

 

Our method for identifying the trajectories is based on the methods proposed by Hummon and 

Doreian (1989), Verspagen (2007) and Liu and Lin (2012). The patent citation network is 

directed (knowledge flows from the cited to the citing patent), and also a-cyclical (starting at 

one node of the network, a path can never return to that node). Two classes of nodes (patents) 



 

10 
 

are of particular interest. A start-point is a patent that is cited, but does not cite any patents. 

An endpoint is a patent in 2004-06 that cites other patents, but is not cited itself.  

 

For every citation in the network we calculate the so-called SPNP (Search Path Node Pair) 

indicator proposed by Hummon and Doreian. SPNP for the citation of patent p in patent q is 

counted as follows. First, count all patents in the network for which a path to p exists 

(including p itself). Then count all patents that can be reached from patent q (including q 

itself). SPNP is the multiplication of these two counts. It is the number of pairs that can be 

formed by the patents “upstream” and “downstream” the citation. Next, we identify for every 

start-point in the network the path (ultimately leading to an endpoint) that maximises the 

multiplication (sum of logs) of the SPNP values along the path. Such a path is called a main 

path.  

 

While we will look at deep citations (the “prequel” to trajectories) at the scale of the entire US 

inventive space, the specific attributes of trajectories (main paths) are hard to summarise for 

the entire space, or even the entire list of 35 clusters. Therefore, we look at pairs of the 

clusters. We start with the full set of patents that forms the entire network of deep citation 

paths between two specific clusters, and find the main paths (trajectories) in this network. The 

technological trajectories that we find are therefore true geographical trajectories, as they run 

between two spatial units. For each pair of spatial clusters we extract the set of citations that 

connect the patents in period 2004-06 in the “to” cluster to patents in 1986-88 in the “from” 

cluster. This large network, which in-between the start- and endpoints of the citation paths 

contains many patents not invented in either the to- or from-cluster, is what we call the 

sandwich network for the specific pair of clusters that we are considering.  

 

5. The US inventive landscape 

The starting point of our analysis is the characterisation of the US patenting geography by 

spatial clusters, which embody the peaks in the technological landscape. Map 1 displays the 

number of patents per county in 2001-06. White areas indicate zero patents, for coloured areas 

the number of patents increases (roughly exponentially) with darkness. The clusters, identified 

by the procedure explained above, are displayed in Map 2. Table 1 lists the clusters and gives 

summary statistics.  

 



 

11 
 

 
Map 1. Number of patents per county, 2001-03 and 2004-06 (white areas indicate zero patents, 
for coloured areas number of patents increases with darkness) 

 

Comparing Map 2 and Map 1, we see that there is a large correlation between the number of 

patents in a county and cluster membership: almost all of the dark areas in Map 1 are also 

marked in Map 2. Note that this correlation is in no way obvious, as the cluster identification 

is primarily based on citation intensity, not number of patents (in fact, the number of patents 

is penalised, as the benchmarking of citation intensity divides by it). The number of patents in 

the table (2001-06 period) is distributed rather unequally over the 35 clusters. The largest 

cluster, i.e., the East coast, holds about 26% of the total, the smallest cluster (Nashville) just 

under 0.1%. The three largest regions account for just over half of the patents, the bottom-10 

clusters for just over 4%. Thus, in terms of the sheer numbers, the inventive landscape in the 

US is very peaked, with a small number of leading clusters with very high inventive activity, 

a larger group of followers, and the far majority of counties (outside the clusters) contributing 

very little.  
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Main city/geographical name Number of counties Number of patents

East coast (Boston, New York City & Philadelphia) 34 25348 
San Francisco 7 13862 
Los Angeles & San Diego 6 11635 
Phoenix 1 5649 
Minneapolis 7 4331 
Chicago 5 3547 
Seattle 2 3534 
Houston 5 2485 
Detroit 5 2394 
Durham/Chapel Hill 3 2332 
Cincinnati 6 2010 
Rochester 4 1743 
Cleveland 5 1583 
Dallas 2 1268 
Atlanta 3 1250 
Portland 3 1137 
Austin 2 998 
Montgomery/Washington 1 991 
Pittsburgh 1 959 
Madison, Wisconsin 2 930 
Fort Lauderdale & Palm Beach 2 877 
Boulder 2 845 
Buffalo 2 815 
Indianapolis 2 796 
St. Louis 2 739 
Benton 1 643 
Kingsport 2 597 
Salt Lake City 1 494 
Schenectady &Albany  3 490 
Milwaukee 2 451 
Columbus 2 443 
Appleton 2 390 
Saginaw/Midland 2 356 
Huntsville 2 226 
Nashville 2 99 

Table 1. Clusters and summary statistics 
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Map 2. 35 clusters, 2001-03 and 2004-06 

 

 

 

6. The geography of direct and deep citations  

By definition, patent citations are concentrated in the 35 clusters that were identified above. 

Thus, it is not surprising that direct citations are concentrated within these clusters. However, 

this is much less obvious for the deep citations (the stuff that trajectories are made of). 

Because of the indirect linkages that they embody, we may expect that the distribution of the 

deep citation chains is much less concentrated within single clusters than the direct citations.  

 

As we are interested in comparing distributions of direct and deep citations, we need a 

benchmark to judge their geographical concentration. Like we did in the procedure that 

identified the 35 clusters, we construct such a benchmark by referring to the idea of random 

citations. In this case, it simply means that we break down the total number of cited patents in 

a specific cluster into the following categories: (i) from within the cluster itself, (ii) from other 

clusters (between), (iii) from US counties that are not part of a cluster, and (iv) non-US 

countries. The random chance that each of those categories is cited is simply their share in 

total patents, and this is our benchmark.  
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Figure 1. Number of patents in the database 

 

Figure 1 displays the trends in the number of patents for the sub groups of the US cluster 

regions, the other US counties, and non-US patents. The figure illustrates how the benchmark 

matters. For example, the number of foreign patents is much larger than that of US patents 

(the share varies between 67 and 80% over the entire period), and hence the benchmark 

expects that foreign patents are the largest category in citations made by US patents. Within 

the US, the 35 clusters always take the majority of patents: 24% of the total in 1992-94 and 

18% in 2004-06. In interpreting the trends in Figure 1, remember that the identification of the 

35 US clusters was based on patents and citations in the sub period 2001-06 and that deep 

citations go back to the period 1986-88.  

 

Figure 2 compares the distribution of direct citations and deep citations. The figure looks at 

citations made by (knowledge flowing into) the group of 35 US clusters in the period 2004-

06. The top panel shows the distribution of these citations over the four categories. The sum 

of each colour of the bars is one.  
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Figure 2. The distribution of direct and deep citations (top panel gives share of all citations, 
bottom panel is relative to the benchmark) 

 

Direct citations in the short run are citations made in 2001-06, where both the citing and cited 

patent are from this period. This the same set of citations that were used to identify the 

clusters and hence we know that they are strongly spatially concentrated. The category of all 

direct citations includes the entire period 1986-2006, and hence also includes citations over 

longer time spans than the first category. We see in the top panel that all types of citations are 

clearly dominated by foreign sources, followed by US clusters (between), and the cluster itself 

(within). Other US regions are the smallest category.  

 

The bottom panel of the figure invokes the benchmark, by subtracting from the values in the 

top panel the expected share of citations.2 This clearly brings out the differences between the 

                                                            
2 For deep citations, we also use the benchmark constructed on the basis of citations in the 1986-1988 period. 
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types of citations. Direct short-run citations are very much biased to the own cluster (within), 

much less so but still positively towards other US clusters (between) and US non-cluster 

regions, and negatively biased towards foreign patents. If we include longer-run direct 

citations, the bias for the own cluster remains but is weaker, while that of other US clusters 

increases slightly, and the bias to foreign patents become much less negative. The deep 

citations re-enforce this trend. Here the bias to the own cluster is still positive, but smallest 

among the three citation types. The bias towards foreign countries is still negative, but the 

absolute value is again smallest among the three types. However, the bias towards other US 

clusters (between) is largest and positive.  

 

In conclusion, looking at deep citations, we find that these have a broader geographical spread 

than direct knowledge flows. Although deep citations are still biased to within-cluster flows, 

they are less so than direct citations. On the other hand, deep citations are also biased, and in a 

stronger way than direct citations towards flows between clusters. The technological 

trajectories that we are after are a subset of the deep citation chains analysed in this section, 

thus we conclude that the argument of strongly localised knowledge spillovers seems much 

less relevant for the case of technological trajectories than it is for the incremental changes 

associated with direct citations.  

 

7. Technological trajectories 

We now make the final step of our analysis and extract the actual technological trajectories 

from the entire set of deep citation chains. Because the category of flows between and within 

US clusters stands out in magnitude (Figure 2), we focus on this particular category. Results 

so far only consider the start- and endpoints of the deep citation chains. We now also look at 

the intermediate nodes on the deep citation chains, to be able to assess which are the main 

trajectories that cumulative knowledge development takes, and how these trajectories unfold 

in geographical space.  

 

 
Figure 3. Top main path in the East coast-to-East coast sandwich network (nodes are patents, 
lines are citations; main path is indicated with arrows and bold lines) 
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Figure 3 shows an example of a main path (trajectory), in this case the one that was identified 

within the East coast-to-East coast sandwich as the main path with maximum multiplicative 

SPNP. The figure illustrates how the complexity of the underlying network of patent citations 

can be reduced to a main path or trajectory that highlights the main trends in technology 

space. The network in the figure is the network of all patents (and citations) in the sandwich 

that links the start- and endpoint of this main path. Many of the patents in this network, 

including those on the main path, are patents from a different geographical location than the 

East coast cluster itself. The main path itself, which consists of 19 patents, contains a 50% 

share of European inventors, a 30% share of inventors from the 35 US cluster regions, and a 

10% share of inventors from US non-cluster regions.  

 

The particular main path in the figure is a trajectory in pharmaceuticals. It starts with four 

patents on drugs against hypertension and heart disease, then three patents that broaden the 

range of diseases (including HIV, depression, migraine and psychosis), and finishes with a 

range of patents on anti-cancer drugs, in particular protein kinase inhibitors. The trajectory 

has many different firms, including big pharmaceutical firms such as DuPont, Merck, and 

Glaxo, specific gentech firms (AmGen), and smaller pharmaceutical firms (such as the Danish 

Neurosearch).  

 

The sandwich networks are usually large networks, and hence we cannot look at all 1,225 

pairs formed by the 35 clusters. Instead, as a sort of case study, we focus on the 16 pairs 

between the largest four clusters: East coast, San Francisco, Los Angeles/San Diego and 

Seattle. The 16 sandwich networks together comprise 23,060 main paths. We characterise 

these main paths by the share of patents from each of a set of 39 geographical entities (35 US 

clusters; US non-cluster regions; Europe; Japan; and rest of the world). The 35 US clusters 

together are the largest category, with a share slightly above one third. Europe follows in 

second place, with a share just under one third. The other three categories are markedly 

smaller, with US non-cluster counties as the largest (11%) of these three small categories. 

 

In order to interpret the variety in the composition of the main paths in the sandwich 

networks, we undertake a cluster analysis, which classifies the 23,060 main paths into a small 

amount of groups. We use k-means cluster analysis, and settle for a division into 8 groups. 

Choosing 8 groups (k = 8) is somewhat arbitrary, but we considered alternative groups (k = 

2..10). Less than 8 groups forces some of the interesting between-group heterogeneity that 

will be discussed below into a single group, while k = 9 of 10 does not add qualitatively 

different insights on the role of US cluster regions, which will be the main focus of our 

discussion. We have one large group (about one third of all main paths), which is group 2. 

Together with the next two largest groups (1 and 4), this group covers almost two thirds of all 

main paths. The remaining 5 groups vary between 9% and 5% of the total.  
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Figure 4 characterises the groups in terms of their composition. Remember that the full detail 

of the 35 US clusters, plus the 4 other categories, was used to classify the main paths (i.e., to 

form the groups). Figure 4 displays the mean scores in each of the 5 categories in the group, 

with the sample average subtracted. Hence a positive value indicates specialisation into this 

particular category. 

 
 

 
Figure 4. Group characteristics in the cluster analysis (deviations from total sample means) 

 

Group 2 is the one that has the most homogenous distribution over the 5 categories. It is most 

clearly specialised in European contributions to the main paths, but much less so than group 1. 

It is also slightly specialised in US non-cluster regions, but much less so than group 8. The 

other groups, including groups 1 and 8, are specialised in only a single category. In group 1, 

which is one of the larger groups, this is Europe. In group 3, a small group, we have 

dominance of Japanese patents, in group 6 (also small) dominance of patents from the rest of 

the world. Groups 4, 5 and 7 are dominated by US cluster regions. Of this, group 4 is 

relatively large, the other two are small. Group 8 is dominated by US non-cluster counties. 

 

The three groups that are specialised in US cluster regions (4, 5 and 7) can further be 

described by looking at which clusters play a role. We define an indicator that is akin to the 

revealed comparative advantage indicator to investigate this. It is defined as ࢐࢏ࡾ ൌ

૚૙૙ ൈ ࢐࢏ࡿ ⁄࢏ࡿ , where i (1-35) indicates a cluster region, j (4, 5 or 7) is a group from the cluster 

analysis, ࢐࢏ࡿ is the share of cluster i in the total contributions of the 35 clusters to the main 

paths in the group j, and ࢏ࡿ is the share of cluster i in the contribution of the 35 clusters to all 
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(23,060) main paths. A value above (below) 100 indicates a relatively high (low) contribution 

of the cluster to the group. 

 

Map 3 displays the profile (R values) of group 4, which is the largest of the three US cluster-

based groups. The blue colour in the map indicates clusters that have a strongly below 

average contribution to this group (R < 75), cyan indicates 75 < R < 100, i.e., a mildly below 

average contribution. The other colours indicate R > 100, with yellow 100 < R < 150, orange 

150 < R < 200 and red R > 200.  

 

 
Map 3. Specialisation profile of group 4 

 

The map shows that group 4 is strongly influenced by the large East coast cluster. It is the 

only red cluster on the map. There are only 6 other clusters with R > 100 in this group, based 

in the East side of the country. The entire West coast and most of the Midwest and South have 

R < 100. We can conclude that this is a rather specialised group, in which main paths are 

strongly concentrated in relatively few clusters. Besides the East coast clusters, the clusters in 

this group with R > 100 are small clusters, i.e., they are low on the list in Table 1. The yellow 

clusters are Durham/Chapel Hill (ranked 10 in the table), Atlanta (rank 15), and Milwaukee 

(rank 30). The orange clusters are Buffalo (rank 23), Huntsville (rank 34) and Nashville (rank 

35). It seems that these smaller clusters are strongly dependent on the large East coast cluster 

in terms of being present on the main paths that connect our large clusters in the US inventive 

system.  
 

Similar maps for groups 5 and 7 confirm the impression from Map 3. Thus, the evidence 

suggests that these main paths themselves are clustered, instead of consisting of evenly 

distributed geographical patterns. The main trajectories of knowledge development are like 

selective rivers unfolding in space, rather than like the wind that blows broadly in a wide 

circle. The clusters of the US inventive landscape each play a particular role in these deep 

rivers of main technological trends.  
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8. Discussion and conclusions 

We looked at the geography of technological change, taking a technology perspective rather 

than the usual perspective of organisations (firms). We use patents and patent citations as the 

indicator of technological change. Previous findings in the geographical literature have 

focused primarily on the strong geographical concentration of patent citations (Jaffe et al., 

1993), which is in line with the idea that innovation takes place mostly in spatial clusters (cf. 

Malmberg and Maskell, 2002). Our analysis confirms this strong geographical concentration 

of patent citations, but in our technological perspective, we interpret it as applying mainly to 

incremental steps in technological space.  

 

The more substantial part of our analysis looked at accumulated sequences of these 

incremental direct citations. We call these long-run citation chains deep citations, and we find 

that these deep citations are especially strong between US incentive clusters, even though 

within-cluster flows are also important in deep citations (but less so than between-cluster 

flows). The deep citation chains, by their accumulation of incremental steps, also cover longer 

technological distances, i.e., they represent cumulative change along which technology takes 

big steps in the long run. We use methods from a separate literature that uses network theory 

to map the major trajectories in technological space as the citation chains that attract most 

knowledge flows in the network of direct citations. By identifying those deep citation chains – 

the main paths – that capture the largest flows of knowledge, we are able to focus on the 

particular trajectories of knowledge development that embody the strongest long-run forces of 

technological change.  

 

Our main finding is that technological trajectories develop between innovation clusters rather 

than exclusively within clusters. This is akin to the idea that firms in clusters construct and 

manage global pipelines for knowledge transfer in addition to the local buzz that they find in 

their own cluster (Bathelt et al., 2004). But contrary to the global pipelines, technological 

trajectories are a result of collective efforts of firms (and other organisations), and they 

develop in an evolutionary way as accumulated local change, without a top-down design 

process. In such an evolutionary process, the forces of change do not likely lead to an 

outcome that is fully optimal in the sense that economic theory usually assumes. Instead, we 

may see situations in which firms and other organisations are adapted to local circumstances, 

including the strategies of their competitors. This may well lead to a situation of lock-in, in 

which inventors in a particular combination of local clusters jointly focus on a particular 

technological direction, whereas technological solutions may also be found in other parts of 

technological space.   
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The combination between the regional cluster literature and the technological trajectories 

literature is a novel one. Our results suggest that the geographical dimension is important for 

the construction of technological trajectories. When a technological trajectory develops, it 

does so along a specific spatial trajectory. This spatial trajectory mostly consists of chains of 

patents from inventive clusters. In other words, the results from the technological cluster 

literature have a strong relevance for the analysis of technological trajectories. The way in 

which firms use local buzz and build global pipelines will have a strong influence on how 

trajectories develop. On the other hand, the development of the technological trajectories that 

the firm is interested in will also determine how it builds its global pipelines of knowledge 

transfer, and where it will seek local buzz.  

 

This raises questions about firm behaviour in the field of technological choice. Which kind of 

technological resources do firms seek locally, and which ones are sources through global 

pipelines? Can we even generalise about the answers to these questions, or do the answers 

differ between geographical locations (clusters)? In general, we suggest that theoretical and 

empirical work on the geography of innovation takes into account the idea of technological 

trajectories to develop a more coherent framework for understanding the geographical 

dimension of technology. For example, the narrative often goes that many of the important 

trends in ICT come from Silicon Valley, but our results suggest that these trajectories have a 

much wider geographical base, and are influenced by the global location decisions of firms.  

 

Such a combination of theories of geography and technology may also yield new insights into 

theorising about technology itself (e.g., Arthur, 2014). It is likely that technological 

specialisation will play a large role in such a theoretical framework. Because of computational 

constraints, we have been unable to investigate the role of this factor. However, it is clear that 

knowledge flows are dependent on technical relations between technology fields, and hence 

the technological specialisation pattern of a cluster will determine from where it can receive 

the major parts of its technology inflows.  

 

The technological profile of an innovation cluster is, however, not an exogenous factor. 

Instead, it emerges historically as a result of interaction between local and external actors 

(inventors, firms, research institutes), and the progress of technological trajectories. 

Therefore, the technological specialisation pattern of inventive clusters will never be the 

ultimate explanation for the spatial concentration of deep citations. It is a factor that needs to 

be explained itself, interwoven with the explanation of the concentration of deep citations 

itself.  

 

Reasoning in the tradition of the innovation clusters literature and the technological 

trajectories literature would suggest, in our view, that path dependency and lock-in play a role 

in this process. Innovation clusters depend on interaction (locally and over longer distances) 
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that re-enforces itself by repetition and adaptation. Actors in a local cluster develop routines 

that become highly specific to their situation. By evolutionary selection, these routines are 

optimised to become a local fitness maximum, which is specific to the local cluster. 

Knowledge exchange between local actors and with a selective number of actors outside the 

local cluster becomes a crucial part of the inputs into the cluster. Obviously, this is a dynamic 

process, in which change is the norm rather than static equilibrium. Similarly, progress along 

technological trajectories is cumulative and path dependent. Our analysis suggests that the 

explanation of regional innovation clusters, their interaction, and of technological trajectories 

may benefit from more theoretical and empirical linkages between the regional innovation 

literature and the idea of technological trajectories. 
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Annex A1. Method of defining the clusters and related descriptive information on 
citation flows 

 

Clusters are defined on the basis of direct citations only between patents of non-zero US 

identity. We count patents and citations fractionally. Consider a patent k, applied for at time 

cohort t2, having Mk inventors out of which ௞ܰ
௜ ൑ ௞ܯ  report addresses that belong to US 

county Ri. This patent is considered as an 
ேೖ
೔

ெೖ
 patent of county ܴ௧ଶ

௜ . Further assume that this 

patent cites Sk other patents, one of which is a patent applied for at time cohort t1 having Mm 

inventors out of which ܰ௠
௝ ൑  ௠ report addresses that belong to US county Rj. This citationܯ

adds  
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            EQ 1  

 

(fractional) units of direct knowledge flow from county Rj of time cohort t1 to county Ri of 

time cohort t2. Accordingly, the direct total knowledge flow (i.e., fractionally-counted 

citations) from county Rj of time cohort t1 to county Ri of time cohort t2 is  

 

࢐,࢏ࢉ
࢚૚,࢚૛ ൌ ∑ ሺ ࢐,࢏ࢌࢊ

࢚૚,࢚૛ሻ࢓
࢑

࢑,࢓∀ ,         EQ 2 

over all patents k applied for at time cohort t2, and all patents m applied for at time cohort t1. 

 

A stylized illustration is based on the graph representation a hypothetical citation network 

depicted in Figure A2.1. This toy citation network has 14 patents belonging to various time 

cohorts (T1, T2, T3 and T4) and various counties (C1, C2 and C3). For illustrative 

convenience, we assume in this stylized example that a patent belongs 100% to a single 

county. The network nodes that represent the patents are labeled in a way that identifies the 

time cohort of application, the county of origin and the patent number. For example the label 

T2_C3_P7 indicates patent number 7 which was applied for at time cohort number 2 and 

invented by someone from county number 3. The nodes are organized on the graph diagram 

in such a way that patents of the same time cohort are vertically aligned, and the vertical 

position is inversely related to the index number of the county of origin. 
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 Figure A1.1. A hypothetical citation network of 14 patents  



 

27 
 

 

Table A1.1 shows the fractionally-counted direct citation flows ( ݀ ௜݂,௝
௧ଵ,௧ଶ

௠
௞  in Equation 1) 

implied by this hypothetical network. Cell values indicate knowledge flows from row entities 

to column entities. As an example, let us focus on patent m=P8 (i.e., T3_C2_P8) which has 

three citations, one to k=P4 (of T1_C2), one to k=P6 (of T2_C1), and one to k=P7 (of 

T2_C3). In our fractional system of accounting, each of these three citations imply a 

knowledge flow of 1/3=0.3333 to patent number 8, which are to be found on 4th 6th and the 7th 

rows of the 8th column of the numerical area of the table, which has the column label P8. 

Values in table A1.1 correspond to the variable ݀ ௜݂,௝
௧ଵ,௧ଶ

௠
௞ ൌ ଵ

ௌೖ
 defined with EQ1. 

 

 
Table A1.1. Fractional accounting of the direct citation flows in the stylized citation network 

depicted on Figure A1.1 

 

 
Table A1.2. Direct citation flows on Figure A1.1 aggregated from the patent-level into time 

cohort-county combinations. 

C2 C3 C1 C3 C2 C2 C3
P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14

P1 1

P2 0.5

P3 0.5

C2 P4 0.333 0.5

C3 P5 0.5

C1 P6 0.333 1

C3 P7 0.333 1

C2 P8 1 0.5

P9 0.5

P10 1
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T1 T2 T3 T4
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C2 0.33

C3 0.5

C1 0.33

C3 0.33

C2 0.5

C2
C3

T4
C1

0.5 1
T3

1

C3

T2
1

1

0.5

0.5 0.5

T1
C1 1

T1 T2 T3 T4
C1 C3 C1
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The numerical area of the table is in fact the citation matrix that underlies the graph in Figure 

A1.1, but column normalized. For N given patents, the citation matrix is the NxN square 

matrix A, where Amk=1 if patent k cites patent m, and 0 otherwise. Thus, the number of 

citations made by a patent k is the sum of the kth column of A. In the notation of EQ1, 

௞ݏ ൌ ∑ ௠௞∀௠ۯ .  

 

Aggregation of the flows in Table A1.1 from the patent level to the level of the time cohort-

county combinations, which is the operation implied by EQ2, leads to Table A1.2. Observe 

that the entries of Table A1.2 directly correspond to the variable ܿ௜,௝
௧ଵ,௧ଶ defined earlier. For 

example, the value 0.5 which one finds on the 2nd row of the 5th column of the numerical area 

in Table A2.2 would correspond to ܿ஼ଶ,஼ଷ
்ଵ,்ଷ. 

 

It can easily be observed that our hypothetical citation matrix indicates a higher number of 

short-run citations than citations of longer-run. That is, the majority of the citations go from 

patents of T4 to patens of T3, from patents of T3 to patens of T2, or from patents of T2 to 

patents of T1. Out of the 14 citations (which is only coincidentally equal to the number of 

patents), none span a time lag of 3 periods, and only four citations span a time lag of 2 periods 

(P11 citing P6, P8 citing P4, P9 citing P2 and P4), whereas the rest span only a lag of 1 time 

period. This is similar to what one observes generally in our dataset where the majority of the 

citations span a period of 3 to 6 years. For the clustering of the US counties, we consider the 

short-run citations of all patents of the time cohort 2004-2006. Accordingly, the two time 

cohorts considered for the clustering are t1= [2001, 2006] and t2 = [2004, 2006].  

 

For the two above-mentioned time cohorts, the dataset reports respectively 123,108 and 

114,878 US patents, counted fractionally as explained above. Out of the 3,234 US counties, 

only 1,464 and 1,436 have more than 1.0 (fractionally-counted) patent in the two respective 

time cohorts. This implies 1,436x1,464 (approximately 2.1 million) pairs of US counties 

between which knowledge flows can potentially be observed. Out of this potential however, 

we observe only 38,980 pairs between which there is some flow, exhibiting a highly skewed 

distribution. The total knowledge flow from all US counties of time cohort t1 to all US 

counties at cohort t2 is about ܿ ൌ ∑ ܿ௜,௝∀௜,௝ ൌ24.5420 fractionally-computed citations. If we 

ignore the flows where the knowledge flow between the county pair is less than 1.0 

fractionally-computed citation (i.e., flows only where cij>1), the number of county pairs drops 

to 3,464 and the total US flows to 15,435 fractionally-computed citations. 

 

Our algorithm to cluster counties on the basis of the citation flows is based on our definition 

of the ‘supra-normality’ of citation flows, which in turn, is based on the expected number of 

citations. Given c citations actually observed between 2001-2006 patents of all US counties, if 

the number of citations made by a county was proportional to the county’s share in all patents 
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of the destination period (i.e., 
௣೔
೟మ

௣೟మ
) and the number of citations received by a county was 

proportional to the county’s share in all patents of the source period (i.e., 
௣ೕ
೟భ

௣೟భ
), then the 

expected number of citations between the period t1 patents of county Rj and period t2 patents 

of Ri is 

 

࢐,࢏ࢉ൫ࡱ
࢚૚,࢚૛൯ ൌ ࢉ

࢐࢖
࢚૚

૚࢚࢖
࢏࢖
࢚૛

૛࢚࢖
                    EQ 3 

 

On the basis of this expected number, we define a “supra-normal knowledge flow” as the 

phenomenon where, for a given pair of counties i and j, the actual citation flow ܿ௜,௝
௧ଵ,௧ଶ is higher 

than the expected flow ܧ൫ܿ௜,௝
௧ଵ,௧ଶ൯. More formally, for the following metric  

 

࢐,࢏࢙ࢉ
࢚૚,࢚૛ ൌ

࢐,࢏ࢉ
࢚૚,࢚૛

࢐,࢏ࢉቀࡱ
࢚૚,࢚૛ቁ

ൌ
࢐,࢏ࢉ
࢚૚,࢚૛

࢐࢖
࢚૚࢏࢖

࢚૛
૛࢚࢖૚࢚࢖

ࢉ
,        EQ 4 

 

supra-normality of the citations between counties i and j is defined as the condition  

 

࢐,࢏࢙ࢉ
࢚૚,࢚૛ ൐ 1.            EQ 5 

Figure A1.2 depicts the relation between the supra-normality of flows ܿݏ௜,௝
௧ଵ,௧ଶ	and the joint 

sizes of the underlying county pair (i.e., ݌௝
௧ଵ݌௜

௧ଶ, as implied multiplicatively by the expected 

flow equation above). Both magnitudes exhibit a highly skewed distribution over the county 

pairs. The larger/darker points belong to county pairs that are immediate neighbors to each 

other. 

 

There are two highly interesting facts that catch attention. First, the frontier of supra-

normality of citation flows is not determined by the immediately contiguous county pairs. 

However, further analysis (not fully reported here) indicates that the county pairs at the 

frontier are generally characterized by quite low geodesic distances between the underlying 

counties of the pair. Second, the lower right part of the chart indicates that there exists a large 

chunk of large-sized (in terms of patenting activity) county pairs which are characterized by 

less-than-expected (slightly-more-than-expected) citation flows and none (few) of these pairs 

share a common border. In contrast to the pairs at the frontier of supra-normal flows, further 

analysis (not fully reported here) indicates that the largely-sized county pairs in this chunk are 

generally characterized by high geodesic distances between the underlying counties of the 

pair (such as a county of the west-coast, and one of the east-coast).  
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Figure A1.2 Supra-normality of flows between county pair vs. joint size of the county pair in 

terms of patenting activity3.  

 

The algorithm that the clusters of counties used in the analysis is entirely based on the 

magnitude of the variable ܿݏ௜,௝
௧ଵ,௧ଶ ൐ 1 and the contiguity relation between the US counties. Let 

us define matrix fs, respective elements of which are defined as 

 

࢐,࢏࢙ࢌ ൌ ቊ
૚, ࢐,࢏࢙ࢉ	ࢌ࢏

࢚૚,࢚૛ ൐ 1, ࢐,࢏ࢇ	݀݊ܽ ൌ ૚	
૙, 	ࢋ࢙࢏࢝࢘ࢋࢎ࢚࢕

              EQ 6 

 

where ܽ௜,௝	(of the adjacency matrix a) is a binary variables which is equal to 1 if counties i 

and j are immediate neighbors and zero otherwise. Note that, although ݂ݏ௜,௝	is a pair-wise 

indicator, we do not need the ݅ ് ݆ restriction as an additional constraint to ݂ݏ௜,௝	=1 since for 

any i, ܽ௜,௜ ൌ 0 by definition (i.e, a county is not its own immediate neighbor).  

 

                                                            
3 The observations shown are limited to the 3464 cases where the flow between the patents of the county pair is 
no less than 1.0 fractionally-computed citation (i.e., flows only where cij>1) 
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The clustering procedure starts by drawing a map of all counties, where the following rule 

applies for coloring the counties: 

 

࢏࢘࢕࢒࢕ࢉ ൌ ቊ࢘ࢊࢋ, 	ࢌ࢏
∑ ࢏࢐ஷ∀࢐,࢏࢙ࢌ 	൒ ૚, 	࢘࢕ ∑ ࢏࢐ஷ∀࢏,࢐࢙ࢌ 	൒ ૚	

,ࢋ࢚࢏ࢎ࢝ 	ࢋ࢙࢏࢝࢘ࢋࢎ࢚࢕
          EQ 7 

On such a map, one can visually identify clusters as a continuum of contiguous red counties. 

Formally, a cluster is a set of counties each of which is accessible from all other members of 

the cluster via at least one route that does not require passing over any border between a 

cluster member county and a non-cluster member county.  

 

Mathematically, the operationalization of this definition requires the computation of a 

geodesic distance matrix gd on the basis of the matrix fs (defined above) used as the 

underlying adjacency matrix. Let us define a sequence of square matrices tmpt each of the 

appropriate dimensions and initiate tmp1 = fs. At each iteration of the following algorithm let 

the scalar ݉ݏ௧ ൌ ∑ ௜௝݌݉ݐ
௧

∀௜,௝  (i.e., sum of all elements of the matrix). After setting t=1 we 

iterate on as (the operator · stands for matrix multiplication): 

1) Compute matrix smpt+1= fs·tmpt 

2) Construct matrix tmpt+1 such that 

௜௝݌݉ݐ
௧ାଵ ൌ ቐ

௜௝݌݉ݐ
௧ , ௜௝݌݉ݐ	݂݅

௧ ൐ 0	

ݐ ൅ 1, ௜௝݌݉ݐ	݂݅
௧ ൌ ௜௝݌݉ݏ	݀݊ܽ	0

௧ାଵ ൐ 0	ܽ݊݀	݅ ് ݆
0, 	݁ݏ݅ݓݎ݄݁ݐ݋

 

 

3) If ݉ݏ௧ାଵ ൌ ∑ ௜௝݌݉ݐ
௧ାଵ ൐ 0∀௜,௝ , then set t=t+1 and go to Step 1. Else set 

gd=tmpt+1 and stop. 

 

The diagonal elements of the matrix are all zero, which conforms to the definition of geodesic 

distance. Furthermore, for any county pair i and j, which are not mutually accessible to each 

other, gdij=0 as well. Element gdij>0 if and only if counties i and j are accessible to each other 

via trajectories that pass through at least gdij county borders. Given these properties (and the 

fact that matrix gd is not based on the geographical adjacency matrix but our alternative 

matrix fs which restrict the definition of adjacency from having a common border to not only 

having a border but also having supra-normal citation flows in between) we can identify the 

clusters as islands which are not accessible to each other. 

 

For any given county i, all other counties j where gdij>0 belongs to one unique cluster 

together with county i. Thus, after setting Set i=1 and Cln=1, our algorithm which assigns US 

counties to their respective clusters works as follows: 

1. If county i is not already assigned to any cluster: 

a. Assign county i to cluster Cln 

b. Also assign all counties j where gdij>0 to Cln 
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c. Set i=i+1, and Cln= Cln+1 

2. If i<=3,234 go to4 step 1, stop otherwise. 

 

While this is the essence of our county-clustering into contiguous regions, it is obvious that 

the smallest setting in which a cluster can emerge out of our clustering method is a pair of 

counties. Nevertheless, one observes US counties which produce a high number of patents, 

yet enjoys no supra-normal flows of citations with any of its immediate neighbors.  

 

Ten of these individual counties that do not make it to the initial list of clusters, but appear 

with a large number of patents in the period under consideration are added to the list of 

clusters. The largest number of patents, per county, on this new list of single counties is 

5,649, the smallest number 415. The smallest number of patents in the initial list of clusters is 

99 (average 2,626). Hence the 10 single counties that are added can be seen as large in terms 

of their inventive activity. Some of the 10 extra counties that are included share a border with 

one of the clusters. In this case, we add them to the cluster that they share a border with. This 

is the case for San Diego (joining the Los Angeles cluster), New London and New York (both 

joining the large East coast cluster). Finally, two of the extra counties border with each other, 

but not with another cluster. We add these two counties (Fort Lauderdale and Palm Beach) as 

a new cluster. The final list of clusters thus contains 35 members. 

 

We also merge one of the small clusters (2 counties) to the large cluster with 30 counties. In 

this case, the small cluster is Long Island (counties Nassau and Suffolk), while the large 

cluster covers a large part of the East coast, stretching from Boston to Philadelphia. We add 

Long Island to the large cluster, because it is geographically very close, although it does not 

share a land border with the large cluster, and because it is arguably part of the New York 

urban environment that is, for the largest part, included in the East coast cluster.  

 

 

  

                                                            
4 Note that 3,234 is the number of US counties in the dataset. 
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Annex A2. Genealogical accounting of deep citations 

 

The framework in which we account for long-run knowledge flows through indirect (as well 

as direct) citation linkages bears a close analogy to genealogy, especially to the particular 

context of Mendelian genetics in its analytical operationalization. While we like to emphasize 

this analogy as our preferred theoretical foundation to our methods of accounting, the reader 

can as well perceive the method as a natural extension of the fractional accounting framework 

that underlies the analytical methodology of this paper, as generalized from direct citation 

flows to the accounting of knowledge flows through direct and indirect citation linkages. 

 

For further illustration5, let us go back to the hypothetical citation network depicted in Figure 

A1.1 and the related tables A1.1 and A1.2 which give the direct knowledge flows implied by 

the citation network in a matrix form.  

 

Tables A2.1 and A2.2 are respectively analogous to Tables A1.1 and A1.2 yet they indicate 

both direct and indirect knowledge flows implied by the same network, as calculated 

according to our genealogical accounting method. The table entries (i.e., matrix elements) 

which are different than their counterparts in tables A1.1 and A1.2 are highlighted in the latter 

tables respectively. Let us discuss on the basis of a few illustrative examples. 

 

As mentioned in annex A1, our hypothetical citation network entails 10 citation lags of 1 

period, 4 lags of 2 periods and no citation lags of 3 periods. Thus an analysis that is limited by 

direct citations has nothing to offer in terms of the long-run trajectories (i.e., deep citations) 

that run between the early patents of T1 and the latest patents of T4. 

 

Let us take the citation trajectory P3→P7→P8→P13 and think backwards in time. Since P13 

makes two citations, the direct citation link P8→P13 is equivalent to a flow of ½ citations. 

Also given that P8 makes 3 citations, the flow through the trajectory P7→P8→P13 must be 

1/2x1/3=1/6. And also given the two citations of P7, we calculate the (fractional) flow 

through from P3 to P13 through the trajectory P3→P7→P8→P13 as 1/2x1/3x1/2=1/12 which 

is approximately 0.083. Since P3→P7→P8→P13 is the only trajectory that connects P3 to 

P13, the 3rd row of the 13th column of the numerical area in table A2.1 is 0.083. 

 

                                                            
5 For even further illustrations and explanations, see Martinelli & Nomaler (2014) which presents a variant of 
our accounting method in closer analogy to genealogy in its exposition.  
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Table A2.1. Genealogic/fractional accounting of the (direct and indirect) citation flows in the 

stylized citation network depicted on Figure A2.1. Cells are highlighted for all cases where cell 

value is different than the corresponding cell in table A2.1 

 

Another pair, the deep citations between which span a lag of 3 periods is P4 and P13. Yet 

unlike the previous case of P3→P13, we find two trajectories between the latter pair: P4→P8-

P13 and P4→P9-P13. Given the number of citations respectively made by P8 (3), P9 (2) and 

P13(2), we can calculate the flow through the former trajectory as 1/2x1/3=1/6 and the latter 

as 1/2x1/2=1/4. Therefore the total flow from P4 to P13 is calculated as 1/6+1/4=10/24 which 

is approximately equivalent to 0.417 citations. This value can be found in the 4th row of the 

13th column of the numerical area in table A2.1.  

 

Given our analogy to genealogy, this last case would be similar to a grandfather whose 

genetic footprint in his granddaughter is higher than ¼. In citation networks where patents 

typically make more than 2 citations, i.e., have more than 2 “parents” (contrary to the case of 

sexual reproduction in the animal kingdom) and also where one can often find several 

(overlapping and/or non-overlapping) trajectories between a given pair of related patents, the 

phenomenon highlighted by our last example is quite common.  

 

After computing the flow between all connected pairs of patents via all existing trajectories, 

we populate the matrix af of all (direct and indirect) flows between patents. For our 

hypothetical citation network, the numeric part of Table A2.1 is the associated 14x14 matrix 

af. Analogously to Equation 2, we can aggregate the flows among patents to flows among 

time cohort-county combinations as 

 

࢐,࢏ࢉࢇ
࢚૚,࢚૛ ൌ ∑ ሺ ࢐,࢏ࢌࢇ

࢚૚,࢚૛ሻ࢓
࢑

࢑,࢓∀ ,         EQ 8 

C2 C3 C1 C3 C2 C2 C3
P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14

P1 1 0.333 1 0.333 0.167

P2 0.5 0.250

P3 0.5 0.167 0.5 0.167 0.083 0.5

C2 P4 0.333 0.5 0.333 0.417

C3 P5 0.5 0.167 0.5 0.167 0.083 0.5

C1 P6 0.333 1 0.333 0.167

C3 P7 0.333 1 0.333 0.167 1

C2 P8 1 0.5

P9 0.5

P10 1

P11
P12

C2 P13
C3 P14

T1
C1

T2

T3
C3

T4
C1

T1 T2 T3 T4
C1 C3 C1



 

35 
 

where indices m and k correspond to individual patent numbers, i and j to counties, t1 and t2 

to time cohorts as in Equation 2. All results discussed in the main text are based on the values 

in the matrix ac, with t1= [1986, 1988] as the source and t2 = [2004, 2006] as the destination, 

which span a time period of 20 years. 

 

 
Table A2.2. Direct and indirect citation flows on Figure A2.1 aggregated from the patent-level 

into time cohort-county combinations. 

 

Although useful for expositional purposes, our description of the computation of flows 

through deep citations (which is based on the enumeration of all trajectories between all 

possible pair of patents in question) is not necessarily the most efficient method for the 

according computations. The sequence of multiplications and summations can easily be 

formulated in matrix algebra and a practical computational method presents itself.  

 

Recall the NxN citation matrix A where N is the number of patents in a given citation 

network. For any given i=1,2,…N and j=1,2,…,N, if patent k cites patent m Amk=1, and 

otherwise Amk=0. We indicated that the matrix of (fractionally-computed) direct citation flows 

df is essentially the column-normalized variant of the citation matrix, such that 

 

࢑࢓ࢌࢊ ൌ ∑/࢑࢓࡭ ࢖∀࢑࢖࡭ .                  EQ 9 

One can find a direct analogy between matrix A and the intermediate requirements coefficient 

matrix in input/output economics. The related matrix algebra pioneered by Leontief maintains 

that given a matrix of direct usage coefficients A, the matrix product A2 gives the second 

degree indirect requirement coefficients, A3 the third degree indirect requirement coefficients 

and so infinitum.  

 

Similarly, given a column-normalized citation matrix (df) that account fractionally for direct 

knowledge flows, the matrix product df2 accounts (fractionally) for the flows to all patents via 

all trajectories of exactly two citation links, df3 accounts (fractionally) for the flows via all 

C2 C3 C1 C3 C2 C2 C3

C2 0.33 0.417

C3 0.5 0.17 0.083 0.5

C1 0.33 0.167

C3 0.33 0.167 1

C2 0.5

C2
C3

T4
C1

0.5 1
T3

1

C3

T2
1.333

1 0.333

0.5 0.333

0.5 0.167

0.5 0.5 1 1.5 0.5 0.5

T1
C1 1

T1 T2 T3 T4

C1 C3 C1
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trajectories of exactly three citation links and so on. Given that a citation network is strictly 

acyclical, dfZ remains a non-zero matrix6 up to the point where Z is less than or equal to the 

length of the longest trajectory in the network and becomes a zero matrix thereafter. 

Accordingly, given our earlier notation, the matrix of all citation flows is 

 

܎܉ ൌ ܎܌ ൅ ૛܎܌ ൅ ૜܎܌ ൅ ૝܎܌ ൅ ⋯൅൅ࢆ܎܌ ൌ ۷ െ ሺ۷ െ  .ሻି૚܎܌       EQ 10 

The right hand-side of this equation is the well-known identity in input-output economics that 

relates to the Leontief inverse. Although this is a highly efficient way of computing deep 

citation flows for citation networks of up to several thousand patents, even the computer 

power available nowadays is not quite sufficient to store a citation network of several million 

patents and their several million citation links in a square matrix and compute the matrix 

inverse. Therefore we have written a dedicated software (in the C++ language) which reads 

citation network data from an ASCII text file as node pairs, computes the direct and indirect 

flows, and (since the patent-level flow matrix is not directly necessary for our analysis), 

aggregates the flows among individual patents into flows among time cohort-county 

combinations and outputs the matrix ac defined by equation 8 (the matrix for which our toy 

example in this appendix is given in table A2.2). 

 

 

  

                                                            
6 I.e., the sum of the all elements of the matrix is greater than zero.  
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Annex A3. Sandwich networks 

 

Given two individual patents m and k, our definition of the corresponding network is the 

network that consists of all citation trajectories that connect m and k indirectly. For illustrative 

examples, let use resort again to the hypothetical citation network on Figure A1.1 

 

Let us take patents P2 and P13, respectively, as source and sink of a potential sandwich. 

There exists only one trajectory that connects the two patents P2→P9→P13, which is thus the 

sandwich network between the selected patents. For the particular case of P1 and P13, the 

situation is similar: There is only a single trajectory, P1→P6→P8→P13 that connects the two 

selected patents. Let us also consider the sandwich between P3 and P13, which is also a single 

trajectory that visits P3→P7→P8→P13. 

 

Now we are ready to aggregate our sandwich definition from the patent level to the time 

cohort-county combinations. P1, P2 and P3 are all patents that belong to county C1 at time 

cohort T1. Patent P13 is the only one that belongs to county C2 at time cohort T4. Therefore 

the sandwich network between C1_T1 and C2_T4 is the sub-network of the citation network 

on figure A1.1 which consists only of the citations P1→P6, P6→P8, P8→P13, P2→P9, 

P9→P13, P3→P7, and P7→P8. 

  

Let us also consider the sandwich between P4 and P13. P4→P8→P13 and P4→P9→P13 are 

the two trajectories one can identify. Given that P4 is the only patent of C2_T1, we can 

conclude that the sandwich network between C2_T1 and C2_T4 (i.e., same county, different 

time periods) is the sub-network which consists of the citations P4→P8, P4→P9, P8→P13, 

and P9→P13.  

 

It is interesting to note that citation links are not unique to sandwiches. The above examples 

clearly indicate that the citation link P8→P13 belongs to more than one sandwich, both at the 

level of individual patent pairs, and pairs of time cohort-county combinations. Also note that 

the computer algorithm that detects sandwich networks is not computationally expensive. 

Unlike in the illustrative example above, there is no need to enumerate all trajectories between 

the source and the sink patents. Our algorithm (also implemented in C++ the language), 

starting from all source patents, follows all forward citation links sequentially7 and marks all 

patents visited in the process as “connected to the source”, and then does the same backward 

in time. That is, starting from the sink patents, backward citations are followed sequentially8 

and all patents visited in the process are marked as “connected to the sink.” The participants 

                                                            
7 I.e., all citing patents of the source set, all patents that cite the citing patents of the source set, then all patents 
that cite the patents that cite the patents that cite the source set, and so on till the right truncation of the citation 
network is reached. 
8 I.e., all patents cited by the sink set, then all patents that are cited by the patents which are cited by the sink set 
and so on till the left truncation of the citation network is reached. 
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of the sandwich network are clearly the only patents which are marked from both sides as 

“connected to the source” and “connected to the sink” The sandwich network is ultimately 

extracted as the sub-network of our global citation network by removing all patents which are 

not visited from both directions as well as all citations made and received by the patents 

removed accordingly. 
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Annex A4. On the identification of the main paths (trajectories) in sandwich networks 

 

The methods proposed by Hummon and Doreian (1989) and Verspagen (2007) are explained 

in detail in those papers. As also explained briefly in the main text, the main building block of 

the network-reduction procedure is a method that assigns an “importance” indicator (SPNP) 

to link (i.e., arc) in the citation network.  

 

This indicator is essentially related to the number of trajectories in the entire network to 

which the link in question participates. Needless to say, any citation chain that links one 

patent to some other patent is considered a trajectory. For example consider a chain of 

citations P1→P2→P3→P4→P5→P6→P7 which is clearly a trajectory. However, despite 

constitution various sub-trajectories of the former, chains such as P2→P3→P4→P5→P6, 

P4→P5→P6→P7, P1→P2→P3→P4, …, are all considered by the SPNP metric as different 

trajectories, each of which add to the importance of any individual citation link that 

contributes to each. 

 

Having computed the SPNP values for each citation link, Hummon and Doreian (1989), 

Verspagen (2007) and all the other studies that utilize this methodology, identify main paths 

(i.e., the most important trajectories in the network) with a simple local search algorithm 

which, for each start node9 in the network, identifies a connected trajectory, by hopping from 

patent to patent, where, at each new patent arrived, moves on to the next patent which is 

connected to the current patent with the highest SPNP value among all patents that cite the 

current patent. Intuitively, this procedure aims at picking up trajectories that are composed of 

citation chains with as high SPNP values as possible in each of its constituent citations. And 

despite being a seemingly local search algorithm, the scope of the search is not completely 

local, since, by its construction, SPNP is a globally ‘informed’ indicator since it indicates the 

importance of the citation in terms of its position in the global scale of the network.  

 

Not only does this local search algorithm make intuitive sense, but also published research 

that uses the method report findings that make technological sense. However, one cannot help 

but notice that what this local search algorithm is supposed to achieve exactly is not explicitly 

defined in terms of some well-defined optimality criteria. We address this issue here. 

 

We compute the SPNP values in the standard way, yet we substitute the local search 

algorithm with a global optimizer. For each start node in the citation network, the algorithm 

enumerates all trajectories that emanate from the given node, for each trajectory, computes the 

multiplicative product (i.e., sum of the logarithm) of all SPNP values of the constituent 

citation links, and picks up the trajectory where this multiplicative product of the SPNP 

values is maximized.  

                                                            
9 I.e., a patent which does not make any citation, mostly due the (left) truncation of the network. 
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Annex A5. On the classification and the geographical analysis of contributions to 

knowledge main paths 

 

As mentioned in the main text, having identified the main paths of knowledge flows among 

the salient knowledge producing areas of the US, our next aim is to make an analysis in terms 

of the (global) geographic distribution of those who have contributed to these main paths.  

 

Let us illustrate the issue at hand, again by using our hypothetical citation network on Figure 

A1.1 as an example. Accordingly let us consider the sandwich network between T1 

incarnation of county C1 and the T4 incarnation of county C2. Let us decompose the 

contribution of all counties (independently of the time of contribution) to each main path that 

connects T1_C1 to T4_C2 

 

C1  C2  C3 

P1→P6→P8→P13  50% 50% 0%

P2→P9→P13  0% 100% 0%

P3→P7→P8→P13  0% 50% 50%

 

 

The table above illustrates the respective contributions to each of the main paths. For the first 

trajectory between P1 and P13, lie two patents (P6 and P8) which respectively belong to 

counties C1 and C2. Thus in fractional terms, C1 must have contributed by 50% (i.e., one 

patent out of two contributions) and C2, another 50%. The second trajectory visits only one 

patent (P9) which implies 100% county C2 contribution to this main path. Finally, the 

contributions of P7 and P8 to the third main path respectively credit counties C2 and C3 for 

50% contribution each.  

 

In this toy example, each main path exhibits a significantly different pattern of contribution. 

Indeed, in such a small network it is simple to identify patterns to categorize different 

processes into a finite number of categories that make some sense. However, it becomes 

increasingly difficult to do so as the number of cases (i.e., main paths) to categorize and/or the 

number of counties that may potentially make a contribution increases. Unlike the 3 main 

paths – 3 counties case depicted in the example above, our sandwich networks typically 

feature several thousands of main paths (i.e., a high number of observations to classify) which 

may visit any combination of the approximately 5100 geographical entities (i.e., regions, 

counties) present in the REGPAT database (i.e., the geographical resolution of the analysis). 

 

The appropriate tool for the job is clearly some sort of clustering algorithm , in particular ‘k-

means clustering’. This leaves us two related choices. One is the number of groups to impose 

on the algorithm (the k of the k-means clustering algorithm) and the second is the 
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geographical entities whose respective contribution to main paths is to be the basis of 

clustering. We take the 35 US clusters (as discussed in section 4) as well as the aggregate 

categories, US Non Cluster (i.e., all US counties that do not belong to any of the 35 clusters, 

as aggregated into one entity), Europe (i.e., all European NUTS2 regions aggregated), Japan 

(all Japanese provinces aggregated) and ROW (rest of the world as aggregated into one 

entity). This makes 39 geographical entities whose respective contribution to each of the 

23,060 main paths we identify constitutes the 39 variables which were introduced into k-

means the clustering algorithm of the software package MatLab. As discussed in the main 

text, the group size was chosen as k=8. 
 



The UNU‐MERIT Working Paper Series 
 
2016-01 Mexican manufacturing and its integration into global value chains by Juan Carlos 

Castillo and Adam Szirmai 
2016-02 New variables for vocational secondary schooling: Patterns around the world from 

1950‐2010 by Alison Cathles 
2016-03 Institutional  factors  and  people's  preferences  in  social  protection  by  Franziska 

Gassmann, Pierre Mohnen & Vincenzo Vinci 
2016-04 A  semi‐endogenous  growth model  for  developing  countries with  public  factors, 

imported capital goods, and  limited export demand by Jan Simon Hallonsten and 
Thomas Ziesemer 

2016-05 Critical  raw material  strategies  in  different world  regions  by  Eva  Barteková  and 
René Kemp 

2016-06 On  the  value  of  foreign  PhDs  in  the  developing world:  Training  versus  selection 
effects by Helena Barnard, Robin Cowan and Moritz Müller 

2016-07 Rejected  Afghan  asylum  seekers  in  the  Netherlands:  Migration  experiences, 
current situations and future aspirations 

2016-08 Determinants  of  innovation  in  Croatian  SMEs:  Comparison  of  service  and 
manufacturing firms by Ljiljana Bozic and Pierre Mohnen 

2016-09 Aid,  institutions  and  economic  growth:  Heterogeneous  parameters  and 
heterogeneous donors by Hassen Abda Wakoy 

2016-10 On the optimum timing of the global carbon‐transition under conditions of extreme 
weather‐related damages: further green paradoxical results by Adriaan van Zon 

2016-11 Inclusive  labour market: A  role  for a  job guarantee  scheme by Saskia Klosse and 
Joan Muysken 

2016-12 Management  standard  certification  and  firm  productivity:  micro‐evidence  from 
Africa by Micheline Goedhuys and Pierre Mohnen 

2016-13 The  role  of  technological  trajectories  in  catching‐up‐based  development:  An 
application to energy efficiency technologies by Sheng Zhong and Bart Verspagen 

2016-14 The  dynamics  of  vehicle  energy  efficiency:  Evidence  from  the  Massachusetts 
Vehicle Census by Sheng Zhong 

2016-15 Structural decompositions of energy consumption, energy  intensity, emissions and 
emission  intensity  ‐  A  sectoral  perspective:  empirical  evidence  from WIOD  over 
1995 to 2009 by Sheng Zhong 

2016-16 Structural transformation in Brazil, Russia, India, China and South Africa (BRICS) by 
Wim Naudé, Adam Szirmai and Nobuya Haraguchi 

2016-17 Technological  Innovation  Systems  and  the  wider  context:  A  framework  for 
developing countries by Hans‐Erik Edsand 

2016-18 Migration, occupation and education: Evidence from Ghana by Clotilde Mahé and 
Wim Naudé 

2016-19 The  impact  of  ex‐ante  subsidies  to  researchers  on  researcher's  productivity: 
Evidence from a developing country by Diego Aboal and Ezequiel Tacsir 

2016-20 Multinational enterprises and economic development  in host countries: What we 
know and what we don't know by Rajneesh Narula and André Pineli 

2016-21 International  standards  certification,  institutional  voids  and  exports  from 
developing country firms by Micheline Goedhuys and Leo Sleuwaegen 



2016-22 Public policy and mental health: What we  can  learn  from  the HIV movement by 
David Scheerer, Zina Nimeh and Stefan Weinmann 

2016-23 A new indicator for innovation clusters by George Christopoulos and Rene Wintjes 
2016-24 Including  excluded  groups:  The  slow  racial  transformation  of  the  South  African 

university system by Helena Barnard, Robin Cowan, Alan Kirman and Moritz Müller 
2016-25 Fading hope and the rise in inequality in the United States by Jo Ritzen and Klaus F. 

Zimmermann 
2016-26 Globalisation, technology and the  labour market: A microeconometric analysis for 

Turkey by Elena Meschi, Erol Taymaz and Marco Vivarelli 
2016-27 The  affordability  of  the  Sustainable  Development  Goals:  A myth  or  reality?  By 

Patima Chongcharoentanawat,  Kaleab  Kebede Haile, Bart  Kleine Deters,  Tamara 
Antoinette Kool and Victor Osei Kwadwo 

2016-28 Mimetic behaviour and  institutional persistence: a  two‐armed bandit experiment 
by Stefania Innocenti and Robin Cowan 

2016-29 Determinants of citation impact: A comparative analysis of the Global South versus 
the Global North by Hugo Confraria, Manuel Mira Godinho and Lili Wang 

2016-30 The effect of means‐tested social transfers on labour supply: heads versus spouses 
‐ An empirical analysis of work disincentives in the Kyrgyz Republicby by Franziska 
Gassmann and Lorena Zardo Trindade 

2016-31 The  determinants  of  industrialisation  in  developing  countries,  1960‐2005  by 
Francesca Guadagno 

2016-32 The  effects  of  productivity  and  benefits  on  unemployment:  Breaking  the  link  by 
Alessio J. G. Brown, Britta Kohlbrecher, Christian Merkl and Dennis J. Snower 

2016-33 Social welfare benefits and  their  impacts  on  labour market participation among 
men and women in Mongolia by Franziska Gassmann, Daphne François and Lorena 
Zardo Trindade 

2016-34 The role of innovation and management practices in determining firm productivity 
in developing economies by Wiebke Bartz, Pierre Mohnen and Helena Schweiger 

2016-35 Millennium Development Goals  (MDGs): Did  they  change  social  reality? by  Janyl 
Moldalieva, Arip Muttaqien, Choolwe Muzyamba, Davina Osei,  Eli  Stoykova  and 
Nga Le Thi Quynh 

2016-36 Child labour in China by Can Tang, Liqiu Zhao, Zhong Zhao 
2016-37 Arsenic  contamination  of  drinking  water  and  mental  health  by  Shyamal 

Chowdhury, Annabelle Krause and Klaus F. Zimmermann 
2016-38 Home  sweet  home? Macroeconomic  conditions  in  home  countries  and  the well‐

being of migrants by Alpaslan Akay, Olivier Bargain and Klaus F. Zimmermann 
2016-39 How do collaboration and  investments  in knowledge management affect process 

innovation  in  services?  by Mona  Ashok,  Rajneesh Narula  and  Andrea Martinez‐
Noya 

2016-40 Natural  disasters  and  human mobility  by  Linguère Mously Mbaye  and  Klaus  F. 
Zimmermann 

2016-41 The  chips  are  down:  The  influence  of  family  on  children's  trust  formation  by 
Corrado Giulietti, Enrico Rettore and Sara Tonini 

2016-42 Diaspora economics: New perspectives by A.F. Constant and K.F. Zimmermann 
2016-43 Entrepreneurial  heterogeneity  and  the  design  of  entrepreneurship  policies  for 

economic  growth  and  inclusive  development  by  Elisa  Calza  and  Micheline 
Goedhuys 



2016-44 Gini coefficients of education for 146 countries, 1950‐2010 by Thomas Ziesemer 
2016-45 The  impact of rainwater harvesting on household  labor supply by Raquel Tsukada 

Lehmann and Christian Lehmann 
2016-46 The  impact of piped water  supply on household welfare by Raquel Tsukada  and  

Degol Hailu 
2016-47 The  impact of household  labor‐saving  technologies along  the  family  life  cycle by 

Raquel Tsukada and Arnaud Dupuy 
2016-48 River deep, mountain high: Of long‐run knowledge trajectories within and between 

innovation clusters  by Önder Nomaler and Bart Verspagen 


