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Abstract 
 

This paper uses a novel database composed of 4,262 European chemical patents applied 
for by 693 firms during 1987-1996 to compare the relative effect of firm and regional 
characteristics on the production of technological hits (highly cited patents). By using an 
extensive set of controls, the main finding of the paper is that in the “traditional” 
chemical sectors technological hits are explained only by firm-level economies of scale 
and scope in R&D. Firm competencies – i.e. technological specialisation – are still 
important in biotechnology. However, what really distinguishes the biotech model is that 
localised knowledge spillovers also matter. I argue that the centrality of firms vis-à-vis 
regions underlines a more general contrast between two different models of producing 
innovations.   
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1. Introduction  

There is consensus in the literature on the importance of firm competencies in the 

production of innovations. (See for example Nelson and Winter, 1982; Dosi et al. 1988; 

Klepper, 2001). The affiliation to a certain organisation with its unique competencies, its 

internal communication systems, and the routines that it develops over time is a 

mechanism through which knowledge is produced and transmitted among different 

individuals and parts of the firm.    

Another stream of the literature highlights an alternative model for organising innovative 

activities: the geographical cluster that helps knowledge to be efficiently transferred 

among agents and translated into innovations. By arguing that outside sources of 

knowledge are critical to the innovation process, and that knowledge spillovers are more 

pronounced when the relevant agents are geographically close, this literature explains the 

tendency of innovative activities to cluster. (See, for example, Jaffe, 1986; Jaffe et al., 

1993; Audrestch and Feldman, 1996; Caniels, 1999; Swann et al. 1998).  

To my knowledge, however, little work has been done in the literature to compare the 

relative importance of these two models in explaining the value of innovations. This is 

the goal of the present paper. It explores empirically how much of the value of an 

innovation is affected by the affiliation of the inventors to the same organisation as 

opposed to spillovers that arise when the inventors are geographically close to each other 

and to external sources of knowledge. The answer to this question will shed some light 

on the mechanisms through which knowledge is generated, and on the performance of 

                                                           
I thank Ashish Arora, Alfonso Gambardella, Marco Giarratana, John Hagedoorn, 
Bronwyn Hall, Dietmar Harhoff, Steven Klepper, Pierre Mohnen and Pierre Regibeau for 
helpful comments. I also thank Bart Verspagen for providing me with patent citations, 
and Rossana Pammolli for developing a correspondence table between the IPC classes 
and the 5 chemical sectors used in this paper. Useful comments were made by the 
participants to the EPIP conference (European Policy for Intellectual Property, Munich 
2003) and to the Innogen workshop (Innovation, Growth and Market Structure, London 
2003). Support from the European Commission TMR “Marie Curie Fellowship” (Grant # 
HPMF-CT-2000-00694) and from the European Commission Key Action "Improving the 
Socio-Economic Knowledge Base" (Contract # HPSE-CT-2002-00146) is acknowledged. 
The usual disclaimers apply. 
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different coordination mechanisms in industries characterised by different technological 

regimes – biotechnology vs. traditional chemicals.  

The empirical investigation uses a novel and detailed dataset constructed specifically for 

the purpose of analysing this issue, and composed of a randomly selected sample of 

4,262 chemical EPO patents applied for by 693 firms and invented in 208 European 

regions during 1987-1996. To test the effect of firm and regional characteristics over the 

probability of producing technological hits, the paper performs a Negative Binomial 

regression. The number of citations received by the patents after the application date is 

used as a proxy for the value of the innovations. This is regressed on firm characteristics 

(sales, R&D expenditures, past patents as a proxy for technological competencies), 

characteristics of the innovation project (e.g. number of inventors in the patents), 

scientific and technological characteristics of the regions in which the patents are 

invented, and a set of controls.  

The main finding of the paper is that valuable innovations in biotech and in the 

traditional branches of the chemical industry are the outcome of different models. Firm 

competencies, and specifically R&D economies of scale (large research projects) and 

scope (R&D intensity at the firm level) explain a good deal of the probability of 

developing valuable innovations in the traditional chemical sectors. In these sectors 

knowledge spillovers external to the firm do not add much to the probability of producing 

technological hits. Firm competencies – and specifically firm technological specialisation 

– are still key factors in biotechnology. Differently, however, biotech innovations benefit 

from the geographical proximity of the inventors to external sources of knowledge. These 

results are consistent with other work in the literature. For example, after controlling for 

the spatial distribution of production activities, Audretsch and Feldman (1996) show that 

innovative activities cluster more in skilled and R&D intensive industries. Klepper 

(1996) demonstrates that the stage of the industry life cycle influences the geographical 

agglomeration of innovative activity. More precisely, innovative activity in the early 

stages of an industry life cycle benefits the most from locally bounded knowledge 

spillovers as compared to the mature or declining stages. Finally, Zucker, Darby and 

Armstrong (1998) show that geographical proximity to university research – which 
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materialises in working relationships between the firm and the top scientists in the 

academia – positively affects firm R&D productivity in biotechnology.  

After a review of previous studies on firm competencies, geographical spillovers and the 

use of patent citations (Section 2), Section 3 describes the dataset and presents some 

insights from the data. Section 4 formulates an empirical model that explains the 

probability of inventing valuable innovations in biotechnology and in traditional 

chemicals as a function of firm and regional characteristics. Section 5 adds empirical 

evidence to the econometric estimates, and Section 6 concludes the paper. 

 

2. Firm, geography and the value of innovations 

2.1. Firm competencies and geographically localised spillovers 

While the motives and the benefits that arise when scientists collaborate are well 

understood (see, among others, de Solla Price and Beaver, 1966; Merton 1973; Narin and 

Withlow, 1990), the mechanisms that give rise to research collaborations and the means 

through which knowledge is efficiently transferred among individuals remain relatively 

unknown. When these issues are explored, the firm is described as the natural mechanism 

to foster and coordinate research activities (Nelson and Winter, 1982; Dosi et al. 1988; 

Patel and Pavitt, 1997). This is because the firm develops specific competencies, learning 

processes, communication systems and routines that help reduce the cost of coordination 

of different parts of the organisation, different projects and individuals. These firm 

specific mechanisms help explain the persistent different performance of firms in terms 

of innovativeness, competitiveness and growth (Nelson, 1995).  

Klepper and Sleeper (2002) describe the parental origins of firms’ distinctive capabilities 

for spinoff companies, and argue that these capabilities are difficult to reproduce without 

transferring the human capital employed by the companies. On the same line, Teece et al. 

(1997) point out that firm specific capabilities to coordinate and integrate internal 

activities, the effectiveness of the internal learning processes, and the ability to modify 

strategies and competencies when the outside conditions change are important factors in 
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explaining firms’ competitive advantage. (See also Levinthal and March, 1993; and 

Christensen, 1997).  

A growing body of literature has emphasised another means, possibly alternative to the 

firm, to coordinate individuals, production and research activities: the geographical 

cluster. The literature on clustering shows that there are different motives for the 

geographical concentration of innovative activity. First, innovation processes are 

complex and uncertain. Since complexity and uncertainty can be reduced by accessing 

information, by monitoring other people behaviour, and by fostering communication 

among individuals, and since communication is, in turn, negatively influenced by 

distance, people tend to locate close to each other. Second, innovative activities cluster 

geographically because they benefit from localised technological spillovers that foster 

knowledge exchange and increase the returns from the investment in R&D. (See, for 

example, Jaffe, 1986; Jaffe et al., 1993). This is particularly so when knowledge – 

especially “new knowledge which tends to be informal and uncodified” (Pavitt, 1987) – 

is involved in the production of other knowledge or information, and when it relies on 

practice and learning-by-doing. Finally, knowledge is cumulative also at the geographical 

level. Therefore, scientific and technological progress is faster in regions that have 

accumulated high levels of innovative activities over time. 

The empirical evidence supports the idea that the cost of transmitting knowledge rises 

with geographical distance, and confirms that innovative activities concentrate 

geographically. Some contributions measure the geographical extent of knowledge 

spillovers (Swann et al., 1998; Verspagen, 1997), while others study the effect of 

spillovers on regional economic growth (Caniels, 1999). Others, still, emphasise that 

there are sectoral differences in spatial clustering with some industries that benefit more 

from being co-localised. Particularly, in new and knowledge driven industries, where 

technologies develop rapidly and where research brings about big technological 

discontinuities and relies on a wide range of competencies, firms tend to establish formal 

and informal relationships with other organisations for the exchange knowledge. 

Audretsch and Feldman (1996) show that innovative activities cluster more in skilled and 

R&D intensive sectors, with industries like computer and pharmaceuticals displaying a 
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higher degree of concentration compared to all manufacturing. Breschi (1999) derived 

similar conclusions by examining patent data from the European Patent Office. Klepper 

(1996) demonstrates that the stage of the industry life cycle influences the geographical 

agglomeration of innovative activity: innovative activity in the early stages of an industry 

life cycle benefits the most from locally bounded knowledge spillovers as compared to 

the mature or declining stages.  

This is so, for instance, in biotechnology, a relatively new and knowledge-based industry 

composed of a large number of small firms. (See Orsenigo, 1989). Powell et al. (1996) 

show that in the biotechnology industry, the locus of innovation is in the network of 

different organisations, rather then in individual firms. By using data on the formal 

agreements set up by 225 biotechnology firms they map the network structure of the 

industry, and argue that firms collaborate to expand their competences. To highlight this 

point they describe two important biotech discoveries in the mid ‘90s that are co-

authored by more than 30 researchers located in a wide range of different organisations. 

On the same line, Zucker, Darby and Brewer (1998) show that in the case of the US 

biotech industry, the growth and location of intellectual human capital – i.e. basic 

scientific research – was the main determinant of the growth and location of the industry. 

Zucker, Darby and Armstrong (1998) demonstrate that geographical proximity to 

university research – which materialises in working relationships between the firm and 

the top scientists in the academia – positively affects firm R&D productivity in 

biotechnology, and argue that such spillovers do not occur unintentionally, but rather 

depend on specific complementary actions of the economic agents. (See also Arora et al., 

2001). Based on these contributions, my expectation is that firm competencies are a 

crucial asset for developing valuable innovations both in the science-driven biotech 

sector and in the more mature and scale-intensive chemical industry. However, I expect 

that the biotech model of innovation relies on nearby scientific and technological sources 

more than the traditional chemical model of innovation where spillovers are at work 

within the same large firm.  

 

2.2. The value of innovations and patent citations   
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My empirical investigation uses a sample of 4,262 patents applied at the EPO in the 

period 1987-1996, and exploits a number of information contained in the patent 

document, like the name of the applicants, the name of the inventors, the country and 

address in which both the applicants and the inventors are located, the IPC technological 

class, the year of the application, and the number of citations to previous patents. In 

particular, this paper uses the number of citations received by the patent in the five years 

after the application date as a proxy for the value – or at least the importance – of the 

innovations.  

The use of patent citations is now fairly standard in the literature (for a survey see Hall et 

al., 2001).  Citations made to previous patents are used as indicators of knowledge 

spillovers from the cited to the citing patent (see, for example, Jaffe et al. (1993) for the 

use of patent citations as indicators of spillovers over geographical distance), while 

citations received by a patent after the publication date are good proxies for the 

importance of the patent. Several contributions demonstrate that there is a positive 

relationship between patent indicators that appear after the innovation has been 

discovered and the ex-post value of the innovation as given by traditional accounting 

evaluation (See, for example, Hall et al., 2000).  

A classical contribution is Trajtenberg (1990), who shows that there is a non-linear and 

close association between patent counts weighted by forward citations and the social 

value of innovations in the Computer Tomography Scanner industry. Harhoff et al. 

(1999) demonstrate that the number of backward citations either to other patents or to 

non-patent literature, as well as the number of citations received by the patent after its 

publication is positively correlated with the value of the innovations. This also applies to 

patents that incur in opposition and annulment procedures, and to patents that are applied 

for in many countries. Griliches et al. (1987) use data on patent renewal rates and fees to 

estimate the private value of patent rights. Lanjouw and Schankerman (2004) use 

multiple indicators – number of claims, forward citations, backward citations and patent 

family size – to construct a composite measure of the quality of patents. They also show 

that forward citations, together with the number of claims, are the least noisy indicators 

of the value of innovations.  
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Unfortunately, if patent indicators and patent citations in particular are an immense 

source of information for scholars in the economics of innovation and technical change, 

they have a number of limitations as well (Griliches, 1990). For example citations cannot 

be made to or by innovations that are not patented, thus underestimating the actual 

importance of some of them. Second, there is the so called “truncation” problem: as the 

time series move closer to the latest date in the data set, patent citations increasingly 

suffers from missing observations. Third, not only is the number of citations received by 

any patent truncated in time, but patents applied in different years and technological 

classes might differ in their propensity to be cited. Hall et al. (2001) show that the 

number of USPO citations made per patent has increased over time due to the higher 

propensity to cite in recent years and to the steep raise in the number of patents issued. 

All this suggests that changes in the number of citations per patent might stem from 

factors other than the actual changes in the technological impact of the innovations. Hall 

et al. (2001) describe two possible remedies for these problems. One of them is to scale 

citation counts by the average number of citations of a group of patents to which the 

patent of interest belongs. The econometric investigation in this paper does not ignore 

these problems, and uses the idea suggested by Hall et al. (2001) to solve some of them.  

 

3. Sample and methodology 

3.1. Data 

The main source of data for the empirical investigation is the European Patent Office 

(1998). This paper exploits the wealth of patent information by linking them to other 

sources of data concerning the characteristics of the firms and the locations in which the 

innovations are developed.  

I started by selecting a random sample of 10,000 EPO patents from a database of 201,531 

chemical patents applied for between 1987-1996 (European Patent Office, 1998). Since I 

have complementary data only for the European regions, I dropped from this sample the 

patents for which none of the inventors had a European address. This produced a sample 

of 4,649 patents for which at least one inventor is located in Europe. I checked the 
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features of this sample, and they are fairly representative of the whole population. Also 

the choice of the chemical industry is not accidental. First of all, since the propensity to 

patent chemical innovations is higher than in other sectors, chemical patents are a good 

source of information on the innovation process and its outcomes. Second, the chemical 

industry is heterogeneous, ranging from bulk chemicals to specialty chemicals, 

pharmaceuticals and biotechnology, and therefore it offers an interesting basis for 

exploring in detail the presence of different R&D strategies and innovation models in 

sectors with different characteristics.  

I asked an expert pharmacologyst to read the abstracts of the patents and the description 

of the 3-digit IPC codes (International Patent Classification) of the main/obligatory 

technological class of the patents. This information was used to assign the 4,649 patents 

to 5 technological classes: biotechnology, materials, organic chemistry, pharmaceuticals 

and polymers. From the patent document I collected other information on the innovation: 

the name of the applicants, the name of the inventors, the country and addresses in which 

the applicants and the inventors are located, the number of countries in which the patent 

was applied for, the year of the application, and the number of citations to previous 

patents in each year after the patent application up to 2000.   

By using the zip code contained in the address of the inventors each patent was assigned 

to the specific NUTS region in which it was invented at the most disaggregated NUTS3 

and NUTS2 level (see Appendix 1 for the list of NUTS3 and NUTS2 regions used in this 

paper).1 For patents invented by multiple inventors located in different regions (33.5% of 

the total sample), I assigned the patent to the region in which the largest share of 

inventors was located. When the share was 50% of the inventors in one region, and the 

other 50% in another one, I assigned the patent to the first inventor of the list. Even if 

there is clearly some degree of arbitrariness in assigning patents to locations when the 

                                                           
1 The Nomenclature des Unités Territoriales Statistiques is a Eurostat classification that 
subdivides the European Union in groups of regions (NUTS1), regions (NUTS2) and 
provinces (NUTS3). In order to have a certain degree of homogeneity in the size of the 
regions I used the most disaggregated NUTS3 regions for Austria, Denmark, Spain, 
Finland, France, Italy and Sweden, and the NUTS2 classification for Belgium, Germany, 
Greece, the Netherlands, and the UK. Luxemburg, Ireland and Switzerland were 
considered as a whole.  
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inventors are located in different regions, the problem is confined to 24% of the patents 

for which the assignment was based on the region with the highest share of inventors, and 

9.5% of the patents for which the assignment was based on the 50-50 rule. At any rate, I 

also control for these patents in my regressions by including a dummy for whether the 

inventors are all located in the same region (co-localised inventors) as opposed to having 

at least one inventor in a different region.2  

Data about the characteristics of the regions such as the GDP, the population, the size, the 

total number of patents invented in the area in the period 1987-1996 are drawn from the 

EUROSTAT REGIO database (1999). I also employed the European R&D database 

(Reed Elsevier Publisher, 1996) that collects the number and type of R&D laboratories in 

Europe to download a stock of about 20,000 laboratories located in Europe (as for 

December 1995). They are classified as private laboratories if they are owned by private 

companies, higher education laboratories if they are university research centres, 

government laboratories if they are hospitals or government laboratories, and chemical 

laboratories if they focus on chemical research. Each laboratory was also assigned to its 

NUTS region.  

The names of the applicants of the patents were used to collect information on the 

organisations to which the inventors are affiliated. Their composition is as follows: 166 

patents are applied for by public institutions, excluding universities; 45 are done by 

universities; 134 are individual inventors (i.e. applicants who do not belong to any firm); 

the remaining 4,262 patents are applied for by 693 firms. I decided to confine the analysis 

to the patents applied for by the private companies. The names of the applicants of these 

4,262 patents were standardised in order to merge parent and affiliate firms under the 

same name. The Who Owns Whom database (1995) was used to investigate these parental 

relations.  

                                                           
2 I also checked the address of the inventors on the map by using Autoroute 2000. In a 
few cases in which the inventors were located on the border between different regions I 
treated them as if they were located in only one region, and followed the rule described 
above to classify them. 
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To collect company data, I used different sources.3 First, Aftalion (1991) lists the top 250 

chemical companies worldwide in 1988, and provides firm-level information on R&D 

spending, total turnover and chemical turnover. This ensured that I covered the most 

important chemical firms in my sample. I complemented the Aftalion data with sales and 

R&D information from Compustat (1999). Finally, I searched in the Internet for 

information on some smaller concerns. In the end I was unable to find information on a 

tail of applicants covering 852 patents in the sample. These are fairly unknown firms with 

1 or 2 patents in my sample, and their distribution across regions and technological 

classes is not biased in any particular direction. Nevertheless, as we shall see in the 

econometric section, I used the observations for these patents by including a dummy for 

the missing sales and R&D values.4  

Finally, I collected the number of EPO patents filled out by the applicants of the 4,262 

patents in the 5 years, 3 years and 1 year before the sample patent was applied for. This 

information was used to develop a measure of firm competencies and firm technological 

specialisation in the years before the innovations were produced.  

In the end, my database is composed of 4,262 observations. Each observation is patent 

for which I gathered information on: a) the innovation; b) the firm that applied for the 

patent; c) the European region in which the inventors were located while developing the 

innovation. These variables are listed in Table 1.  

[TABLE 1] 

 

3.2. Insights from the data  

An important issue when dealing with patent citations is the extent to which patents cite 

previous inventions patented by the same applicant. Self-citations are an indicator of 

internal spillovers and highlight the existence of cumulative processes of knowledge 

creation within the same firm, while citations from other applicants are closer to the more 
                                                           
3 A small share of patents (7.6%) had more than one applicant. In these cases I collected 
information on the first applicant of the list.  
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general idea of spillovers among people belonging to different institutions. There is an 

issue on whether to include the number of self-citations in an indicator of the importance 

of the cited patents. On the one hand, large firms tend to cite themselves more compared 

to small companies because they have larger patent portfolios to cite. This might produce 

an upward bias in the indicator of the value of patents developed by the large firms. On 

the other hand, smaller companies might be better at exploiting technological trajectories 

in specialised niches, which could lead to a high share of self-citations over the total 

number of citations that they receive.  

I have data on forward citations up to 2000. To see whether the inclusion of self-citations 

makes a difference, Figure 1 shows the distribution of patent citations received by the 

sample patents in the five years after the application date, with and without self-citations. 

To limit the truncation problem the descriptive statistics in this Section and in Section 5 

will take into account only patents applied in the period 1987-1993. The econometric 

analysis will use instead the whole 1987-1996 sample, and use time dummies, sectoral 

dummies and a control variable developed by Hall et al. (2001) as a remedy for the 

truncation problem and for changes over time and technologies in the rate of patenting 

and in the number of citations made. The dark blue histograms in Figure 1 include self-

citations; the bright blue histograms are without self-citations.  

[FIGURE 1 and 2] 

The distribution of patent citations is skewed. This is consistent with recent works on the 

use of patent indicators. (See, among the others, Scherer et al., 2000; Scherer and 

Harhoff, 2000). The number of patent citations excluding self-citations ranges between 0 

and 13, with mean 0.74 and standard deviation 1.34. About 62% of all patents receive 0 

citation. Only the last quartile and the last decile of the patents receive more than 1 and 2 

citations respectively. The top 5% patents have more than 3 citations. As expected, when 

self-citations are included, the share of patents with 0 citations drops to 48.8%, and the 

number of citations ranges between 0 and 19, with mean 1.20 and standard deviation 

1.91. In the rest of the paper, due to the ambiguous inclusion of self-citations in an 

                                                                                                                                                                             
4 I thank Fabio Pammolli for providing me with data on R&D and sales for an additional 
group of companies in my sample. 
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indicator of the value of patents, I will use the number of citations received by the patents 

in the five years after the application date depurated of self-citations (hereafter CITS).  

Figure 2 looks at the distribution of CITS in biotechnology and traditional chemicals. 

Patents in traditional chemicals receive a lower number of citations than in 

biotechnology. The share of patents with 0 citation is 63.2% in traditional chemicals, and 

falls to 53.9% in biotechnology. By contrast, the share of patents in the left-end tail of the 

distribution is higher in biotech than in traditional chemicals. The average number of 

forward citations of biotechnology patents is 1.03 compared to 0.69 in traditional 

chemicals. This difference is statistically significant. As expected, self-citations are more 

frequent in traditional chemicals than in biotechnology: biotech patents receive 0.35 self-

citations on average compared to 0.48 of traditional chemical patents, and also this 

difference is statistically significant. This contrast between biotech and traditional 

chemicals confirms that it is important to control for sectoral characteristics when I will 

estimate the effect of different firm and regional factors on the propensity of the patents 

to be cited. This will be done in Section 4. 

As far as the applicants of these patents are concerned, in the period 1987-1993 there are 

536 companies in my sample that apply for 3,080 patents. The top 5 companies apply for 

more than one third of the patents. These companies are Hoechst, Basf, Bayer, Ciba 

Geigy and Rhone-Poulenc. By contrast, a long tail of companies applies for one or two 

patents each. Only a small fraction of the companies in the sample (59) produce patents 

both in biotechnology and traditional chemicals, while 368 companies are active only in 

traditional chemicals, and 109 only in biotechnology. Table 2 lists the top 20 patents in 

terms of the maximum number of citations that they received in biotechnology and 

traditional chemicals in 1987-1993, and lists their applicant firms.  

[TABLE 2] 

Twelve companies in the top 20 positions in biotechnology are fairly small companies 

that develop a limited number of patents only in biotechnology. The other 8 firms are 

active also in traditional chemicals. Five of these 8 companies are in the top 20 positions 

in both listings (Hoechst, Ciba Geigy, Zeneca Group, Rhone-Poulenc and Solvay). In 

traditional chemicals, the top 20 firms are large and well-known companies active in the 
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sector for a long time. Moreover, the average number of citations received by the patents 

applied by companies that innovate only in one sector is not significantly different from 

the average number of citations of patents applied by companies that are active both in 

traditional chemicals and in biotechnology.  

In order to have some insights on the relationship between the characteristic of the 

applicant firms and the value of the innovations in biotech and traditional chemicals, 

Figure 3 groups the patents in three categories (horizontal axis) according to the number 

of CITS: patents with 0 citations (i.e. the median number of citations), those with 1 

citation (i.e. patents in the fourth quartile), and those with 2 citations or more (i.e. patents 

in the top 10%). By differentiating between biotech and traditional chemical patents 

Figure 3 shows the relationship between the average characteristics of firms that produce 

biotech and traditional chemical patents, and the probability to fall in one of the 3 citation 

classes.5  

[FIGURE 3] 

The dark columns are for traditional chemicals. The light ones are for biotechnology. 

Firm size (SALES) is measured by company sales in millions of 1988 US $, and it is 

plotted on the left-end vertical axis (thick histograms). The Figure confirms the 

expectation that in  traditional chemicals the size of the companies is, on average, larger 

than in biotechnology. Moreover, both in biotechnology and in traditional chemicals 

there is a negative relationship between the size of the firms and the probability to 

receive patent citations, that suggests that smaller companies have a higher probability of 

inventing technological hits.  

The average R&D intensity and the average technological specialisation of companies 

are plotted on the right-end vertical axis. The firm R&D intensity (R&D/SALES) is 

measured by the ratio between a company R&D spending and sales in 1988. The smallest 

histograms on the right of each citation class show the average R&D intensity of firms in 

biotechnology and traditional chemicals. The technological specialisation of the 

companies (TECHSPEC) is measured by the ratio between the number of patents 
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developed by the firm in the same technological class of the patent application (i.e. 

biotechnology, materials, organic chemistry, pharmaceuticals, and polymers) and the 

total number of EPO patents applied in the 5 years before the patent application. The tall 

and thin histograms in Figure 3 indicate the average technological specialisation of 

companies across the 3 citation classes. As expected, not only is innovation in traditional 

chemicals centred on large incumbent chemical manufacturers while biotech is populated 

by smaller companies, but the latter firms are on average more R&D intensive and 

technological specialised than companies in traditional chemicals. Moreover, there is a 

positive relationship between the R&D intensity of firms and the probability of producing 

highly cited patents in both sectors. In biotechnology, R&D/SALES jumps from 8.5% in 

the 0 citation class, to 9.4% for companies with patents in the top quartile, to 11.0% for 

companies with patents in the top 10% class. In traditional chemicals, R&D/SALES goes 

from 5.9%, to 5.5% and 6.6% in the three citation classes respectively. Differently, the 

firms’ technological specialisation is positively correlated with the probability of 

developing good patents only in biotechnology (it goes from 0.33 in the bottom 50% 

class to 0.40 in the top 10% citation class), while in traditional chemicals the extent of 

firms’ specialisation does not differ across the 3 citation classes.  

To complete the picture I also explored the relationship between the technological 

characteristics of the regions in which the inventors are located and the value of the 

innovations in biotech and traditional chemicals. The expectation is that in technology-

intensive regions, where innovative activities agglomerate, it is easier to find the 

specialised and complementary competencies needed in complex R&D projects. 

Moreover, since people with complementary expertise are located close to one another, 

the probability to collaborate increases. My sample patents are invented in 208 NUTS 

regions: biotech patents are in 110 regions, while traditional chemicals are in 190 

regions. Biotech patents, however, are less geographical concentrated than traditional 

chemical patents: 63% of all patents in biotechnology are invented in the top quartile 

regions, and 84% biotech patents are invented in top 50% regions. These shares are larger 

in traditional chemicals: 84% and 94% of total patents in traditional chemicals are 
                                                                                                                                                                             
5 These average values are calculated at the patent level. Therefore, the 59 firms with 
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invented in the top 25% and 50% regions respectively. The Herfindhal index is 0.020 for 

biotech, and 0.036 for traditional chemicals. Figures 4 and 5 map the distribution of 

biotech and traditional chemical patents across the European regions.     

[FIGURE 4 and 5] 

The maps are drawn by computing the percentile distribution of the sample patents across 

the European regions: the smallest symbols are for regions that host a number of patents 

in the bottom quartile in biotech and traditional chemicals. The size of the symbols 

increases by moving to the regions in the second quartile, in the third quartile, in the 

75%-90% interval, and in the top 10% class (largest circles and triangles). The Figures 

show that the bulk of biotech and traditional chemical patents are invented approximately 

in the same countries and groups of regions. More precisely, the top decile regions in 

biotech and traditional chemicals share 5 regions in common (Darmstadt-Hessen, 

Switzerland, Ile de France, Berkshire-Becks-Oxfordshire, Surrey-East and West Sussex) 

that are half of the regions in the top decile in biotechnology. The share of regions in 

common in the two listings increases in the top quartile regions: two thirds of the regions 

in the top quartile (15) are both in biotech and traditional chemicals.  

To explore further the impact of regions on the probability of the patents to receive 

citations, I use the geographical indicators provided by the EUROSTAT REGIO database 

(1999) and the European R&D database (Reed Elsevier Publisher, 1996). The 1995 stock 

of higher education laboratories (REGHLABS) and the average number of patents 

invented in 1987-1996 in all sectors (REGPATS) in the regions are my proxies for the 

research intensity of the regions. Compared to the number of chemical patents invented 

in the regions or to the number of chemical laboratories, these indicators are less 

endogenous with respect to the decision of the firms to locate R&D activities in a certain 

region (i.e. the firms themselves do not determine the technological characteristics of the 

regions). Moreover, while REGHLABS indicates the presence of scientific institutions in 

the region, REGPATS are the output of more “applied” and technology-related research.6 

                                                                                                                                                                             
patents in biotechnology and traditional chemicals enter the calculations in both sectors. 
6 The Regio database (1999) does not provide information on the regional characteristics 
of Switzerland, Finland, Norway and Sweden.  
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The geographical distribution of these variables is skewed. The number of higher 

education laboratories across regions ranges from 0 to 461, with mean 15. The top 20 

regions in the sample host 50% of the total number of higher education laboratories 

located in Europe. The same applies for the number of patents: about 50% of all patents 

are invented in the top 18 regions. As expected, the distribution of REGLABS and 

REGPATS is similar to the distribution of the sample patents across regions (the top 25% 

regions host about 74% of the higher education laboratories and patents invented in all 

sectors, and this share raises to about 90% for the top 50% regions). Like in Figure 3, I 

calculated the average technological characteristics (REGHLABS and REGPATS over 

population) of the regions where patents in the 3 citation classes are invented (not shown 

here). Unfortunately, the results are inconclusive: none of the two measures is correlated 

with the number of citations received by the patents in biotech and traditional chemicals. 

This might be due to the fact that the tables do not highlight the net effect of being in a 

cluster area over the probability of developing valuable innovations in the two sectors. To 

do so the next section controls for other factors by means of multiple correlation analysis. 

 

4. Firms vs regions in biotech and traditional chemicals 

To test the combined effect of firm and regional characteristics over the probability of 

producing technological hits in biotechnology and in traditional chemicals, this section 

performs a multiple correlation exercise by means of Negative Binomial regressions. As 

mentioned in Section 2.1, if different models of innovation exist in sectors characterised 

by different technological regimes, or by different stages of the industry life-cycle the 

comparison between biotechnology and the rest of the chemical industry is a good 

candidate to highlight these differences. The test uses the whole 1987-1996 sample that 

includes 525 biotech patents and 3,737 traditional chemical patents. A novelty of this 

paper is that it collects data at the patent level. This implies, however, that there is intra-

group error correlation for patents developed by the same firms or in the same regions, 

leading to heteroskedasticity in the regressions. Robust estimators are included in order 

to produce robust standard errors.  
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Three sets of variables are used as regressors. The first one is composed of firm 

characteristics: characteristics at the level of the firm and characteristics at the level of 

the R&D project that led to the innovation. Firm level variables are: SALES, 

R&D/SALES, TECHCOMP, and TECHSPEC. A dummy for the missing values of SALES 

and R&D is included in the regressions, as well as a dummy for the large non-chemical 

companies. SALES, a proxy for the size of the firms, is the company sales in 1988 US$. 

On the one hand, the size of the firms is expected to have a positive sign on the 

probability of inventing technological hits because the larger is the firm, the larger is the 

number of people and firm’s units involved in related and coordinated activities. This is 

expected to produce internal knowledge spillovers. On the other hand, however, large 

firms might need high coordination efforts and costs in order to produce these spillovers 

internally. Figure 3 suggests that the latter effect prevails. Once controlling for the size of 

the firm, R&D intensity (R&D/SALES in 1988) is expected to affect positively the 

production of valuable innovations. This is because the more a firm engages in research 

activities, the larger the number of projects and people involved in the inventive activity 

within the same organisation. Moreover, not only does a firm’s R&D activity increase the 

probability to generate new knowledge internally, but it also contributes to increase a 

firm’s absorptive capacity to assimilate external knowledge.  

I also employ two measures of firms’ technological competencies computed by using 

EPO data. As an indicator of firms’ technological competencies in the same sector of the 

patent application, I constructed the variable TECHSPEC. This is the number of patents 

applied by the firm in the same technological field as that of the patent application in the 

5 years before the patent was applied for. After controlling for the number of patents 

applied by the firm in the other sectors in the same 5 years period (TECHCOMP), the 

expectation is that the technological specialisation of the firms (TECHSPEC) is 

positively correlated with the probability of developing technological hits. This 

probability is expected to be higher in smaller companies that pursue innovations in 

specific technological niches. The effect of technological specialisation is thought to be 

less important for large companies that take advantage of economies of scope in research 

internal to the firm. For these large companies TECHCOMP is expected to be correlated 
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with the R&D expenditures, and to become statistically insignificant when both variables 

are included in the regressions.  

Firm characteristics at the level of the R&D project are given by the breadth of the 

project that led to the patent. This is proxied by three variables: the number of inventors 

listed in the patent (INVENTORS), a dummy that indicates if the patent is the output of 

the collaboration among different institutions (MAPPL), and a dummy that indicates if 

the inventors are co-localised or de-localised at the regional level (DLOC).7 The number 

of inventors listed in the patent is a proxy for the scale of the research project, while the 

number of applicants that apply for the patent is a proxy for the breadth of the project that 

goes beyond the firm boundaries. After controlling for the firm’s R&D intensity, the 

scale of the research project is expected to positively affect the probability of developing 

big innovations, both in biotech and in traditional chemicals. This is so also for the 

collaboration among different institutions that join their resources and capabilities.8 The 

benefit of the collaboration is also expected to compensate the cost and the effort needed 

to master the collaboration. Finally, the inclusion of the dummy DLOC is based on the 

idea that the more a research project is complex, interdisciplinary and important for a 

firm, the more it is mastered internationally with a wide range of competencies that might 

be located in different units of the firm, in different institutions and in different locations. 

This would lead to a positive correlation between the probability of a patent being DL 

and its value. As noted earlier, this dummy also controls for the arbitrary assignment of 

patents to regions when the inventors are not all located in the same NUTS. 

The second set of variables includes regional characteristics. The number of higher 

education laboratories set up in each region in 1995 (REGHLABS) and the average 

number of patents invented in each region in the period 1987-1996 (REGPATS) measure 

the scientific and technological characteristics of the regions. Both in traditional 

chemicals and in biotechnology the presence of universities and the collaboration with 

                                                           
7 A patent is co-localised if all the inventors are located in the same NUTS region; it is 
de-localised if at least one inventor is located in a different NUTS region. 
8 MAPPL might underestimate the number of projects developed in collaboration with 
other organizations. Indeed, there are strategic reasons to apply for individual patents 
even if the innovations are the output of a collaboration.  
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the academia has always shown to be of primary importance for the setting up of R&D 

laboratories and for the productivity of firms’ R&D activities (See, for example, 

Rosenberg, 1998; Zucker, Darby and Armstrong 1998; Arundel and Geuna, 2004). This 

paper uses REGLABS as a proxy for the presence of scientific institutions located in the 

area. REGPATS is interpreted as an indicator of the regional technological capabilities. 

The area of the regions (AREA), the population density (POP) and the economic 

development measured by the regional per capita GDP (GDP) are used as exogenous 

controls for the characteristics of the regions. Consistently with the idea of agglomeration 

economies the expectation is that the population density and the per capita GDP are 

positively correlated with the probability of developing big innovations, while AREA is 

expected to have a negative sign.  

The third set of data includes other controls. CITSSEC – i.e. the average number of 

citations made per patent in the same year and technological field of the patent 

application – is the first of them. This is a very important variable in regressions that deal 

with patent citations because it creates a benchmark value of citation intensity that 

controls for the truncation problem and for differences in the citation intensities over time 

and across sectors that are unrelated with the value of the patents (Hall et al., 2001). 

Factors like differences in the EPO practices over time and across technological fields, 

the natural increase in the number of citing patents over time, and the fact that patents 

applied in different years suffer of different degrees of truncation make it difficult to 

compare patents on the basis of the number of citations received. CITSSEC serves this 

purpose by scaling the number of citations received by a patent by the average citation 

intensity of a group of patents with similar characteristics. The inclusion of CITSSEC 

also allows me to include in the regressions the whole sample of patents applied in 1987-

1996.9  

Another control is CITSSC that is the number of citations made by the patent to the past 

non-patent literature like scientific journals, books, proceedings, etc. It controls for the 

extent to which a patent is related to basic research. This variable is expected to be 
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positively associated with the probability of receiving forward citations because more 

basic work might be useful for a larger number of future applications. I also include 

INCYd and APCYd that are dummies for the country of the inventors and the country of 

the applicant. By including them I will capture the effect of the different regional 

characteristics independently of the variation across countries. Finally, YEARd (the year 

in which the patent was applied for) and TECHd (the 5 sectors in which the patent is 

classified) control for time and technology specific effects that might produce changes in 

the number of citations.10  

Table 3 provides the descriptive statistics. Table 4 show the results of the econometric 

estimates. All the variables are in logs. 

[Table 3 and 4] 

The first and third column from the right of Table 4 shows the estimated results for 

biotechnology, while the second and fourth columns from the right shows the results for 

the traditional branches of the chemical industry. The two specifications for each sector 

differ only for the inclusion of firm and project characteristics: the first specification does 

not include TECHSPEC, TECHCOMP and DLOC. The results are robust across the two 

specifications. 

The main result is that technological hits in biotechnology and traditional chemicals are 

the outcome of very different models of innovation. In traditional chemicals the 

probability of producing valuable patents depends on firms’ internal R&D effort. The 

R&D intensity of the companies and the large scale of the projects affect the probability 

of inventing highly cited innovations. The elasticity of CITS with respect to R&D/SALES 

is 0.134 and 0.151 in the two specifications, and it is statistically significant. These 

results confirm the expectations drawn from Figures 3 where the firm R&D intensity was 

positively correlated with the probability of developing patents in the highest cited patent 

class. Also the number of inventors (INVENTORS) and the number of institutions 
                                                                                                                                                                             
9 To check for technology-specific citation intensities, CITSSEC uses a 3 digit IPC 
classification that includes more than 150 chemical and chemical-related classes out of 
637 technologies in all fields.   
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(MAPPL) that collaborate on a common research project are positively correlated with 

the probability of producing important patents, suggesting that the probability of 

developing technological hits is higher when a research project involves large networks 

of inventors and different organisations.  

Once controlling for many factors, SALES, TECHCOMP and DLOC do not add anything 

to the expected value of the innovations in traditional chemicals. Only the technological 

specialisation of companies (TECHSPEC) is significantly correlated with CITS, but the 

sign of this correlation is negative. Rather than the effect of the technological 

diversification of the companies, the negative sign of TECHSPEC is suggestive of the 

high propensity to patent in the chemical sector. This is because traditional chemicals is 

populated by large firms that can apply for patent protection for important innovations 

and also for less valuable innovations. It is plausible to think that the share of less 

valuable innovations over the total number of patent applications is smaller in 

biotechnology. In turn, as the number of patent applications in the specific sector raises, 

the average quality of the patents decreases, as well as the expected number of CITS. 

This is confirmed by the fact that firms in traditional chemicals have a higher share of 

self-citations per patent than firms in biotech, and by the fact that the negative and 

significant effect of TECHSPEC disappears when self-citations are included in the 

dependent variable. In this case the negative sign of TECHSPEC is compensated by the 

fact that firms with larger patent portfolios tend to cite themselves, and this positively 

affects the expected number of CITS including self-citations.  

Unexpectedly, however, the technological characteristics of the regions in which the 

inventors are located do not raise the probability of developing technological hits in 

traditional chemicals. This result holds both for the proximity to high education 

laboratories (REGHLABS) and for the location in technological intensive regions 

(REGPATS). Since there is a large number of controls in these regressions, this suggests 

that beyond economies in R&D internal to the firm, the model of innovation that leads to 

high expected value patents in traditional chemicals is dominated by large firms that 

                                                                                                                                                                             
10 These are time and technology effects that are independent of the changes identified by 
the variable CITSSEC.  
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invests heavily in internal R&D activities and large scale projects, with no role for the 

spillovers from near-by research laboratories or from the general technological 

environment in which the research is conducted.11 

Firm characteristics still matter in biotechnology. Specifically, prior knowledge in 

developing patents is important for raising the probability of developing successful 

innovations. However, these competencies must be built in the biotechnology sector. The 

estimated coefficients of TECHSPEC and TECHCOMP are 0.264 and –0.196, and are 

statistically significant. In other words, technological specialisation matters for producing 

big biotech innovations. The expected value of innovations rises also when firms carry 

out R&D projects in collaboration with other institutions. The coefficient of MAPPL is 

positive (0.504 and 0.539) and it is statistically significant in both specifications. 

Moreover, consistently with the more basic nature of biotechnology research compared to 

traditional chemicals, also CITSSC is positive and statistically significant in 

biotechnology.  

But what really distinguishes the biotech from the traditional chemical model is the 

importance of the regions. More specifically, the richness of the technological 

environment in which the research is carried out influences the probability of developing 

technological hits in biotechnology: after including extensive controls for the firms, the 

projects and the regions, the net effect of REGPATS is positive (0.303 and 0.323) and 

statistically significant in both specifications. Surprisingly, however, the expectation that 

the geographical proximity to university laboratories is correlated to the probability of 

inventing important innovations in biotechnology is not confirmed. This is probably due 

to the fact that the number of patents invented in a region proxies for the general 

scientific and technological environment in which the inventors are located, and 

measures the scale and the productivity of the research activities carried out by both 

public and private institutions in the area. These results also suggest that the “regional” 

effect is a “real” effect: although biotech and traditional chemical patents are produced 

                                                           
11 The regional characteristics are also jointly insignificant. By performing a Likelihood 
Ratio test, the unrestricted model in Table 4 is checked against a restricted model with 
REG-HLABS = REG-PATS = GDP = POP = AREA = 0. With 5 degrees of freedom the 
null hypothesis is not rejected. 
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under the same geographical conditions (See Figures 4 and 5), geography affects the 

probability of developing valuable inventions only in biotechnology.12  

 

5. Some more evidence 

So far the empirical results show that the positive effect of being an R&D intensive firm 

with large R&D projects dominates over any other factors for developing technological 

hits in traditional chemicals: spillovers are bounded within the same R&D intensive firm, 

with only a positive effect of setting up R&D collaborations with other organisations. By 

contrast, in biotech, technological specialised firms located in technological intensive 

regions are likely to produce high expected value innovations. 

This section adds empirical evidence to test the importance of the geographical proximity 

of the inventors to external sources of knowledge in biotech compared to traditional 

chemicals. Citations to past patents are used in the literature as indicators of knowledge 

spillovers from the cited to the citing patent (see, for example, Jaffe et al., 1993). Based 

on this idea I considered each pair of citing and cited patents in my sample: the citing 

patents are the 4,262 patents described in Section 3.1; the number of cited patents is 

7,304, i.e. patents used as prior art to develop the 4,262 innovations. I use the zip-code 

contained in the addresses of the inventors of the cited patents to assign them to the 

specific NUTS region in which they are invented. This allows me to identify three classes 

of cited patents: 1) patents invented in the same NUTS region of the citing patent. These 

are the “local citations”; 2) patents invented in different regions but in the same country 

of the citing patent, i.e. “national citations”; 3) patents invented entirely in different 

                                                           
12 I alternatively included in the regressions the number of chemical laboratories, the 
number of private laboratories and the total number of laboratories in the regions in place 
of REGHLABS, and the number of chemical patents invented in the regions in place of 
REGPATS. The results are not significantly different from those shown in Table 4: the 
number of chemical patents invented in the regions is positive and significant, while the 
number of laboratories of any type does not affect CITS. The results in Table 4 are also 
robust to the inclusion of self-citations in the dependent variable, and to the use of patent 
citations in all years after the application date up to 2000. The empirical estimates are 
available from the author. 
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countries “international citations”.13 I also identified the self-citations in the sample (i.e. 

citations to patents applied by the very same applicant of the citing patent): they account 

for 2,171 patents and tend to be located in the same area and firm of the citing patents.  

The remaining 5,133 cited patents are distributed as follows: 378 are “local citations”; 

660 are “national citations”; 4,095 are “international citations”. Some interesting facts 

emerge from the data. First, the overall share of “local citations” is small (7.4%) 

suggesting that geographical proximity has a limited importance on the probability of a 

patent to be used as prior knowledge. Second, proximity is relatively more important in 

biotechnology than in traditional chemicals. To see this I calculated the share of “local 

citations” in biotechnology and in traditional chemicals. (See Hicks and Buchanan, 2003 

for a similar exercise). This is given by the ratio 
∑
∑

=

i
i

i
il

c

c
S , where i denotes the patent, 

cil is the number of local citations made by each patent in the sample to previous patents 

invented in the same NUTS region of the citing patent, and ci is the total number of 

citations made by each patent in the sample. In the same fashion I calculated the shares of 

national, international and self-citations made by the sample patents to previous EPO 

patents. Table 5 shows these ratios. 

[TABLE 5] 

The first row in Table 5 confirms that the probability of a patent to be cited if it is 

developed in the same region of the citing patent is higher in biotech than in traditional 

chemicals: the share of local citations in biotechnology is 7.6% compared to 4.8% in 

traditional chemicals. This is consistent with the econometric estimates: proximity to 

external sources of knowledge is relatively more important in biotechnology than in the 

traditional branches of the chemical industry. The results of the regressions also say that 

                                                           
13 It is a “local citation” when at least one inventor in the cited and citing patent is located 
in the same region. If none of the inventors are located in the same region, but at least 
one inventor is located in the same country of the citing patent, it is a “national citation”. 
If all the inventors of the citing and cited patents are located in different countries, it is an 
“international citation”. 
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this proximity produces a positive effect on the expected value of the innovations in 

biotech.  

Third, it is interesting that the share of international citations is large in both sectors(69.7 

in biotechnology and 53.9% in traditional chemicals) suggesting that international 

linkages are a very important source of knowledge in developing innovations. Again, 

however, international citations are more frequent in biotech than in traditional 

chemicals. This suggests that the process of innovation in biotechnology relies either on 

international sources of knowledge, or on local linkages. Finally, it is worth noticing that 

the share of self-citations is higher in traditional chemicals than in biotechnology (31.9% 

vs. 15.4%): one third of the citations made by traditional chemical patents are to patents 

developed by the very same firm that developed the citing patents. This is consistent with 

the econometric results about the importance of spillovers internal to the firm in 

traditional chemicals.  

 

6. Conclusions 

Firm competencies and regional characteristics are often discussed in the literature as 

different sources of firms’ competitive advantages. This paper compares the firm and the 

geographical cluster as organisation modes for producing valuable innovations. It 

estimates how much of the value of an innovation depends on the characteristics of the 

organisation to which the inventors are affiliated, and how much it is affected by the 

characteristics of the location in which it is invented. To do so it uses information on 

4,262 European patents in five chemical sectors applied for in 1987-1996, and links these 

data to other sources of information on firm and regional characteristics. The 

geographical unit of analysis is the European regions according to the NUTS 

classification (Nomenclature des Unités Territoriales Statistiques) at the third and second 

level of disaggregation.  

The econometric results suggest that there is a differential effect of the characteristics of 

the location in which the research is conducted in biotechnology compared to traditional 

chemicals. In biotechnology, a new and science-intensive sector, big innovations are 
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more likely to be produced by firms that are technologically specialised in that sector. 

Knowledge spillovers from being located in a technological intensive region help in 

raising the probability of inventing technological hits. This model of innovation has only 

one element in common with the traditional model: the importance of establishing 

research collaborations with other firms o institutions. Differently, in the traditional 

branches of the chemical sector, large established companies that invest heavily in 

internal R&D activities and engage in large R&D projects have a higher probability of 

producing big innovations. Economies of scale in research are internal to the firm, while 

geographically localised spillovers do not affect the probability of inventing 

technological hits.  

There is an alternative interpretation of the positive effect of regional characteristics in 

biotech. Consistently with Zucker, Darby and Armstrong (1998), Zucker, Darby, and 

Brewer (1998) and Klepper and Sleeper (2002) there might be regions that are better at 

doing some kind of relevant research because of the presence of some top universities or 

some high-tech companies. These regions spawn a large number of R&D performing 

startups founded by the personnel employed in the top organisations, and produce a large 

numbers of patents together with high citation intensities in the areas. This interpretation 

is still consistent with the idea of spillovers, although such spillovers are not produced 

directly by the technological environment as proxied by the number of higher education 

laboratories or the number of patents invented in the region, but come from the initial 

technological characteristics of the regions in which these firms are located. Still, this 

paper shows that this would happen in biotechnology more than in traditional chemicals. 
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FIGURES AND TABLES 

Table 1: List of variables  
Firm characteristics 

CITS Number of citations received by the patent in the 5 years after the 
application date, excluding self-citations 

SALES Company sales in 1988 (Millions of 1988 US$) 
R&D/SALES Company R&D spending over sales in 1988 

TECHSPEC 
Number of EPO patents applied by the firm in the 5 years before the patent 
application in the same technological field (biotech, materials, organic 
chemistry, pharmaceuticals, and polymers)  

TECHCOMP Number of EPO patents applied by the firm in the 5 years before the patent 
application in other technological classes than the one of the sample patent  

INVENTORS Number of inventors that collaborate to develop the innovation 

DLOC Dummy. It takes the value 1 if the inventors listed in the patent are located 
in the same region; 0 otherwise 

MAPPL Dummy. It takes the value 1 if there are multiple applicants; 0 otherwise 
CITSSC Number of citations made by the patent to the past scientific literature 
NOCHEM Dummy for non chemical companies 
MISSING Dummy for missing values on SALES and R&D 

Regional characteristics 

REGHLABS Number of higher education laboratories located in the region (stock in 
1995) 

REGPATS Number of patents invented in the regions (units - average 1987-1996) 

GDP Regional per capita Gross Domestic Product in millions of purchasing power 
parity and corrected for inflation (average 1987-1996)  

POP Population density of the region (thousands - average 1987-1996) 
AREA Area of the region in Km2 

Other controls 

CITSSEC 

Citation intensity of patents applied in the same cohort of the patent application 
– i.e. average number of citations received by the patents applied in the same 
year and in the same technological field of the patent application (3 digit IPC 
classes).   

INVCY Dummy for the country of the inventors (At, Be, Ch, De, Dk, Es, Fi, Fr, Gr, Ie, 
It, Lu, Nl, Se, Uk) 

APPLCY Dummy for the country of the applicant firm (At, Be, Ch, De, Dk, Es, Fi, Fr, 
Gr, Ie, It, Lu, Nl, Se, Uk, Jp, Us, Others) 

YEAR Dummy for the application date (1987-1996) 

SECTOR Dummy for the sector in which the patent is classified: biotechnology, 
materials, organic chemistry, pharmaceuticals, and polymers 
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Figure 1. Distribution of CITS – number of citations received by the patents in the 5 years 
after the application date, excluding and including self-citations 
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Source: Elaboration from the EPO data, 1987-1993. Sample: 3,080 patents. 
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Figure 2. Distribution of CITS – number of citations received by the patents in the 5 years 
after the application date: biotechnology and traditional chemicals 
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Table 2: Top twenty patents in terms of patent citations  

Biotechnology Traditional chemicals 
Applicant N of 

citations 
Applicant N of 

citations 
B.A.T. Industries PLC                11 Zeneca Group PLC                          13
Silica Apparatebau GmbH .        10 Targor GmbH                                  11
Imcera Group Inc.                       9 Bayer AG                                        10
Ciba Geigy AG                           8 Glaxo Wellcome PLC 10
Hoechst AG                                 8 Guerbet S.A.                                    10
Plant Genetic Systems N.V.        7 Basf AG                                           9
Zeneca Group PLC                     7 C.H. Boehringer Sohn                     9
E.I. Du Pont de Nemours            6 Rhone-Poulenc S.A.                        9
Max-Planck-Gesellschaft            6 Dr. Zambeletti S.p.A.                      8
Transgene S.A.                            6 Hafslund Nycomed A/S                  8
Akzo Nobel N.V.                        5 Solvay S.A.                                     8
Biomerieux Alliance S.A.           5 Warner-Lambert Co.                       8
Got-a-Gene AB                           5 Ciba Geigy AG                                7
ISIS Pharmaceuticals INC.         5 Monsanto Co.                                  7
Merial                                          5 Polifarma S.p.A.                              7
Rhone-Poulenc S.A.                    5 Schering AG                                    7
Royal Gist-Brocades N.V.          5 The Procter & Gamble Co.              7
Sclavo S.p.A.                              5 Vectorpharma International SpA     7
Solvay S.A.                                 5 Colgate Palmolive Co.                     6
Amersham International PLC     4 Hoechst AG                                    6

Source: Elaboration from the EPO data, 1987-1993. Sample: 3,080 patents. 
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Figure 3: Average characteristics of firms with patents in biotechnology and traditional 
chemicals: Size (Mean of SALES), R&D intensity (Mean of R&D/SALES) and 
technological specialisation (mean of and TECHSPEC) of firms. 
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Figure 4: Geographical distribution of biotech patents 
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Figure 5: Geographical distribution of traditional chemical patents 
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Table 3: Descriptive statistics. Traditional chemicals and biotechnology (biotechnology 
in italics) 

Variable Mean Standard 
Deviation 

Minimum Maximum 

Firm characteristics 

CITS 0.58  
0.84 

1.16  
1.54 

0            
0 

13        
11 

SALES 17,574 
10,889 

14,895 
13,575 

4            
4 

87,542 
79,643 

R&D/SALES 0.06  
0.09 

0.10  
0.11 

0.002 
0.002 

3.12  
0.85 

TECHSPEC 307      
44 

351      
59 

0            
0 

1,230 
252 

TECHCOMP 1,073 
506 

1,174 
971 

0            
0 

6,264 
4,502 

INVENTORS 3.19  
3.15 

1.85  
1.84 

1            
1 

16        
14 

DLOC 0.62  
0.59 

0.49  
0.49 

0            
0 

1            
1 

MAPPL 0.06  
0.10 

0.23  
0.31 

0            
0 

1            
1 

Regional characteristics 

REGHLABS 46        
45 

71        
69 

0            
0 

461    
461 

REGPATS 610    
467 

609    
605 

0.8         
0 

2,263 
2,263 

GDP  16.9 
17.1 

4.4      
4.3 

7.4      
7.6 

27.5  
27.5 

POP 0.70  
0.67 

0.87  
0.92 

0.01 
0.005 

5.93  
5.73 

AREA 6,207 
6,499 

3,981 
5,574 

97        
97 

35,291 
55,401 

Other controls 

CITSSC 1.16  
3.14 

1.8      
2.7 

0            
0 

24        
17 

CITSSEC 1.44  
1.70  

0.58  
0.67 

0.13  
0.07 

4.02  
3.49 

Number of observations: 525 biotech patents and 3,737 traditional chemical patents 
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Table 4: Estimates of Negative Binomial regressions. Dependent variable: number of 
citations received by the patent in the 5 years after the application date excluding self-
citations (CITS)  

 Trad. Chemicals Biotechnology Trad.  Chemicals Biotechnology 
Firm characteristics 

SALES -0.002 
(0.027) 

-0.035 
(0.056) 

0.019 
(0.031) 

0.037 
(0.065) 

R&D/SALES 0.134 
(0.043) 

-0.018 
(0.116) 

0.151 
(0.043) 

-0.079 
(0.124) 

TECHSPEC - - -0.093 
(0.040) 

0.264 
(0.108) 

TECHCOMP - - 0.031 
(0.037) 

-0.196 
(0.074) 

INVENTORS 0.183 
(0.062) 

0.125 
(0.119) 

0.200 
(0.066) 

0.154 
(0.129) 

DLOC - - 0.033 
(0.072) 

0.169 
(0.168) 

MAPPL 0.271 
(0.133) 

0.504 
(0.229) 

0.278 
(0.131) 

0.539 
(0.232) 

Regional characteristics 

REGHLABS 0.054 
(0.041) 

-0.061 
(0.081) 

0.052 
(0.042) 

-0.076 
(0.081) 

REGPATS -0.025 
(0.058) 

0.303 
(0.151) 

-0.021 
(0.059) 

0.323 
(0.154) 

GDP -0.220 
(0.236) 

-0.474 
(0.526) 

-0.231 
(0.238) 

-0.373 
(0.550) 

POP 0.036 
(0.089) 

-0.176 
(0.185) 

0.041 
(0.090) 

-0.186 
(0.182) 

AREA 0.006 
(0.101) 

-0.300 
(0.210) 

0.010 
(0.101) 

-0.274 
(0.209) 

Other controls 

CITSSC -0.055 
(0.056) 

0.293 
(0.116) 

-0.063 
(0.056) 

0.302 
(0.111) 

CITSSEC 0.653 
(0.224) 

1.447 
(0.405) 

0.676 
(0.223) 

1.090 
(0.404) 

# observations 3,518 497 3,494 490 

log-likelihood -3,460.4 -568.5 -3,439.5 -559.9 
Note: Variables are in logs. Robust standard errors are in parentheses. All regressions include 
dummies for Non chemical companies, Missing value for R&D and SALES, Inventor country, 
Applicant country, Year of application and Technological field. 
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Table 5: Citations made to previous patents. Share of local, national, international and 
self citations in biotechnology and traditional chemical.  
 Biotechnology Traditional 

chemicals 
Total 

Share of local citations 7.6 4.8 5.2 
Share of national citations 7.2 9.3 9.0 
Share of international citations 69.7 53.9 56.1 
Share of self-citations 15.4 31.9 29.7 

Source: Elaboration from the EPO. Sample: 4,262 citing patents and 7,304 cited patents. 
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Appendix 1: NUTS2 and NUTS3 classification used in the paper  

      

at111 Mittelburgenland  es61
7  Málaga  it323 Belluno  

at112 Nordburgenland  es61
8  Sevilla  it324 Treviso  

at113 Südburgenland  es62  Murcia  it325 Venezia  

at121 Mostviertel-Eisenwurzen  es63
1  Ceuta  it326 Padova  

at122 Niederösterreich-Süd  es63
2  Melilla  it327 Rovigo  

at123 Sankt Pölten  es70
1  Las Palmas  it331 Pordenone  

at124 Waldviertel  es70
2  

Santa Cruz De 
Tenerife  it332 Udine  

at125 Weinviertel  fi131 Etelä-Savo  it333 Gorizia  
at126 Wiener Umland/Nordteil  fi132 Pohjois-Savo  it334 Trieste  
at127 Wiener Umland/Südteil  fi133 Pohjois-Karjala  it401 Piacenza  
at13  Vienna  fi134 Kainuu  it402 Parma  
at211 Klagenfurt-Villach  fi141 Keski-Suomi  it403 Reggio nell'Emilia  
at212 Oberkärnten  fi142 Etelä-Pohjanmaa  it404 Modena  
at213 Unterkärnten  fi143 Pohjanmaa  it405 Bologna  
at221 Graz  fi144 Keski-Pohjanmaa  it406 Ferrara  
at222 Liezen  fi151 Pohjois-Pohjanmaa  it407 Ravenna  
at223 Östliche Obersteiermark  fi152 Lappi  it408 Forlì-Cesena  
at224 Oststeiermark  fi161 Uusimaa (maakunta)  it409 Rimini  
at225 West- und Südsteiermark fi162 Itä-Uusimaa  it511 Massa-Carrara  

at226 Westliche 
Obersteiermark  fi171 Varsinais-Suomi  it512 Lucca  

at311 Innviertel  fi172 Satakunta  it513 Pistoia  
at312 Linz-Wels  fi173 Kanta-Häme  it514 Firenze  
at313 Mühlviertel  fi174 Pirkanmaa  it515 Prato  
at314 Steyr-Kirchdorf  fi175 Päijät-Häme  it516 Livorno  
at315 Traunviertel  fi176 Kymenlaakso  it517 Pisa  
at321 Lungau  fi177 Etelä-Karjala  it518 Arezzo  
at322 Pinzgau-Pongau  fi2  Åland  it519 Siena  
at323 Salzburg und Umgebung  fr1  Île de France  it51a Grosseto  
at331 Außerfern  fr211 Ardennes  it521 Perugia  
at332 Innsbruck  fr212 Aube  it522 Terni  
at333 Osttirol  fr213 Marne  it531 Pesaro e Urbino  
at334 Tiroler Oberland  fr214 Haute-Marne  it532 Ancona  
at335 Tiroler Unterland  fr221 Aisne  it533 Macerata  
at341 Bludenz-Bregenzer Wald fr222 Oise  it534 Ascoli Piceno  
at342 Rheintal-Bodenseegebiet  fr223 Somme  it601 Viterbo  
be1  Région Bruxelles  fr231 Eure  it602 Rieti  
be21  Antwerpen  fr232 Seine-Maritime  it603 Roma  
be22  Limburg (B)  fr241 Cher  it604 Latina  
be23  Oost-Vlaanderen  fr242 Eure-et-Loir  it605 Frosinone  
be24  Vlaams Brabant  fr243 Indre  it711 L'Aquila  
be25  West-Vlaanderen  fr244 Indre-et-Loire  it712 Teramo  
be3  Région Wallonne  fr245 Loir-et-Cher  it713 Pescara  
be31  Brabant Wallon  fr246 Loiret  it714 Chieti  
be32  Hainaut  fr251 Calvados  it72 Molise  



 12

be33  Liège  fr252 Manche  it721 Isernia  
be34  Luxembourg (B)  fr253 Orne  it722 Campobasso  
be35  Namur  fr261 Côte-d'Or  it801 Caserta  
ch Switzerland fr262 Nièvre  it802 Benevento  
de11  Stuttgart  fr263 Saône-et-Loire  it803 Napoli  
de12  Karlsruhe  fr264 Yonne  it804 Avellino  
de13  Freiburg  fr301 Nord  it805 Salerno  
de14  Tübingen  fr302 Pas-de-Calais  it911 Foggia  
de21  Oberbayern  fr411 Meurthe-et-Moselle  it912 Bari  
de22  Niederbayern  fr412 Meuse  it913 Taranto  
de23  Oberpfalz  fr413 Moselle  it914 Brindisi  
de24  Oberfranken  fr414 Vosges  it915 Lecce  
de25  Mittelfranken  fr421 Bas-Rhin  it921 Potenza  
de26  Unterfranken  fr422 Haut-Rhin  it922 Matera  
de27  Schwaben  fr431 Doubs  it931 Cosenza  
de3  Berlin  fr432 Jura  it932 Crotone  
de4  Brandenburg  fr433 Haute-Saône  it933 Catanzaro  
de5  Bremen  fr434 Territoire de Belfort  it934 Vibo Valentia  
de6  Hamburg  fr511 Loire-Atlantique  it935 Reggio di Calabria  
de71  Darmstadt  fr512 Maine-et-Loire  ita01 Trapani  
de72  Gießen  fr513 Mayenne  ita02 Palermo  
de73  Kassel  fr514 Sarthe  ita03 Messina  
de8  Mecklenburg-Vorpom.  fr515 Vendée  ita04 Agrigento  
de91  Braunschweig  fr521 Côte-du-Nord  ita05 Caltanissetta  
de92  Hannover  fr522 Finistère  ita06 Enna  
de93  Lüneburg  fr523 Ille-et-Vilaine  ita07 Catania  
de94  Weser-Ems  fr524 Morbihan  ita08 Ragusa  
dea1  Düsseldorf  fr531 Charente  ita09 Siracusa  
dea2  Köln  fr532 Charente-Maritime  itb01 Sassari  
dea3  Münster  fr533 Deux-Sèvres  itb02 Nuoro  
dea4  Detmold  fr534 Vienne  itb03 Oristano  
dea5  Arnsberg  fr611 Dordogne  itb04 Cagliari  
deb1  Koblenz  fr612 Gironde  lu  Luxembourg  
deb2  Trier  fr613 Landes  nl1  Noord-Nederland  
deb3  Rheinhessen-Pfalz  fr614 Lot-et-Garonne  nl11 Groningen  
dec  Saarland  fr615 Pyrénées-Atlantiques  nl12 Friesland  
ded1  Chemnitz  fr621 Ariège  nl13 Drenthe  
ded2  Dresden  fr622 Aveyron  nl21 Overijssel  
ded3  Leipzig  fr623 Haute-Garonne  nl22 Gelderland  
dee1  Dessau  fr624 Gers  nl23 Flevoland  
dee2  Halle  fr625 Lot  nl31 Utrecht  
dee3  Magdeburg  fr626 Hautes-Pyrénées  nl32 Noord-Holland  
def  Schleswig-Holstein  fr627 Tarn  nl33 Zuid-Holland  
deg  Thüringen  fr628 Tarn-et-Garonne  nl34 Zeeland  
dk001 København og Frederik. fr631 Corrèze  nl41 Noord-Brabant  
dk002 Københavns amt  fr632 Creuse  nl42 Limburg (NL)  
dk003 Frederiksborg amt  fr633 Haute-Vienne  se01

1  Stockholms län  

dk004 Roskilde amt  fr711 Ain  se02
1  Uppsala län  

dk005 Vestsjællands amt  fr712 Ardèche  se02
2  Södermanlands län  

dk006 Storstrøms amt  fr713 Drôme  se02
3  Östergötlands län  
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dk007 Bornholms amt  fr714 Isère  se02
4  Örebro län  

dk008 Fyns amt  fr715 Loire  se02
5  Västmanlands län  

dk009 Sønderjyllands amt  fr716 Rhône  se04
1  Blekinge län  

dk00a Ribe amt  fr717 Savoie  se04
4  Skåne län  

dk00b Vejle amt  fr718 Haute-Savoie  se06
1  Värmlands län  

dk00c Ringkøbing amt  fr721 Allier  se06
2  Dalarnas län  

dk00d Århus amt  fr722 Cantal  se06
3  Gävleborgs län  

dk00
e  Viborg amt  fr723 Haute-Loire  se07

1  Västernorrlands län  

dk00f Nordjyllands amt  fr724 Puy-de-Dôme  se07
2  Jämtlands län  

es111 La Coruña  fr811 Aude  se08
1  Västerbottens län  

es112 Lugo  fr812 Gard  se08
2  Norrbottens län  

es113 Orense  fr813 Hérault  se09
1  Jönköpings län  

es114 Pontevedra  fr814 Lozère  se09
2  Kronobergs län  

es211 Álava  fr815 Pyrénées-Orientales  se09
3  Kalmar län  

es212 Guipúzcoa  fr821 Alpes-de-Haute-Prov. se09
4  Gotlands län  

es213 Vizcaya  fr822 Hautes-Alpes  se0a1 Hallands län  
es22  Comunidad de Navarra  fr823 Alpes-Maritimes  se0a2 Västra Götalands län  
es23  La Rioja  fr824 Bouches-du-Rhône  ukc1 Tees Valley and Durham  
es241 Huesca  fr825 Var  ukc2 Northumb., Tyne and Wear  
es242 Teruel  fr826 Vaucluse  ukd1 Cumbria  
es243 Zaragoza  fr831 Corse-du-Sud  ukd2 Cheshire  
es3  Comunidad de Madrid  fr832 Haute-Corse  ukd3 Greater Manchester  
es411 Avila  fr9  French overseas depts. ukd4 Lancashire  
es412 Burgos  ie Ireland ukd5 Merseyside  
es413 León  it111 Torino  uke1 East Riding, N. Lincolnshire  
es414 Palencia  it112 Vercelli  uke2 North Yorkshire  
es415 Salamanca  it113 Biella  uke3 South Yorkshire  
es416 Segovia  it114 Verbano-Cusio-Ossola uke4 West Yorkshire  
es417 Soria  it115 Novara  ukf1 Derbyshire, Nottinghamshire 
es418 Valladolid  it116 Cuneo  ukf2 Leicester, Rutland, Northants 
es419 Zamora  it117 Asti  ukf3 Lincolnshire  
es421 Albacete  it118 Alessandria  ukg1 Hereford, Worcester, Warks  
es422 Ciudad Real  it13  Liguria  ukg2 Shropshire and Staffordshire 
es423 Cuenca  it131 Imperia  ukg3 West Midlands  
es424 Guadalajara  it132 Savona  ukh1 East Anglia  
es425 Toledo  it133 Genova  ukh2 Bedfordshire, Hertfordshire  
es431 Badajoz  it134 La Spezia  ukh3 Essex  
es432 Cáceres  it201 Varese  uki1 Inner London  
es511 Barcelona  it202 Como  uki2 Outer London  
es512 Gerona  it203 Lecco  ukj1 Berkshire, Bucks, Oxfordshire 
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es513 Lérida  it204 Sondrio  ukj2 Surrey, East and West Sussex 
es514 Tarragona  it205 Milano  ukj3 Hampshire and Isle of Wight 
es521 Alicante  it206 Bergamo  ukj4 Kent  
es522 Castellón de la Plana  it207 Brescia  ukk1 Gloucester, Wilts, N. 

Somerset  
es523 Valencia  it208 Pavia  ukk2 Dorset and Somerset  
es53  Illes Balears  it209 Lodi  ukk3 Cornwall and Isles of Scilly  
es611 Almería  it20a  Cremona  ukk4 Devon  
es612 Cadiz  it20b Mantova  ukl1 West Wales and The Valleys 
es613 Córdoba  it311 Bolzano-Bozen  ukl2 East Wales  
es614 Granada  it312 Trento  ukm1 North Eastern Scotland  
es615 Huelva  it321 Verona  ukm2 Eastern Scotland  
es616 Jaén  it322 Vicenza  ukm3 South Western Scotland  
    ukm4 Highlands and Islands  
Source: Eurostat (1999) 
 


